THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 12: Unsupervised Learning, Autoencoders

Unsupervised [earning

We have access to {x1,X2,X3,- -, Xy} but not {y1,y2,¥3,- - Y~}

*slide from Louis-Philippe Morency

Unsupervised [earning

\We have access to {x1,Xs2,X3, -, Xy} but not {y1,y2,¥3, -, yn}

Why would we want to tackle such a task:

1. Extracting interesting information from data
— Clustering

— Discovering interesting trend
— Data compression

2. Learn better representations

*slide from Louis-Philippe Morency

Unsupervised Representation Learning

Force our representations to better model input distribution
— Not just extracting features for classification

— Asking the model to be good at representing the data and not overtitting to a
particu\ar task (we get this with ImageNet, but maybe we can do better)

— Potentially allowing for better generalization

Use for initialization of supervised task, especially when we have a lot of
unlabeled data and much less labeled examples

*slide from Louis-Philippe Morency

Restricted Boltzmann Machines i one sige)

Model the joint probability of hidden state and observation

exp(—E(x, h; 9))

Z ® o o Hidden layer
Z = Y Snexp(—E(x, h; 0)) oinary
E=—xWh —b'x —a'h o oo (Visible layer
E——ZZ w; ixihi — X bix; — Z p (binary)
Interaction term Bias terms

Objective, maximize likelihood of the data

*slide from Louis-Philippe Morency

Autoencoders

*slide from Louis-Philippe Morency

Autoencoders

Self (i.e. self-encoding)

*slide from Louis-Philippe Morency

Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to

| Input L Output L
reproduce the input nput Layer utput Layer

— Encoder/Decoder architecture
—ncoder: f = o(Wx)
Decoder: 9 =0c(W h)

*slide from Louis-Philippe Morency

Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to

| Input L Output L
reproduce the input nput Layer utput Layer

— Encoder/Decoder architecture
—ncoder: f = o(Wx)
Decoder: 9 =0c(W h)

— Score function

x' = f(g(x))
L(x',x)

*slide from Louis-Philippe Morency

Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data

| | | | Output Layer
(e.g., sigmoid for binary; linear for real valued) Input Hayer put Lay

— Often use tied weights

W =W

*slide from Louis-Philippe Morency

Autoencoders

Assignment 3 can be interpreted as a language autoencoder

1-hot
embedding

T token

Two

p(w1)

p(wz)

p(ww)

softmax

-- encoder to be i r

implemented meaTr e

LSTM — LSTM _, eee — LSTM __, LSTM ___ , |sTMm
T T T focs |
1-hot 1-hot 1-hot 1-hot g 1-hot

embedding embedding embedding embedding embedding
men standin <EO0S> provided T
__ s = W

flower

- = oy

~

.

-

>

softmax

1

linear / fc

1

LSTM

T

1-hot
embedding

e

I

softmax

!

linear / fc

!

LSTM —_— 000 >

T

1-hot
embedding

I

softmax

1

f

LSTM

T

1-hot
embedding

t

<EOS>

Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to

PCA (under certain data normalization)

*slide from Louis-Philippe Morency

Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to

PCA (under certain data normalization)

Side note, this is useful for anomaly detection

*slide from Louis-Philippe Morency

Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Larger than the input

— No compression needed

— Can trivially learn to just copy, no structure is learned (unless you regularize)

— Does not encourage learning of meaningful features (unless you regularize)

*slide from Louis-Philippe Morency

Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data

| | | | Output Layer
(e.g., sigmoid for binary; linear for real valued) Input Hayer put Lay

— Often use tied weights

W =W

*slide from Louis-Philippe Morency

De-noising Autoencoder

Idea: add noise to input but learn

to reconstruct the original
Input Layer Output Layer

— |Leads to better representations

— Prevents copying

Note: different noise Is added
during each epoch

*slide from Louis-Philippe Morency

Stacked (deep) Autoencoders and Denoising Autoencoders

What can we do with them?

C o-;-. 0 <

— Good for compression (petter than PCA)

— Disregard the decoder and use the ~ Decoder [coe j h'y

Middle layer as a representation 1

— FIne-tune the autoencoder for a task [coe] h,
1

Encoder [e] h,

® 000 -

*slide from Louis-Philippe Morency

Context Encoders

| Pathak et al., 2016 |

v w

& o

b= &

. ® | Channel-wise | g
Enoode> L Fully L

‘ > Connected o
: :

w (]

Decode> L (.’ ‘)

Encode>

J

Encoder Features

Context Encoders

L

-

>

*

Channel-wise
Fully
Connected

-

J

Decoder Features

Decode> L

(a) Central region

| Pathak et al., 2016 |

(b) Random block

(c¢) Random region

Context Encoders

Encoder

<>
AlexNet

(until pool5)

-

Channel-wise

9216

Decoder
Fully
Connected
9216
- 3 - 6 37 161
64 41 81
E—> 256 11 128 21 i /
6
> |> s> sIPl> 1> >
s 5x5 5%5 5x5 5%5 | 5x5
(reshape) (uconv) (uconv) (uconv) (uconv) (uconv) (resize)

| Pathak et al., 2016 |

Reconstruction
Loss (L2)

Context Encoders

| Pathak et al., 2016 |

Encoder Decoder
o, 6 4000 64
128 128 32
4 16 256 512 512 g 256 16 24
F : ’ Reconstructi
econstruction
=4l R &l ES > > il EH HEl e o 7 | oss (2
8 16 , oss (L2)
32 16 8 32 64 |
|
4x4 4x4 4x4 4x4 4x4 || 4x4 4x4 4x4 4x4 4x4 I
(conv) (conv) (conv) (conv) (conv) (uconv) (uconv) (uconv) (uconv (uconv :
|
|
|
____________________]
|
|
|
|
l 64
|
32
| 128
: 4 real
--- - —> > >, > or
32 16 8 fake
4x4 4x4 4x4 4x4 4x4
(conv) (conv) (conv) (conv) (conv)
Adversarial Discriminator

Context Encoders

| Pathak et al., 2016 |

I T LT LGS ot o0 A AL,
| . = |

| — e e e |
| — e e

Context Encoders

| Pathak et al., 2016 |

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0 %
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Doersch et al. [7] context 4 weeks 55.3% 46.6 % -
Wang et al. [39] motion 1 week 58.4% 44.0% -

Ours context 14 hours 56.5% 44.5% 29.7 %

Spatial Context Networks

| Wu, Sigal, Davis, 2017]

Object Proposals Feature Representation

i_

[CICKCICIRCICREIE]

Spatial Context Networks

| Wu, Sigal, Davis, 2017]

Object Proposals

Feature Representation

A\

@000 0000

Initialization Supervision Pretraining time Classification Detection
Random Gaussian random N/A < 1 minute 53.3 43.4
Wang et al. [32] random motion 1 week 58.4 44.0
Doersch et al. [3] random context 4 weeks 55.3 46.6
*Doersch et al. [3] | 1000 class labels context — 65.4 50.4
Pathak et al. [21] random context inpainting 14 hours 56.5 44.5
Zhang et al. [30] random color - 65.6 46.9
ImageNet [21] random 1000 class labels 3 days 78.2 56.8
*ImageNet random 1000 class labels 3 days 76.9 58.7
SCN-EdgeBox 1000 class labels context 10 hours 79.0 594

A Little 1heory: Information Bottleneck 1o

Every layer could be treated as a random variable, then entire network is a
Markov Chain

Data processing theorem: if the only connection between X and Z is through
Y, the information that Z gives about X cannot be bigger than the information

that Y gives about X. Encoder Decoder
P(T|X) P(Y|T)

A
N\
—
r—
s
bt

I(X:Y)<I(TY) < I(TyY) <

A Little 1heory: Information Bottleneck 1o

50 networks of same topology being optimized

Number of epochs - 0

1.0}

0.8}

0.6 T c%
0.4} o Q0

0.2} o)

00 o PO o D C 1 1 1 1
0 2 4 6 8 10 12

0.9
0.8 — Accuracy |1
0.7} .
0.6}
0.5}
0.4}
0.3}
0.2}
0.1}
0.0

0 100 200 300 400 500

A Little 1heory: Information Bottleneck 1o

50 networks of same topology being optimized

Number of epochs - 0

1.0}

0.8}

0.6 T c%
0.4} o Q0

0.2} o)

00 o PO o D C 1 1 1 1
0 2 4 6 8 10 12

0.9
0.8 — Accuracy |1
0.7} .
0.6}
0.5}
0.4}
0.3}
0.2}
0.1}
0.0

0 100 200 300 400 500

A Little 1heory: Information Bottleneck 1o

Observation: In the information plane layers first increase the mutual
iInformation between themselves and the output and then reduce information
between themselves and the input (which leads to “forgetting” of irrelevant
iNnputs and ultimately generalization)

10"

Epochs

A,

AR1

A Little 1heory: Information Bottleneck 1o

Limitation: Does not seem to work for non-Tanh activations (e.g., RelLU)

999

1.0

0.6
;: 0.6 '.;
~)

0.2

0.0

