

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 13: Coordinated Representations and Joint Embeddings

Multimodal Representations

What is a **good** multimodal representation?

- **Similarity** in the representation (somehow) implies similarity in corresponding concepts (we saw this in word2vec)

- Useful for various discriminative tasks (retrieval, mapping, fusion, etc.)

Possible to obtain in absence of one or mere modalities

- Fill in missing modalities given others (map or translate between modalities)

Multimodal Representation Types

Joint representations:

- Simplest version: modality **concatenation** (early fusion)

Can be learned supervised or unsupervised

Multimodal Representation Types

Joint representations:

Coordinated representations:

Simplest version: modality **concatenation** (early fusion)

Can be learned supervised or unsupervised

- Similarity-based methods (e.g., cosine distance)

- Structure constraints (e.g., orthogonality, sparseness)

- Examples: CCA, joint embeddings

Multimodal Representation Types

Joint representations:

- Simplest version: modality **concatenation** (early fusion)

Can be learned supervised or unsupervised

Joint Representation: Simple Multimodal Autoencoders

Concatenating modalities is fine, but requires both modalities at test time

No ability to ensure there is indeed **sharing** in the representations space

Shallow RBM

Shallow Autoencoder

Joint Representation: Deep Multimodal Autoencoders

Each **modality** can be pre-trained

using denoising autoencoder

To train the model, **reconstruct both** modalities using

- both Audio & Video
- just Audio
- just Video

[Ngiam et al., 2011]

Multimodal Research: Historical Perspective

* video credit: **OK Science**

* Adopted from slides by Louis-Philippe Morency

Joint Representation: Deep Multimodal Autoencoders

Table 3: McGurk Effect

Audio / Visual	Model prediction		
Setting	/ga/	/ba/	/
Visual /ga/, Audio /ga/	82.6%	2.2%	1
Visual /ba/, Audio /ba/	4.4%	89.1%	6
Visual /ga/, Audio /ba/	28.3%	13.0%	58

[Ngiam et al., 2011]

Joint Representation: Deep Multimodal Autoencoders

Useful when you know you may only be conditioning on one modality at test time

Can be regarded as a form of **regularization**

[Ngiam et al., 2011]

Supervised Joint Representation

- For supervised leaning tasks, we need to join unimodal representations
- Simple concatenation
- Element-wise **multiplicative** interactions
- many many others
- **Encoder-decoder** Architectures

Multi-modal Sentiment Analysis

For supervised leaning tasks, we need to join unimodal representations

- Simple concatenation

MOSI dataset (Zadeh et al, 2016)

- 2199 subjective video segments
- Sentiment intensity annotations
- 3 modalities: text, video, audio

$\mathbf{h}_m = \sigma(\mathbf{W} \cdot [\mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z]^T)$

Bilinear Pooling

- For supervised leaning tasks, we need to join unimodal representations
- Simple concatenation
- Element-wise **multiplicative** interactions

$\mathbf{h}_m = \mathbf{h}_x \otimes \mathbf{h}_y$

[Tenenbaum and Freeman, 2000]

Multimodal Tensor Fusion Network (TFN)

- For supervised leaning tasks, we need to join unimodal representations
- Simple concatenation
- Element-wise **multiplicative** interactions

$\mathbf{h}_m = \left| \begin{array}{c|c} \mathbf{h}_x \\ 1 \end{array} \right| \otimes \left| \begin{array}{c|c} \mathbf{h}_y \\ 1 \end{array} \right| = \left| \begin{array}{c|c} \mathbf{h}_x & \mathbf{h}_x \otimes \mathbf{h}_y \\ 1 & \mathbf{h}_n \end{array} \right|$

Zadeh, Jones and Morency, EMNLP 2017]

Multimodal Tensor Fusion Network (TFN)

- For supervised leaning tasks, we need to join unimodal representations
- Simple concatenation
- Element-wise multiplicative interactions

$\mathbf{h}_m = \left| \begin{array}{c|c} \mathbf{h}_x \\ 1 \end{array} \right| \otimes \left| \begin{array}{c} \mathbf{h}_y \\ 1 \end{array} \right| \otimes \left| \begin{array}{c} \mathbf{h}_z \\ 1 \end{array} \right| \\ 1 \end{array} \right|$

Zadeh, Jones and Morency, EMNLP 2017]

Low-rank Tensor Fusion

Tucker tensor decomposition leards to MUTAN fusion

[Ben-younes et al., ICCV 2017]

Supervised Joint Representation

- For supervised leaning tasks, we need to join unimodal representations
- Simple concatenation
- Element-wise **multiplicative** interactions
- **Encoder-decoder** Architectures

