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Lecture 12: Unsupervised Learning, Autoencoders



Unsupervised [earning

We have access to {x1,X2,X3,- -, Xy} but not {y1,y2,¥3,- - Y~}
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Unsupervised [earning

\We have access to {x1,Xs2,X3, -, Xy} but not {y1,y2,¥3, -, yn}

Why would we want to tackle such a task:

1. Extracting interesting information from data
— Clustering

— Discovering interesting trend
— Data compression

2. Learn better representations
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Unsupervised Representation Learning

Force our representations to better model input distribution
— Not just extracting features for classification

— Asking the model to be good at representing the data and not overtitting to a
particu\ar task (we get this with ImageNet, but maybe we can do better)

— Potentially allowing for better generalization

Use for initialization of supervised task, especially when we have a lot of
unlabeled data and much less labeled examples
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Restricted Boltzmann Machines i one sige)

Model the joint probability of hidden state and observation

exp(—E(x, h; 9))

Z ® o o Hidden layer
Z = Y Snexp(—E(x, h; 0))  oinary
E=—xWh —b'x —a'h o oo ( Visible layer
E——ZZ w; ixihi — X bix; — Z p (binary)
Interaction term Bias terms

Objective, maximize likelihood of the data
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Autoencoders

*slide from Louis-Philippe Morency



Autoencoders

Self (i.e. self-encoding)
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Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to

| Input L Output L
reproduce the input nput Layer utput Layer

— Encoder/Decoder architecture
—ncoder: f = o(Wx)
Decoder: 9 =0c(W h)
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Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to

| Input L Output L
reproduce the input nput Layer utput Layer

— Encoder/Decoder architecture
—ncoder: f = o(Wx)
Decoder: 9 =0c(W h)

— Score function

x' = f(g(x))
L(x',x)
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Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data

| | | | Output Layer
(e.g., sigmoid for binary; linear for real valued) Input Hayer put Lay

— Often use tied weights

W =W
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Autoencoders

Assignment 3 can be interpreted as a language autoencoder
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Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to

PCA (under certain data normalization)
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Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to

PCA (under certain data normalization)

Side note, this is useful for anomaly detection
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Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Larger than the input

— No compression needed

— Can trivially learn to just copy, no structure is learned (unless you regularize)

— Does not encourage learning of meaningful features (unless you regularize)

*slide from Louis-Philippe Morency



Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data

| | | | Output Layer
(e.g., sigmoid for binary; linear for real valued) Input Hayer put Lay

— Often use tied weights

W =W
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De-noising Autoencoder

Idea: add noise to input but learn

to reconstruct the original
Input Layer Output Layer

— |Leads to better representations

— Prevents copying

Note: different noise Is added
during each epoch
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Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them?

C o-;-. 0 <

— Good for compression (petter than PCA)

— Disregard the decoder and use the ~ Decoder [ coe j h'y

Middle layer as a representation 1

— FIne-tune the autoencoder for a task [ coe ] h,
1

Encoder [ e ] h,

® 000 -
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Context Encoders

| Pathak et al., 2016 |

v w

& o

b= &

. ® | Channel-wise | g
Enoode> L Fully L

‘ > Connected o
: :

w (]

Decode> L (.’ ‘ )




Encode>

J

Encoder Features

Context Encoders

L

-

>

*

Channel-wise
Fully
Connected

-

J

Decoder Features

Decode> L

(a) Central region

| Pathak et al., 2016 |

(b) Random block

(c¢) Random region



Context Encoders
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| Pathak et al., 2016 |
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Context Encoders

| Pathak et al., 2016 |
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Context Encoders

| Pathak et al., 2016 |
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Context Encoders

| Pathak et al., 2016 |

Pretraining Method Supervision Pretraining time  Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0 %
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [ 1] egomotion 10 hours 52.9% 41.8% -
Doersch et al. [ 7] context 4 weeks 55.3% 46.6 % -
Wang et al. [39] motion 1 week 58.4% 44.0% -

Ours context 14 hours 56.5% 44.5% 29.7 %




Spatial Context Networks

| Wu, Sigal, Davis, 2017 ]

Object Proposals Feature Representation
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Spatial Context Networks

| Wu, Sigal, Davis, 2017 ]

Object Proposals

Feature Representation

A\

@000 0000

Initialization Supervision Pretraining time  Classification  Detection
Random Gaussian random N/A < 1 minute 53.3 43.4
Wang et al. [32] random motion 1 week 58.4 44.0
Doersch et al. [3] random context 4 weeks 55.3 46.6
*Doersch et al. [3] | 1000 class labels context — 65.4 50.4
Pathak et al. [21] random context inpainting 14 hours 56.5 44.5
Zhang et al. [30] random color - 65.6 46.9
ImageNet [21] random 1000 class labels 3 days 78.2 56.8
*ImageNet random 1000 class labels 3 days 76.9 58.7
SCN-EdgeBox 1000 class labels context 10 hours 79.0 594




A Little 1heory: Information Bottleneck .. ... 1o

Every layer could be treated as a random variable, then entire network is a
Markov Chain

Data processing theorem: if the only connection between X and Z is through
Y, the information that Z gives about X cannot be bigger than the information

that Y gives about X. Encoder Decoder
P(T|X) P(Y|T)

A
N\
—
r—
s
bt

I(X:Y)<I(TY) < I(TyY) <



A Little 1heory: Information Bottleneck .. ... 1o

50 networks of same topology being optimized
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A Little 1heory: Information Bottleneck .. ... 1o

50 networks of same topology being optimized
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A Little 1heory: Information Bottleneck .. ... 1o

Observation: In the information plane layers first increase the mutual
iInformation between themselves and the output and then reduce information
between themselves and the input (which leads to “forgetting” of irrelevant
iNnputs and ultimately generalization)
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A Little 1heory: Information Bottleneck .. ... 1o

Limitation: Does not seem to work for non-Tanh activations (e.g., RelLU)
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