
Lecture 11: Word Vector Representations

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Logistics

Assignment 3 … was due last night 
— This is the most difficult assignment in the course  

Assignment 4 … will be out today 
— Do not wait  

Assignment 5 … will be delayed to enable project proposals



Logistics

Paper readings coming up 

Project groups and topics  

Invited talks 



Fun Example: Code Deobfuscating with DOBF

[ Roziere et al., ArXiv, 2021 ]



Representing a Word: One Hot Encoding
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Representing a Word: One Hot Encoding

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]

person using computer 
person holding cat {3, 3, 7, 6, 2} [ 0, 1, 2, 1, 0, 1, 1, 0, 0, 0 ]

*slide from V. Ordonex 



Word Representations
1. One-hot encodings — only non-zero at the index of the word 

e.g., [ 0, 1, 0, 0, 0, …., 0, 0, 0 ] 
Good: simple 
Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms) 

2. Word feature representations — manually define “good” features 
e.g., [ 1, 1, 0, 30, 0, …., 0, 0, 0 ] -> 300-dimensional irrespective of dictionary 

e.g., word ends on -ing  

3. Learned word representations — vector should approximate “meaning” 
of the word 

e.g., [ 1, 1, 0, 30, 0, …., 0, 0, 0 ] -> 300-dimensional irrespective of dictionary 
Good:  compact, distance between words is semantic

* Adopted from slides by Louis-Philippe Morency



Distributional Hypothesis

— At least certain aspects of the meaning of lexical expressions depend on 
their distributional properties in the linguistic contexts 
— The degree of semantic similarity between two linguistic expressions is a 
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency

[ Lenci, 2008 ]



What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.  
— Beef dishes are made to complement the bardiwacs.  
— Nigel staggered to his feet, face flushed from too much bardiwac.  
— Malbec, one of the lesser-known bardiwac grapes, responds well to 
Australia’s sunshine.  
— I dined off bread and cheese and this excellent bardiwac.  
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish. 

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.  
— Beef dishes are made to complement the bardiwacs.  
— Nigel staggered to his feet, face flushed from too much bardiwac.  
— Malbec, one of the lesser-known bardiwac grapes, responds well to 
Australia’s sunshine.  
— I dined off bread and cheese and this excellent bardiwac.  
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish. 

* Adopted from slides by Louis-Philippe Morency

bardic is an alcoholic beverage made from grapes



The Use Theory of Meaning 

“If you can understand and predict in which context a word will appear in, then 
you understood the meaning of the word”  [Paul Horwich]



Geometric Interpretation: Co-occurrence as feature 

— Row vector describes usage of word 
in a corpus of text 

— Can be seen as coordinates o the 
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency
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Distance and Similarity

— Illustrated in two dimensions 

— Similarity = spatial proximity 
(Euclidian distance) 

— Location depends on frequency of 
noun (dog is 27 times as frequent as cat)

* Slides from Louis-Philippe Morency



Angle and Similarity

— direction is more important than location  

— normalize length of vectors 

— or use angle as a distance measure

* Slides from Louis-Philippe Morency
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Geometric Interpretation: Co-occurrence as feature 

— Row vector describes usage of word 
in a corpus of text 

— Can be seen as coordinates of the 
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Way too high dimensional!



SVD for Dimensionality Reduction

*slide from Vagelis Hristidis



Learned Word Vector Visualization 
We can also use other methods, like LLE here:

[ Roweis and Saul, 2000 ]



Issues with SVD

Computational cost for a             matrix is            , where  
— Makes it not possible for large number of word vocabularies or documents 

It is hard to incorporate out of sample (new) words or documents

d⇥ n O(dn2) d < n

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words 
of every word 

Benefits: Faster and easier to 
incorporate new document, words, etc. 

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words 
of every word 

Benefits: Faster and easier to 
incorporate new document, words, etc. 

Continuous Bag of Words (CBOW): use context words in a window to predict 
middle word

Skip-gram: use the middle word to predict surrounding ones in a window
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

on

floor

sat

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]
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CBOW: Continuous Bag of Words
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[ Mikolov et al., 2013 ]
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cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |
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|N |⇥|V |

ŷ 2 R|V |
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Parameters to be learned

Size of the word vector (e.g., 300)
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |
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[ Mikolov et al., 2013 ]
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Optimize to get close to 1-hot encoding 
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[ Mikolov et al., 2013 ]
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[ Mikolov et al., 2013 ]

There are two representations for same word!
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CBOW: Interesting Observation [ Mikolov et al., 2013 ]

Another way to look at it: Maximize similarity between context word 
representation and the word representation itself
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CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word 
representation and the word representation itself

[ Mikolov et al., 2013 ]



Skip-Gram Model [ Mikolov et al., 2013 ]



Comparison

— CBOW is not great for rare words and typically needs less data to train 
— Skip-gram better for rate words and needs more data to train the model 

[ Mikolov et al., 2013 ]



Interesting Results: Word Analogies



Interesting Results: Word Analogies [ Mikolov et al., 2013 ]



Dynamic Word Embeddings



Dynamic Word Embeddings



Lecture 11: RNN Applications

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Let us look at some actual practical 
uses of RNNs 



Applications: Skip-thought Vectors 

word2vec but for sentences, where each sentence is processed by an LSTM

[ Kiros et al., 2015 ]



Applications: Google Language Translation
One model to translate from any language to any other language

[ Johnson et al., 2017 ]
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Applications: Google Language Translation
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[ Johnson et al., 2017 ]



Applications: Google Language Translation

 8! layer LSTM decoder and encoder 

One model to translate from any language to any other language

Flipped order encoding Token designating 
target language

[ Johnson et al., 2017 ]
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Bi-directional 
at lower layers

Residual at 
other layers 
(ResNet style)

Flipped order encoding Token designating 
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 8! layer LSTM decoder and encoder 

One model to translate from any language to any other language

Bi-directional 
at lower layers

Residual at 
other layers 
(ResNet style)

Flipped order encoding Token designating 
target language
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Applications: BERT and SoTA

To learn relationships between sentences, predict whether Sentence B is actual 
sentence that proceeds Sentence A, or a random sentence 

Sentence A = The man went to the store. 
Sentence B = He bought a gallon of milk. 
Label = IsNextSentence

Sentence A = The man went to the store. 
Sentence B = Penguins are flightless 
Label = NotNextSentence



Applications: BERT and SoTA

Use 30,000 WordPiece vocabulary  
Each token is a sum of three embeddings



Multi-headed self attention 
— Models context 
Feed-forward layers 
— Computes non-linear hierarchical features 
Layer norm and residuals 
— Makes training deep neural network (e.g., 12 layers possible) 
Positional Embeddings 

— Allows model to learn relative positioning

Applications: BERT and SoTA
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Applications: BERT and SoTA



Applications: Neural Image Captioning

* slide from Dhruv Batra



Convolution Layer 
+ Non-Linearity

Pooling Layer Convolution Layer 
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)

Applications: Neural Image Captioning
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Applications: Neural Image Captioning

* slide from Dhruv Batra



Applications: Neural Image Captioning
Good results

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Neural Image Captioning
Failure cases

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Image Captioning with Attention
RNN focuses its attention at a different spatial location 
when generating each word

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Xu et al., ICML 2015 ]
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Good results



Failure results
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