
Lecture 14: Coordinated Representations and Joint Embeddings [part 2]

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Multimodal Representation Types

— Similarity-based methods (e.g., 
cosine distance) 

— Structure constraints (e.g., 
orthogonality, sparseness)  

— Examples: CCA, joint embeddings

Modality 1Modality 2

Representation

Modality 1Modality 2

Repres. 2 Repres. 1

Joint representations:

Coordinated representations:

*slide from Louis-Philippe Morency

— Simplest version: modality 
concatenation (early fusion)  

— Can be learned supervised or 
unsupervised



Joint Representation: Deep Multimodal Autoencoders
[ Ngiam et al., 2011 ]

Each modality can be pre-trained 
— using denoising autoencoder 

To train the model, reconstruct both 
modalities using 

— both Audio & Video 
— just Audio 
— just Video
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Supervised Joint Representation

*slide from Louis-Philippe Morency

For supervised leaning tasks, we need to join unimodal representations 
— Simple concatenation 

— Element-wise multiplicative interactions 
— many many others 

Encoder-decoder Architectures 



Multimodal Tensor Fusion Network (TFN)
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For supervised leaning tasks, we need to join unimodal representations 
— Simple concatenation 

— Element-wise multiplicative interactions 

[ Zadeh, Jones and Morency, EMNLP 2017 ]
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Low-rank Tensor Fusion 

Tucker tensor decomposition leards to MUTAN fusion 
[ Ben-younes et al., ICCV 2017 ] *slide from Louis-Philippe Morency



For supervised leaning tasks, we need to join unimodal representations 
— Simple concatenation 

— Element-wise multiplicative interactions 

Encoder-decoder Architectures 

Supervised Joint Representation



Multimodal Representation Types

— Similarity-based methods (e.g., 
cosine distance) 

— Structure constraints (e.g., 
orthogonality, sparseness)  

— Examples: CCA, joint embeddings
Modality 1Modality 2

Repres. 2 Repres. 1

Coordinated representations:
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Data with Multiple Views

*slide from Andrew, Arora, Bilmes, Livescu



Correlated Representations

Goal: Find representations                     for each view that maximize correlation: 

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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Correlated Representations

Goal: Find representations                     for each view that maximize correlation: 

Finding correlated representations can be useful for 
— Gaining insights into the data  
— Detecting of asynchrony in test data 
— Removing noise uncorrelated across views 
— Translation or retrieval across views

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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Correlated Representations

Goal: Find representations                     for each view that maximize correlation: 

Finding correlated representations can be useful for 
— Gaining insights into the data  
— Detecting of asynchrony in test data 
— Removing noise uncorrelated across views 
— Translation or retrieval across views 

Has been applied widely to problems in computer vision, speech, NLP, 
medicine, chemometrics, metrology, neurology, etc.

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

*slide from Andrew, Arora, Bilmes, Livescu



CCA: Canonical Correlation Analysis
Classical technique to find linear correlated representations, i.e.,  

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k
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f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

where
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CCA: Canonical Correlation Analysis
Classical technique to find linear correlated representations, i.e.,  

The first columns                     of the matrices        and         are found to 
maximize the correlation of the projections: 

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2
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f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2
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where

(w1,:1,w2,:1) W1 W2

(w1,:1,w2,:1) = argmax corr(w

T
1,:1X1,w

T
2,:1X2)

*slide from Andrew, Arora, Bilmes, Livescu



CCA: Canonical Correlation Analysis
Classical technique to find linear correlated representations, i.e.,  

The first columns                     of the matrices        and         are found to 
maximize the correlation of the projections: 

Subsequent pairs are constrained to be uncorrelated with previous 
components (i.e., for          )

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

f1(x1) = W

T
1 x1

f2(x2) = W

T
2 x2

W1 2 Rd1⇥k

W2 2 Rd2⇥k

where

(w1,:1,w2,:1) W1 W2

corr(wT
1,:iX1,w

T
1,:jX1) = corr(wT

2,:iX2,w
T
2,:jX2) = 0

(w1,:1,w2,:1) = argmax corr(w

T
1,:1X1,w

T
2,:1X2)

j < i
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CCA Illustration

X2 2 R2

f2(X2) = wT
2 X2f1(X1) = wT

1 X1

X1 2 R2

Two views of each instance have the same color
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  

2. Form normalized covariance matrix:                                    and its singular                         
    value decomposition  
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  

2. Form normalized covariance matrix:                                    and its singular                         
    value decomposition  

3. Total correlation at     is 
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CCA: Canonical Correlation Analysis
1. Estimate covariance matrix with regularization:  

2. Form normalized covariance matrix:                                    and its singular                         
    value decomposition  

3. Total correlation at     is 

4. The optimal projection matrices are: 

    where       is the first    columns of    .
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KCCA: Kernel CCA

There maybe non-linear functions                      that produce more highly 
correlated (better) representations than linear projections  

Kernel CCA is a principal method for finding such function 
— Learns functions from any reproducing kernel Hilbert space 
— May use different kernels for each view 

Using RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that 
form clusters in both views

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))
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KCCA vs. CCA

Pros: 
— More complex function space of KCCA can yield dramatically higher 
correlations 

Cons: 
— KCCA is slower to train 
— For KCCA training set must be stored and referenced at test time 
— KCCA model is more difficult to interpret 

*slide from Andrew, Arora, Bilmes, Livescu



Deep CCA

*slide from Andrew, Arora, Bilmes, Livescu



Benefits of Deep CCA 

Pros: 
— Better suited for natural, real-world data 
— Parametric model 
— The training set can be disregarded once the model is learned 
— Computational speed at test time is fast 

*slide from Andrew, Arora, Bilmes, Livescu



Deep CCA: Training

Training a Deep CCA model: 

1. Pretrain the layers of each side individually  

2. Jointly fine-tune all parameters to maximize 
the total correlation of the output layers. 
Requires computing correlation gradient:  

	 — Forward propagate activations on both sides.  
	 — Compute correlation and its gradient w.r.t. output layers.  

	 — Backpropagate gradient on both sides.  

*slide from Andrew, Arora, Bilmes, Livescu



Deep CCA: Training

Training a Deep CCA model: 

1. Pretrain the layers of each side individually  

2. Jointly fine-tune all parameters to maximize 
the total correlation of the output layers. 
Requires computing correlation gradient:  

	 — Forward propagate activations on both sides.  
	 — Compute correlation and its gradient w.r.t. output layers.  

	 — Backpropagate gradient on both sides.  

Correlation is a population objective, so instead 
of one instance (or minibatch) training, requires 
L-BFGS second-order method (with full-batch) 
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Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and auto encoders 
loss functions 
— A trade-off between multi-view correlation 
and reconstruction error from individual views 

[ Wang et al., ICML 2015 ]



Multimodal Representation Types

— Similarity-based methods (e.g., 
cosine distance) 

— Structure constraints (e.g., 
orthogonality, sparseness)  

— Examples: CCA, joint embeddings
Modality 1Modality 2

Repres. 2 Repres. 1

Coordinated representations:
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Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations                      for each view 
that maximize correlation:

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))p

var(f1(x1)) · var(f2(x2))

Joint Embeddings: Models that minimize distance between ground truth pairs 
of samples:

minf1,f2D
⇣
f1(x

(i)
1 ), f2(x

(i)
2 )

⌘



Joint Embeddings



Joint Embeddings

[ Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014 ]



Joint Embeddings

[ Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014 ]



Object Classification

Dog 
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Couch 
Flowers 
Leopard 
…

No 
No 
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Yes 
…

Category    Prediction

Problem: For each image predict which category it belongs to out of a fixed set 
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Object Classification
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Category    Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN
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Problem: For each image predict which category it belongs to out of a fixed set 



Discriminative Embeddings 
Images and class labels are embedded into the same space 

: RD ! Rd



Discriminative Embeddings 
Images and class labels are embedded into the same space 

Image Embedding
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Feature Extractor

CNN

 I(Ii) = W · CNN(Ii)

 I(Ii) = W · CNN(Ii)

: RD ! Rd (Ii) = W · CNN(Ii;⇥): RD ! Rd

CNN(Ii;⇥)



 (Ii) = W · CNN(Ii;⇥)

Discriminative Embeddings 
Images and class labels are embedded into the same space 

Image Embedding

: RD ! Rd

 I(Ii) = W · CNN(Ii)
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AttributesVisual Attributes by MIL

Visual representation by DCNNCNN

 I(Ii) = W · CNN(Ii)

Feature Extractor

: RD ! Rd

CNN(Ii;⇥)



Discriminative Embeddings 
Images and class labels are embedded into the same space 

Image Embedding

: RD ! Rd (Ii) = W · CNN(Ii;⇥): RD ! Rd



Discriminative Embeddings 
Images and class labels are embedded into the same space 

Label Embedding

Image Embedding
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Discriminative Embeddings 
Images and class labels are embedded into the same space 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra
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Lion
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Similarity in Embedding Space

: RD ! Rd (Ii) = W · CNN(Ii;⇥): RD ! Rd

D(u,u0) = ||u� u0||22



Discriminative Embeddings 
Images and class labels are embedded into the same space 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

Zebra

Tiger

Horse

Lion

u
lion

Similarity in Embedding Space

: RD ! Rd (Ii) = W · CNN(Ii;⇥): RD ! Rd

D(u,u0) =
u

||u|| ·
u0

||u0||



Discriminative Embeddings 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

Zebra

Tiger

Horse

Lion

u
lion

Image Categorization / Annotation

Similarity in Embedding Space

: RD ! Rd

D(u,u0) = ||u� u0||22

 (Ii) = W · CNN(Ii;⇥): RD ! Rd

which object category does image belong to? 



Discriminative Embeddings 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

Zebra

Tiger

Horse

Lion

u
lion

Image Categorization / Annotation

Similarity in Embedding Space

: RD ! Rd

D(u,u0) = ||u� u0||22

 (Ii) = W · CNN(Ii;⇥): RD ! Rd

which object category does image belong to? 

Distance can be interpreted as probability 



Discriminative Embeddings 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

Zebra

Tiger

Horse

Lion

u
lion

Search by Image

Similarity in Embedding Space

: RD ! Rd

D(u,u0) = ||u� u0||22

 (Ii) = W · CNN(Ii;⇥): RD ! Rd

most similar image to a query?



Discriminative Embeddings 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

Zebra

Tiger

Horse

Lion

u
lion

Search by Label

Similarity in Embedding Space

: RD ! Rd

D(u,u0) = ||u� u0||22

 (Ii) = W · CNN(Ii;⇥): RD ! Rd

most representative image for a label?



min
W,U

NX

i

LC(W,U, Ii, yi) + �1||W||2F + �2||U||2F

Discriminative Embeddings 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

u
lion

Similarity in Embedding Space

Objective Function:

: RD ! Rd

D(u,u0) = ||u� u0||22

LC(W,U, Ii, yi) =
X

[1 +D( (Ii),uyi)�D( (Ii),uyc)]

 (Ii) = W · CNN(Ii;⇥): RD ! Rd

[ Bengio et al.,, NIPS’10 ] 
[ Weinberger, Chapelle, NIPS’09 ] 

Why not minimize distance directly?



D(u,u0) =
u

||u|| ·
u0

||u0||

min
W,U

NX

i

LC(W,U, Ii, yi) + �1||W||2F + �2||U||2F

Discriminative Embeddings 

Label Embedding

Image Embedding

 L(wordi) = ui : {1, ..., L} ! Rd uzebra

utiger

u
horse

u
lion

Similarity in Embedding Space

Objective Function:

: RD ! Rd (Ii) = W · CNN(Ii;⇥): RD ! Rd

[ Bengio et al.,, NIPS’10 ] 
[ Weinberger, Chapelle, NIPS’09 ] 

LC(W,U, Ii, yi) =
X

max{0,↵�D( (Ii),uyi) +D( (Ii),uyc)}



Discriminative Embeddings 

This is a very convenient model 

uzebra

utiger

u
horse

Zebra

Tiger

Horse

Lion

u
lion

: RD ! Rd

Inducing semantics on 
the embedding space



Semantic Embeddings

Why adding semantics is useful?  
— Allows for transference of knowledge from classes that have a lot of data to those that have 
few (or no labeled instances) 
— Can serve as additional regularization, so can be more efficient for learning.



Long Tail of Categories

Person

Bus

Car

Zeebra ClimbingQuagga

As granularity of categories increases, the amount 
of data per category decreases

Few most frequent categories contain most of the samples, most of the 
categories contain few samples 



Inspiration from Human Structured Semantics

motor vehicle designed to transport cargo

self-propelled, wheeled vehicle that does 
not  operate on railsTruck

[ Hwang et al., 2014 ]



Inspiration from Human Structured Semantics
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where � regularizes W and U from shooting to infinity. This is one of the most common objective
used for learning discriminative category embeddings for multi-class classification [10, 7], while
ranking loss-based [15] models have been also explored for L
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. Bilinear models on a single variable
W has been also used in Akata et al. [4], which use structured labels (attributes) as u
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3.1 Embedding auxiliary semantic entities.

Now we describe how we embed the supercategories and attributes onto the learned shared space.

Supercategories While our objective is to better categorize entry level categories, categories in
general can appear in different semantic granularities. For example, a zebra could be both an equus,
and an odd-toed ungulate. To learn the embeddings for the supercategories, we map each data
instance to be close to its correct supercategory embedding than to its siblings: kWx
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Attributes Attributes can be considered as a normalized basis vectors for the semantic space,
whose combination represents a category. Basically, we want to maximize the correlation between
the projected instance that possess the attribute, and its correct attribute embedding, as follows:
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is the set of all attributes for class c and u
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is an embedding vector for attribute a.

3.2 Relationship between the categories, supercategories, and attributes

We can simply add L
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} added as additional columns of U ,
and use shared data embedding W to learn a space that jointly maximize the discirminativity of cat-
egories, supercategories, and attributes. This jointly learning alone is a multitask learning, since the
shared data embedding W should be learned to satisfy all constraints provided by diverse semantic
entities. However, we want to further utilize the relationships between the semantic entities, to ex-
plicitly impose structural regularization on the semantic embeddings U . One simple and intuitive
relation is that an object class can be represented as the combination of its parent level category plus
a sparse combination of attributes, which translates into the following constraint:
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is the set of children classes for
class p, �1 is the sparsity parameter, and C is the number of categories. We require � to be non-
negative, since it makes more sense and more efficient to describe an object with attributes that it
might have, rather than describing it by attributes that it might not have.

We rewrite Eq. 7 into a regularization term as follows, replacing the `0-norm constraints with `1-
norm regularizations for tractable optimization.

R(U ,B) =
CX

c

ku
c

� u

p

�U

A

�

c

k22 + �2k�c

+ �

o

k22.

c 2 C
p

, o 2 P
c

[ S
c

, 0 � �

c

� �1, 8c 2 {1, . . . ,C}
(7)

where B is the matrix whose j
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column vector �
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is the reconstruction weight for class j, S
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is the
set of all sibling classes for class c, and �2 is the parameters to enforce exclusivity.

The exclusive regularization term is used to prevent the semantic reconstruction �
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fitting to the same attributes fitted by its parents and siblings. This is because attributes common
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Abstract
We study the problem of object classification when train-

ing and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly been
studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-

otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.

lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training
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lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training
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Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.
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Ridge Regression 38.39 ± 1.48 48.61 ± 1.29 62.12 ± 1.20 38.51 ± 0.61 41.73 ± 0.54
NCM [11] 43.49 ± 1.23 57.45 ± 0.91 75.48 ± 0.58 45.25 ± 0.52 50.32 ± 0.47

LME 44.76 ± 1.77 58.08 ± 2.05 75.11 ± 1.48 44.84 ± 0.98 49.87 ± 0.39

Implicit
semantics

LMTE [7] 38.92 ± 1.12 49.97 ± 1.16 63.35 ± 1.38 38.67 ± 0.46 41.72 ± 0.45
ALE [4] 36.40 ± 1.03 50.43 ± 1.92 70.25 ± 1.97 42.52 ± 1.17 52.46 ± 0.37
HLE [4] 33.56 ± 1.64 45.93 ± 2.56 64.66 ± 1.77 46.11 ± 2.65 56.79 ± 2.05

AHLE [4] 38.01 ± 1.69 52.07 ± 1.19 71.53 ± 1.41 44.43 ± 0.66 54.39 ± 0.55
Explicit
semantics

LME-MTL-S 45.03 ± 1.32 57.73 ± 1.75 74.43 ± 1.26 46.05 ± 0.89 51.08 ± 0.36
LME-MTL-A 45.55 ± 1.71 58.60 ± 1.76 74.97 ± 1.15 44.23 ± 0.95 48.52 ± 0.29

USE USE-No Reg. 45.93 ± 1.76 59.37 ± 1.32 74.97 ± 1.15 47.13 ± 0.62 51.04 ± 0.46
USE-Reg. 46.42 ± 1.33 59.54 ± 0.73 76.62 ± 1.45 47.39 ± 0.82 53.35 ± 0.30

Table 2: Multiclass classification performance on AWA-DeCafe dataset (4096-D DeCafe features).

baseline with regard to the top-1 classification accuracy 5, while they improve upon the top-2 recog-
nition accuracy and hierarchical precision. This shows that hard-encoding structures in the label
space do not necessarily improve the discrimination performance, while it helps to learn a more se-
mantic space. LMTE makes substantial improvement on 300-D features, but not on Caffe features.

Explicit embedding of semantic entities using our method improved both the top-1 accuracy and
the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
adding superclass embeddings as auxiliary entities improves the hierarchical precision, while using
attributes improves the flat top-k classification accuracy. USE-Reg. especially made substantial
improvements on flat hit and hierarchical precision @ 5, which shows the proposed regularization’s
effectiveness in learning s semantic space that also discriminates well.

Category Ground-truth attributes Supercategory + learned attributes

Otter

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, . . .

A musteline mammal that is quadrapedal, flippers, furry,
ocean

Skunk

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, . . . A musteline mammal that has stripes

Deer

An animal that is brown, fast, horns, grazer, forest,
quadrapedal, vegetation, timid, hooves, walks, . . . A deer that has spots, nestspot, longneck, yellow, hooves

Moose

An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 3: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.

5We did extensive parameter search for the ALE variants.
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tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.

5We did extensive parameter search for the ALE variants.
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space do not necessarily improve the discrimination performance, while it helps to learn a more se-
mantic space. LMTE makes substantial improvement on 300-D features, but not on Caffe features.

Explicit embedding of semantic entities using our method improved both the top-1 accuracy and
the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
adding superclass embeddings as auxiliary entities improves the hierarchical precision, while using
attributes improves the flat top-k classification accuracy. USE-Reg. especially made substantial
improvements on flat hit and hierarchical precision @ 5, which shows the proposed regularization’s
effectiveness in learning s semantic space that also discriminates well.
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world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 3: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.
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it has learned. This is a great caveat, since in most models, including the state-of-the art deep
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4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
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the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
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tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.

5We did extensive parameter search for the ALE variants.
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tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
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is no provided attribute label for supercategories.
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Explicit embedding of semantic entities using our method improved both the top-1 accuracy and
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attributes improves the flat top-k classification accuracy. USE-Reg. especially made substantial
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it has learned. This is a great caveat, since in most models, including the state-of-the art deep
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To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.
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understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
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• efficient in learning

Figure 3. Class–attribute matrices from [24, 18]. The responses
of 10 test persons were averaged to determine the real-valued as-
sociation strength between attributes and classes. The darker the
boxes, the less is the attribute associated with the class. Binary
attributes are obtained by thresholding at the overall matrix mean.

detection tasks depends on the presence or absence of ob-
ject properties and contextual cues [16]. Since one of our
goals is to integrate human knowledge into a computer vi-
sion task, we would like to benefit from the prior work in
this field, at least as a source of high quality data that, so far,
cannot be obtained by an automatic process. In the follow-
ing section, we describe a new dataset of animal images that
allows us to make use of existing class-attribute association
data, which was collected from cognitive science research.

4. The Animals with Attributes Dataset

For their studies on attribute-based object similarity, Os-
herson and Wilkie [24] collected judgements from human
subjects on the “relative strength of association” between
85 attributes and 48 animal classes. Kemp et al. [18] made
use of the same data in a machine learning context and
added 2 more animals classes. Figure 3 illustrates an ex-
cerpt of the resulting 50 ⇥ 85 class-attribute matrix. How-
ever, so far this data was not usable in a computer vision
context, because the animals and attributes are only spec-
ified by their abstract names, not by example images. To
overcome this problem, we have collected the Animals with
Attributes data.3

4.1. Image Collection

We have collected example images for all 50 Osher-
son/Kemp animal classes by querying four large internet
search engines, Google, Microsoft, Yahoo and Flickr, using
the animal names as keywords. The resulting over 180,000
images were manually processed to remove outliers and du-
plicates, and to ensure that the target animal is in a promi-
nent view in all cases. The remaining collection consists of
30475 images with at minimum of 92 images for any class.
Figure 1 shows examples of some classes with the values
of exemplary attributes assigned to this class. Altogether,
animals are uniquely characterized by their attribute vector.
Consequently, the Animals with Attributes dataset, formed

3Available at http://attributes.kyb.tuebingen.mpg.de

by combining the collected images with the semantic at-
tribute table, can serve as a testbed for the task of incorpo-
rating human knowledge into an object detection system.

4.2. Feature Representations

Feature extraction is known to have a big influence in
computer vision tasks. For most image datasets, e.g. Cal-
tech [15] and PASCAL VOC4, is has become difficult to
judge the true performance of newly proposed classifica-
tion methods, because results based on very different fea-
ture sets need to be compared. We have therefore decided
to include a reference set of pre-extracted features into the
Animals with Attributes dataset.

We have selected six different feature types: RGB color
histograms, SIFT [21], rgSIFT [35], PHOG [4], SURF [2]
and local self-similarity histograms [30]. The color his-
tograms and PHOG feature vectors are extracted separately
for all 21 cells of a 3-level spatial pyramids (1⇥1, 2⇥2,
4⇥ 4). For each cell, 128-dimensional color histograms
are extracted and concatenated to form a 2688-dimensional
feature vector. For PHOG, the same construction is used,
but with 12-dimensional base histograms. The other feature
vectors each are 2000-bin bag-of-visual words histograms.

For the consistent evaluation of attribute-based object
classification methods, we have selected 10 test classes:
chimpanzee, giant panda, hippopotamus, humpback whale,
leopard, pig, racoon, rat, seal. The 6180 images of those
classes act as test data, whereas the 24295 images of the
remaining 40 classes can be used for training. Addition-
ally, we also encourage the use of the dataset for regular
large-scale multi-class or multi-label classification. For this
we provide ordinary training/test splits with both parts con-
taining images of all classes. In particular, we expect the
Animals with Attributes dataset to be suitable to test hierar-
chical classification techniques, because the classes contain
natural subgroups of similar appearance.

5. Experimental Evaluation
In Section 2 we introduced DAP and IAP, two meth-

ods for attribute-based classification, that allow the learn-
ing of object classification systems for classes for, which no
training samples are available. In the following, we eval-
uate both methods by applying them to the Animals with
Attributes dataset. For DAP, we train a non-linear sup-
port vector machine (SVM) to predict each binary attributes
a1, . . . , aM . All attribute SVMs are based the same kernel,
the sum of individual �

2-kernels for each feature, where the
bandwidth parameters are fixed to the five times inverse of
the median of the �

2-distances over the training samples.
The SVM’s parameter C is set to 10, which had been deter-
mined a priori by cross-validation on a subset of the training

4http://www.pascal-network.org/challenges/VOC/

alternative attribute-based representations
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Table 2: Multiclass classification performance on AWA-DeCafe dataset (4096-D DeCafe features).

baseline with regard to the top-1 classification accuracy 5, while they improve upon the top-2 recog-
nition accuracy and hierarchical precision. This shows that hard-encoding structures in the label
space do not necessarily improve the discrimination performance, while it helps to learn a more se-
mantic space. LMTE makes substantial improvement on 300-D features, but not on Caffe features.

Explicit embedding of semantic entities using our method improved both the top-1 accuracy and
the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
adding superclass embeddings as auxiliary entities improves the hierarchical precision, while using
attributes improves the flat top-k classification accuracy. USE-Reg. especially made substantial
improvements on flat hit and hierarchical precision @ 5, which shows the proposed regularization’s
effectiveness in learning s semantic space that also discriminates well.

Category Ground-truth attributes Supercategory + learned attributes

Otter

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, . . .

A musteline mammal that is quadrapedal, flippers, furry,
ocean

Skunk

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, . . . A musteline mammal that has stripes
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An animal that is brown, fast, horns, grazer, forest,
quadrapedal, vegetation, timid, hooves, walks, . . . A deer that has spots, nestspot, longneck, yellow, hooves
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An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 3: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.
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it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
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baseline with regard to the top-1 classification accuracy 5, while they improve upon the top-2 recog-
nition accuracy and hierarchical precision. This shows that hard-encoding structures in the label
space do not necessarily improve the discrimination performance, while it helps to learn a more se-
mantic space. LMTE makes substantial improvement on 300-D features, but not on Caffe features.

Explicit embedding of semantic entities using our method improved both the top-1 accuracy and
the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
adding superclass embeddings as auxiliary entities improves the hierarchical precision, while using
attributes improves the flat top-k classification accuracy. USE-Reg. especially made substantial
improvements on flat hit and hierarchical precision @ 5, which shows the proposed regularization’s
effectiveness in learning s semantic space that also discriminates well.

Category Ground-truth attributes Supercategory + learned attributes

Otter

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, . . .

A musteline mammal that is quadrapedal, flippers, furry,
ocean

Skunk

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, . . . A musteline mammal that has stripes

Deer

An animal that is brown, fast, horns, grazer, forest,
quadrapedal, vegetation, timid, hooves, walks, . . . A deer that has spots, nestspot, longneck, yellow, hooves

Moose

An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 3: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.

5We did extensive parameter search for the ALE variants.
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the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
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Equine N/A An odd-toed ungulate, that is lean and active
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Table 3: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.

5We did extensive parameter search for the ALE variants.
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the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
adding superclass embeddings as auxiliary entities improves the hierarchical precision, while using
attributes improves the flat top-k classification accuracy. USE-Reg. especially made substantial
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effectiveness in learning s semantic space that also discriminates well.
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tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main advan-
tage over existing methods is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing them to under-
stand the rationale on the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded
as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.
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Christoph H. Lampert Hannes Nickisch Stefan Harmeling
Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract
We study the problem of object classification when train-

ing and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly been
studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-

otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.

lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training

… 

Animals with Attributes ImageNet

Target: 10 Animal Classes (NO annotation)

Auxiliary: 1,000 General Classes (annotated)

Target: 360 General Classes (NO annotation)

[ Deng et al., CVPR’09 ] 
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Experiments: Settings

AwA/ImageNet
No. Testing Classes No. Testing Words

Auxiliary Target Total Vocabulary Chance(%)

SUPERVISED 40/1000 40/1000 2.5/0.1

ZERO-SHOT 10/360 10/360 10/0.28

OPEN-SET 50/1360 310K/310K 3.2E-04X
X

X

X

The tasks are only separated in evaluation;  
                     We train one unified model for all the settings

[ Fu et al., 2016 ]
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for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
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serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
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Abstract
We study the problem of object classification when train-

ing and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly been
studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-

otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.

lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training

Donkey

Poney

Panther

Testing

L = 310, 000

[ Fu et al., 2016 ]



Experiments: Settings

AwA/ImageNet
No. Testing Classes No. Testing Words

Auxiliary Target Total Vocabulary Chance(%)

SUPERVISED 40/1000 40/1000 2.5/0.1

ZERO-SHOT 10/360 10/360 10/0.28

OPEN-SET 50/1360 310K/310K 3.2E-04X
X

X

X

The tasks are only separated in evaluation;  
                     We train one unified model for all the settings

[ Fu et al., 2016 ]



Zero-shot Results
Results with AWA 

Method Features Accuracy

SS-Voc: full instances


800 instances (20 inst*40 class);


200 instances (5 inst*40 class);

CNNOverFeat 78.3

CNNOverFeat 74.4

CNNOverFeat 68.9
Akata et al. CVPR 2015 CNNGoogLeNet 73.9

TMV-BLP (Fu et al. ECCV 2014) CNNOverFeat 69.9

AMP (SR+SE) (Fu et al. CVPR 2015) CNNOverFeat 66.0
DAP (Lampert et al. TPAMI 2013) CNNVGG19 57.5
PST (Rohrbach et al. NIPS 2013) CNNOverFeat 53.2

DS (Rohrbach et al. CVPR 2010) CNNOverFeat 52.7
IAP (Lampert et al. TPAMI 2013) CNNOverFeat 44.5
HEX (Deng et al. ECCV 2014)	 CNNDECAF 44.2

+4.4%

[ Fu et al., 2016 ]
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IAP (Lampert et al. TPAMI 2013) CNNOverFeat 44.5
HEX (Deng et al. ECCV 2014)	 CNNDECAF 44.2

Zero-shot Results
Results with AWA 

+0.5%3.3% of  
training data

[ Fu et al., 2016 ]



Zero-shot Results
Results with AWA 

Method Features Accuracy

SS-Voc: full instances


800 instances (20 inst*40 class);


200 instances (5 inst*40 class);

CNNOverFeat 78.3

CNNOverFeat 74.4

CNNOverFeat 68.9
Akata et al. CVPR 2015 CNNGoogLeNet 73.9

TMV-BLP (Fu et al. ECCV 2014) CNNOverFeat 69.9

AMP (SR+SE) (Fu et al. CVPR 2015) CNNOverFeat 66.0
DAP (Lampert et al. TPAMI 2013) CNNVGG19 57.5
PST (Rohrbach et al. NIPS 2013) CNNOverFeat 53.2

DS (Rohrbach et al. CVPR 2010) CNNOverFeat 52.7
IAP (Lampert et al. TPAMI 2013) CNNOverFeat 44.5
HEX (Deng et al. ECCV 2014)	 CNNDECAF 44.2

0.82% of  
training data

[ Fu et al., 2016 ]



Weakly-supervised Visual Grounding of Phrases
Given image-sentence pairs learn how to localize arbitrary language phrase 
or sentence in new images

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 ]

[ Xiao et al., 2017 ]



Weakly-supervised Visual Grounding of Phrases
Given image-sentence pairs learn how to localize arbitrary language phrase 
or sentence in new images

a man

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 ]

[ Xiao et al., 2017 ]



a table

Weakly-supervised Visual Grounding of Phrases
Given image-sentence pairs learn how to localize arbitrary language phrase 
or sentence in new images

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 ]

[ Xiao et al., 2017 ]



Label Embedding

 L(phrasei) = ui

Weakly-supervised Visual Grounding of Phrases [ Xiao et al., 2017 ]
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Label Embedding

 L(phrasei) = ui

 L(phrasei) = ui

a man that is cutting sandwich

LSTM LSTM LSTM LSTM LSTM LSTM

Language Encoder

a man

a table

purple 
bus

Weakly-supervised Visual Grounding of Phrases [ Xiao et al., 2017 ]



Label Embedding

 L(phrasei) = ui

 L(phrasei) = ui

Image Embedding
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a man that is 
cutting 
sandwich

Label Embedding

 L(phrasei) = ui

Image Embedding

a man

a table

purple 
bus

Similarity in Embedding Space

Objective Function:

D(u,u0) = ||u� u0||22

 (Ii) = W · CNN(Ii;⇥)

Weakly-supervised Visual Grounding of Phrases

Combination of previous discriminative similarity and linguistic regularization

[ Xiao et al., 2017 ]



For noun phrases:  
• siblings should have disjoint masks
• parents should be union of children masks

Label Embedding

 L(phrasei) = ui

Image Embedding

Similarity in Embedding Space

Objective Function:

D(u,u0) = ||u� u0||22

 (Ii) = W · CNN(Ii;⇥)

Combination of previous discriminative similarity and linguistic regularization

Weakly-supervised Visual Grounding of Phrases [ Xiao et al., 2017 ]



Qualitative Results
Our ModelInput:

guy in green t-shirt holding 
skateboard

NO linguistic constraints

Ground truth region

Highest Probability

Ground truth region

Highest Probability

[ Xiao et al., 2017 ]



Qualitative Results NO linguistic constraints

Our Model

Input:

a person driving a boat

[ Xiao et al., 2017 ]



Qualitative Results NO linguistic constraints

Our Model

Input:

a child wearing black protective helmet

[ Xiao et al., 2017 ]



Quantitative Results

IoU@0.3 IoU@0.4 IoU@0.5 Avg mAP

Non-strcutred 0.302 0.199 0.110 0.203

Parent-Child 0.327 0.213 0.118 0.219

Sibling 0.316 0.203 0.114 0.211

Ours 0.347 0.246 0.159 0.251

Segmentation performance on COCO dataset
[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 ]

[ Xiao et al., 2017 ]



Order Embeddings
[ Vendrov et al., 2016 ]



Multimodal Representation Types

— Simplest version: modality concatenation (early fusion)  

— Can be learned supervised or unsupervised
Modality 1Modality 2

Representation

Modality 1Modality 2

Repres. 1 Repres. 1

Joint representations:

Coordinated representations:

*slide from Louis-Philippe Morency

— Similarity-based methods (e.g., cosine distance) 

— Structure constraints (e.g., orthogonality, sparseness)  

— CCA (unsupervised), joint embeddings (supervised)



Final Words …

Joint representations 
— Project modalities to the same space 
— Use  when all the modalities are present during test time 
— Suitable for multi-model fusion 

Coordinated representations  
— Project modalities to their own coordinated spaces 
— Use when only one of the modalities is present during test-time 
— Suitable for multimodal translation 
— Good for multimodal retrieval  

*slide from Louis-Philippe Morency


