

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 11: Word Vector Representations

Logistics

Assignment 3 ... was due last night - This is the most difficult assignment in the course

Assignment 4 ... will be out today Do not wait

Assignment 5 ... will be delayed to enable project proposals

Paper readings coming up

Project groups and topics

Invited talks

Fun Example: Code Deobfuscating with DOBF

Obfuscated Code

class CLASS_0(nn.Module): **def** ____init___(VAR_0, VAR_1, VAR_2, VAR_3): super(CLASS_0, VAR_0).___init___() $VAR_0.VAR_1 = VAR_1$ $VAR_0.VAR_2 = VAR_2$ $VAR_0.VAR_4 = nn.Linear(VAR_1, (4 * VAR_2), bias=VAR_3)$ VAR_0.VAR_5 = nn.Linear(VAR_2, (4 * VAR_2), bias=VAR_3) VAR_0.FUNC_0() **def** FUNC_0 (VAR_6): $VAR_7 = (1.0 / math.sqrt(VAR_6.VAR_8))$ for VAR_9 in VAR_6.VAR_10(): VAR_9.data.uniform_((- VAR_7), VAR_7) **def** FUNC_1 (VAR_11, VAR_12, VAR_13): $(VAR_{14}, VAR_{15}) = VAR_{13}$ $VAR_{14} = VAR_{14}.view(VAR_{14}.size(1), (-1))$ $VAR_{15} = VAR_{15.view}(VAR_{15.size}(1), (-1))$ $VAR_{12} = VAR_{12}$.view(VAR_{12} .size(1), (- 1)) $VAR_{16} = (VAR_{11.VAR_4}(VAR_{12}) + VAR_{11.VAR_5}(VAR_{14}))$ $VAR_17 = VAR_16[:, :(3 * VAR_11.VAR_8)].sigmoid()$ $VAR_{18} = VAR_{16}[:, (3 * VAR_{11.VAR_8}):].tanh()$ $VAR_{19} = VAR_{17}[:, :VAR_{11.VAR_8}]$ $VAR_20 = VAR_17[:, VAR_11.VAR_8:(2 * VAR_11.VAR_8)]$ $VAR_{21} = VAR_{17}[:, (-VAR_{11.VAR_8}):]$ $VAR_{22} = (th.mul(VAR_{15}, VAR_{20}) + th.mul(VAR_{19}, VAR_{18}))$ $VAR_{23} = th.mul(VAR_{21}, VAR_{22.tanh})$ $VAR_{23} = VAR_{23}.view(1, VAR_{23}.size(0), (-1))$ $VAR_{22} = VAR_{22.view}(1, VAR_{22.size}(0), (-1))$ return (VAR_23, (VAR_23, VAR_22))

Code Deobfuscated using DOBF

```
class LSTM(nn.Module):
    def ____init___(self, input_size, hidden_size, bias):
        super(LSTM, self).___init___()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.h1 = nn.Linear(input_size, (4 * hidden_size), bias=bias)
        self.h2 = nn.Linear(hidden_size, (4 * hidden_size), bias=bias)
        self.init_weights()
    def init_weights(self):
        stdv = (1.0 / math.sqrt(self.hidden_size))
        for m in self.modules():
            m.data.uniform_((- stdv), stdv)
    def forward(self, x, prev_state):
        (prev_h, prev_c) = prev_state
        prev_h = prev_h.view(prev_h.size(1), (- 1))
        prev_c = prev_c.view(prev_c.size(1), (- 1))
       \mathbf{x} = \mathbf{x}.view(\mathbf{x}.size(1), (-1))
        h = (self.h1(x) + self.h2(prev_h))
        s = h[:, :(3 * self.hidden_size)].sigmoid()
        c = h[:, (3 * self.hidden_size):].tanh()
        r = s[:, :self.hidden_size]
        g = s[:, self.hidden_size:(2 * self.hidden_size)]
        o = s[:, (- self.hidden_size):]
        c = (th.mul(prev_c, g) + th.mul(r, c))
        h = th.mul(o, c.tanh())
        h = h.view(1, h.size(0), (-1))
        c = c.view(1, c.size(0), (-1))
        return (h, (h, c))
```

[Roziere et al., ArXiv, 2021]

Representing a Word: One Hot Encoding

Vocabulary

dog

cat

person

holding

tree

computer

using

*slide from V. Ordonex

.

Representing a Word: One Hot Encoding

Vocabulary

- dog 1
- cat 2
- person 3
- holding 4
- tree 5
- computer 6
- using 7

*slide from V. Ordonex

.

Representing a Word: One Hot Encoding

Vocabulary

- dog 1
- cat 2
- person 3
- holding 4
- tree 5
- computer 6
- using 7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0][0, 0, 1, 0, 0, 0, 0, 0, 0][0, 0, 0, **1**, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 0, 0, 0][0, 0, 0, 0, 0, 1, 0, 0, 0][0,0,0,0,0,0,1,0,0]

*slide from V. Ordonex

.

bag-of-words representation

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

dog cat person holding tree tree using

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

bag-of-words representation

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

dog cat person holding tree tree tree using

person holding dog

person holding cat

bag-of-words representation **{3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]**

 $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0]

dog cat person holding tree tree tree using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

- person holding cat
- person using computer $\{3, 7, 6\}$ [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

bag-of-words representation

 $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0]

- dog cat person holding tree tree using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

person holding dog $\{3, 4, 1\}$ [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat

person using computer $\{3, 7, 6\}$ [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

person using computer person holding cat

 $\{3, 3, 7, 6, 2\}$ [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

bag-of-words representation

 $\{3, 4, 2\}$ [1, 1, 0, 1, 0, 0, 0, 0, 0]

- dog cat person holding tree computer using

Vocabulary

dog	1
cat	2
person	3
holding	4
tree	5
computer	6
using	7

Word Representations

1. One-hot encodings — only non-zero at the index of the word e.g., [0, 1, 0, 0, 0,, 0, 0, 0] **Good:** simple

Bad: not compact, distance between words always same (e.g., synonyms vs. antonyms)

2. Word feature representations — manually define "good" features e.g., $[1, 1, 0, 30, 0, \dots, 0, 0, 0] \rightarrow 300$ -dimensional irrespective of dictionary e.g., word ends on -ing

of the word

e.g., [1, 1, 0, 30, 0,, 0, 0, 0] -> 300-dimensional irrespective of dictionary **Good:** compact, distance between words is semantic

3. Learned word representations — vector should approximate "meaning"

Distributional Hypothesis

- At least certain aspects of the meaning of lexical expressions depend on their distributional properties in the linguistic contexts

- The degree of semantic similarity between two linguistic expressions is a function of the similarity of the two linguistic contexts in which they can appear

What is the meaning of "bardiwac"?

- He handed her glass of **bardiwac**.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known **bardiwac** grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- -The drinks were delicious: blood-red **bardiwac** as well as light, sweet Rhenish.

What is the meaning of "bardiwac"?

- He handed her glass of **bardiwac**.
- Beef dishes are made to complement the **bardiwacs**.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known **bardiwac** grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- -The drinks were delicious: blood-red **bardiwac** as well as light, sweet Rhenish.

bardic is an alcoholic beverage made from grapes

The Use Theory of Meaning

"If you can understand and predict in which context a word will appear in, then you understood the meaning of the word" [Paul Horwich]

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

 Can be seen as coordinates o the point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

Can be seen as coordinates o the point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Distance and Similarity

Illustrated in two dimensions

 Similarity = spatial proximity (Euclidian distance)

 Location depends on frequency of **NOUN** (dog is 27 times as frequent as cat)

Angle and Similarity

direction is more important than location

normalize length of vectors

- or use angle as a distance measure

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

Can be seen as coordinates of the point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

Geometric Interpretation: Co-occurrence as feature

 Row vector describes usage of word in a corpus of text

Can be seen as coordinates of the point in an n-dimensional Euclidian space

Way too high dimensional!

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

Co-occurrence Matrix

SVD for Dimensionality Reduction

Learned Word Vector Visualization

We can also use other methods, like LLE here:

Nonlinear dimensionality reduction by locally linear embedding. Sam Roweis & Lawrence Saul. Science, v.290,2000

[Roweis and Saul, 2000]

Issues with SVD

Computational cost for a $d \times n$ matrix is $\mathcal{O}(dn^2)$, where d < n

It is hard to incorporate out of sample (**new**) words or documents

Makes it not possible for large number of word vocabularies or documents

word2vec: Representing the Meaning of Words [Mikolov et al., 2013]

Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

word2vec: Representing the Meaning of Words [Mikolov et al., 2013]

Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

middle word

Skip-gram: use the middle word to predict surrounding ones in a window

CBOW

Skip-gram

Continuous Bag of Words (**CBOW**): use context words in a window to predict

Example: "The cat sat on floor" (window size 2)

[Mikolov et al., 2013]

[Mikolov et al., 2013]

sat (one-hot vector)

[Mikolov et al., 2013]

[Mikolov et al., 2013]

Parameters to be learned

[Mikolov et al., 2013]

Parameters to be learned

Size of the word vector (e.g., 300)

[Mikolov et al., 2013]

[Mikolov et al., 2013]

$\mathbf{W}_{ V imes N }^{T}$	\times	\mathbf{x}_{cat}	=	\mathbf{v}_{ca}
$ V \times N $		A cat		• Cl

2.4		0		3.2	 	 0.9	0.5	1.8	1.6	2.4	0.1
2.6		1 0		6.1	 	 3.6	1.5	2.9	1.4	2.6	0.5
	=	0	×		 	 					
		0			 	 					
1.8		0		1.2	 	 2.0	2.4	1.9	2.7	1.8	0.6
		0									
		0									
		0									

Ŀ	t			

[Mikolov et al., 2013]

$\mathbf{W}_{ V imes N }^{T}$	\times	\mathbf{x}_{on}	=	\mathbf{V}_{OT}
		011		

1.8		0		3.2	 	 0.9	0.5	1.8	1.6	2.4	0.1
2.9		0		6.1	 	 3.6	1.5	2.9	1.4	2.6	0.5
	=	1	×		 	 					
		0			 	 					
1.9		0		1.2	 	 2.0	2.4	1.9	2.7	1.8	0.6
		0									
		0									
		0									

[Mikolov et al., 2013]

[Mikolov et al., 2013]

[Mikolov et al., 2013]

Optimize to get close to 1-hot encoding

[Mikolov et al., 2013]

CBOW: Interesting Observation

[Mikolov et al., 2013]

CBOW: Interesting Observation

representation and the word representation itself

Mikolov et al., 2013

Another way to look at it: Maximize similarity between context word

 $p(w|c) = \frac{\exp\left[\left(\sum_{c} \mathbf{W} \mathbf{x}_{c}\right)^{T} \left(\mathbf{W} \mathbf{x}_{w}\right)\right]}{\sum_{i}^{|V|} \exp\left[\left(\mathbf{W} \mathbf{x}_{i}\right)^{T} \left(\mathbf{W} \mathbf{x}_{w}\right)\right]}$

CBOW: Interesting Observation

representation and the word representation itself

$$J(\mathbf{W}) = -\frac{1}{T} \sum_{t=1}^{T} \frac{T}{t_{t}}$$

$$p(w_{t+j}|w_t) =$$

Mikolov et al., 2013

Another way to look at it: Maximize similarity between context word

 $\sum \log p(w_{t+j}|w_t)$ $m \leq j \leq m; j \neq 0$

 $= \frac{\exp(\mathbf{w}_{t+j}^T \mathbf{w}_t)}{\sum_{i=1}^{|V|} \exp(\mathbf{w}_i^T \mathbf{w}_t)}$

Skip-Gram Model

[Mikolov et al., 2013]

Comparison

Model	Vector	Training	Accuracy [%]		
	Dimensionality	words			
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660M	9.3	12.3	11.0
Turian NNLM	50	37M	1.4	2.6	2.1
Turian NNLM	200	37M	1.4	2.2	1.8
Mnih NNLM	50	37M	1.8	9.1	5.8
Mnih NNLM	100	37M	3.3	13.2	8.8
Mikolov RNNLM	80	320M	4.9	18.4	12.7
Mikolov RNNLM	640	320M	8.6	36.5	24.6
Huang NNLM	50	990M	13.3	11.6	12.3
Our NNLM	20	6B	12.9	26.4	20.3
Our NNLM	50	6B	27.9	55.8	43.2
Our NNLM	100	6B	34.2	64.5	50.8
CBOW	300	783M	15.5	53.1	36.1
Skip-gram	300	783M	50.0	55.9	53.3

[Mikolov et al., 2013]

- CBOW is not great for rare words and typically needs less data to train - Skip-gram better for rate words and needs more data to train the model

Interesting Results: Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

a:b :: c:?

man:woman :: king:?

- + king [0.300.70]
- man [0.200.20]
- + woman [0.60 0.30]

queen [0.70 0.80]

Interesting Results: Word Analogies

[Mikolov et al., 2013]

Dynamic Word Embeddings

Dynamic Word Embeddings

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 11: RNN Applications

Let us look at some actual practical uses of RNNs

Applications: Skip-thought Vectors

word2vec but for sentences, where each sentence is processed by an LSTM

[Kiros et al., 2015]

One model to translate from any language to any other language

One model to translate from any language to any other language

Token designating target language

One model to translate from any language to any other language

Flipped order encoding

Token designating target language

One model to translate from any language to any other language

Flipped order encoding Why?

Token designating target language

One model to translate from any language to any other language

Flipped order encoding

Token designating target language

Johnson et al., 2017]

8! layer LSTM decoder and encoder

One model to translate from any language to any other language

Flipped order encoding

Token designating target language

Johnson et al., 2017]

8! layer LSTM decoder and encoder

One model to translate from any language to any other language

Flipped order encoding

Token designating target language

Johnson et al., 2017]

8! layer LSTM decoder and encoder

To learn relationships between sentences, predict whether Sentence B is actual sentence that **proceeds** Sentence A, or a random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless
Label = NotNextSentence

Use 30,000 WordPiece vocabulary Each token is a **sum of three** embeddings

- Multi-headed self attention
- Models context
- Feed-forward layers
- Computes non-linear hierarchical features
- Layer norm and **residuals**
- Makes training deep neural network (e.g., 12 layers possible)
- **Positional Embeddings**
- Allows model to learn relative positioning

Pre-training

Pre-training

Fine-Tuning

Single Sentence

Transfer: ASNQ Dataset

Adapt: Target Dataset

Image Embedding (VGGNet)

Image Embedding (VGGNet)

Image Embedding (VGGNet)

Image Embedding (VGGNet)

* slide from Dhruv Batra

/ Batra

Applications: Neural Image Captioning Good results

A cat sitting on a suitcase on the floor

Two people walking on the beach with surfboards

A cat is sitting on a tree branch

A tennis player in action on the court

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Applications: Neural Image Captioning Failure cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

RNN focuses its attention at a different spatial location when generating each word

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

[Xu et al., ICML 2015]

Applications: Image Captioning with Attention **Good** results

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

[Xu et al., ICML 2015]

A dog is standing on a hardwood floor.

A giraffe standing in a forest with trees in the background.

Applications: Image Captioning with Attention Failure results

A large white bird standing in a forest.

A woman holding a clock in her hand.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

[Xu et al., ICML 2015]

A man wearing a hat and a hat on a skateboard.

A man is talking on his cell phone while another man watches.

