
Lecture 9: RNNs (part 2) + Applications

Topics in AI (CPSC 532S):
Multimodal Learning with Vision, Language and Sound

BackProp Through Time

Loss

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time

Loss

Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss Carry hidden states
forward, but only
BackProp through some
smaller number of steps

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Implementation: Relatively Easy

… you will have a chance to experience this in the Assignment 3

Learning to Write Like Shakespeare

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

train more

train more

train more

at first:

Learning to Write Like Shakespeare … after training a bit

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning to Write Like Shakespeare … after training

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning Code
Trained on entire source code of Linux kernel

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

DopeLearning: Computational Approach to Rap Lyrics

[Malmi et al., KDD 2016]

Sunspring: First movie generated by AI

Multilayer RNNs

time

depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]

[Pascanu et al., ICML 2013]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]

[Pascanu et al., ICML 2013]

Backpropagation from ht to ht-1
multiplies by W (actually WhhT)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]

[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]

[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]

[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Gradient clipping: Scale
gradient if its norm is too big

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]

[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh) Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[Hochreiter and Schmidhuber, NC 1977]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Long-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can
be though of as binary (0 or 1)

anything x 0 = 0 (forget)
anything x 1 = anything (remember)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Input Gate

Should we update this “bit” of information or not?
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Additive Updates
Backpropagation from ct to ct-1 only elementwise multiplication by

f, no matrix multiply by W

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Input

S
o
ftm

a
x

3
x3

 c
o

n
v, 6

4

7
x7

 c
o

n
v, 6

4
 / 2

FC 1000

P
o
o
l

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

 / 2

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

...

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

P
o
o
l

Similar to ResNet

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Peephole Connections

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

RNNs: Review
Key Enablers:
— Parameter sharing in computational graphs

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!

RNNs: Review

x

RNN

y

Vanilla RNN

Key Enablers:
— Parameter sharing in computational graphs

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!

RNNs: Review

x

RNN

y
Vanishing

or
Exploding
Gradients

Vanilla RNN

Key Enablers:
— Parameter sharing in computational graphs

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!

RNNs: Review

x

RNN

y
Vanishing

or
Exploding
Gradients

Uninterrupted gradient flow!

Vanilla RNN Long-Short Term Memory (LSTM)

Key Enablers:
— Parameter sharing in computational graphs

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!

RNNs: Review
Key Enablers:
— Parameter sharing in computational graphs

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!

x

RNN

y
Vanishing

or
Exploding
Gradients

Uninterrupted gradient flow!

Vanilla RNN Long-Short Term Memory (LSTM)

Loss functions: often cross-entropy (for classification); could be max-margin (like in SVM)
or Squared Loss (regression)

LSTM/RNN Challenges

— LSTM can remember some history, but not too long
— LSTM assumes data is regularly sampled

Phased LSTM

Gates are controlled by phased (periodic) oscillations

[Neil et al., 2016]

Bi-directional RNNs/LSTMs

h

t

= f

W

(h
t�1, xt

)

y

t

= W

hy

h

t

+ b

y

h

t

= tanh(W
hh

h

t�1 +W

xh

x

t

+ b

h

)

h

t

= f

W

(h
t�1, xt

)

y

t

= W

hy

h

t

+ b

y

h

t

= tanh(W
hh

h

t�1 +W

xh

x

t

+ b

h

)

h

t

= f

W

(h
t�1, xt

)

y

t

= W

hy

h

t

+ b

y

h

t

= tanh(W
hh

h

t�1 +W

xh

x

t

+ b

h

)

�!
h

t

= f

�!
W

(
�!
h

t�1, xt

)

 �
h

t

= f

 �
W

(
 �
h

t+1, xt

)

y

t

= W

hy

[
�!
h

t

,

 �
h

t

]T + b

y

�!
h

t

= tanh(
�!
W

hh

�!
h

t�1 +
�!
W

xh

x

t

+
�!
b

h

)

 �
h

t

= tanh(
 �
W

hh

 �
h

t+1 +
 �
W

xh

x

t

+
 �
b

h

)

�!
h

t

= f

�!
W

(
�!
h

t�1, xt

)

 �
h

t

= f

 �
W

(
 �
h

t+1, xt

)

y

t

= W

hy

[
�!
h

t

,

 �
h

t

]T + b

y

�!
h

t

= tanh(
�!
W

hh

�!
h

t�1 +
�!
W

xh

x

t

+
�!
b

h

)

 �
h

t

= tanh(
 �
W

hh

 �
h

t+1 +
 �
W

xh

x

t

+
 �
b

h

)

�!
h

t

= f

�!
W

(
�!
h

t�1, xt

)

 �
h

t

= f

 �
W

(
 �
h

t+1, xt

)

y

t

= W

hy

[
�!
h

t

,

 �
h

t

]T + b

y

�!
h

t

= tanh(
�!
W

hh

�!
h

t�1 +
�!
W

xh

x

t

+
�!
b

h

)

 �
h

t

= tanh(
 �
W

hh

 �
h

t+1 +
 �
W

xh

x

t

+
 �
b

h

)

Bi-directional RNNs/LSTMs

�!
h

t

= f

�!
W

(
�!
h

t�1, xt

)

 �
h

t

= f

 �
W

(
 �
h

t+1, xt

)

y

t

= W

hy

[
�!
h

t

,

 �
h

t

]T + b

y

�!
h

t

= tanh(
�!
W

hh

�!
h

t�1 +
�!
W

xh

x

t

+
�!
b

h

)

 �
h

t

= tanh(
 �
W

hh

 �
h

t+1 +
 �
W

xh

x

t

+
 �
b

h

)

�!
h

t

= f

�!
W

(
�!
h

t�1, xt

)

 �
h

t

= f

 �
W

(
 �
h

t+1, xt

)

y

t

= W

hy

[
�!
h

t

,

 �
h

t

]T + b

y

�!
h

t

= tanh(
�!
W

hh

�!
h

t�1 +
�!
W

xh

x

t

+
�!
b

h

)

 �
h

t

= tanh(
 �
W

hh

 �
h

t+1 +
 �
W

xh

x

t

+
 �
b

h

)

Attention Mechanisms and RNNs
Consider a translation task: This is one of the first neural translation models

En
gl
ish

 E
nc

od
er

Fr
en

ch
 D

ec
od

er

Summary Vector

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

En
gl
ish

 E
nc

od
er

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

En
gl
ish

 E
nc

od
er

Fr
en

ch
 D

ec
od

er

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

Fr
en

ch
 D

ec
od

er

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)

and predicts relevance of every source word towards next translation

[Cho et al., 2015]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
Consider a translation task with a bi-directional encoder of the source language

Fr
en

ch
 D

ec
od

er

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)

and predicts relevance of every source word towards next translation

ci =
TX

j=1

↵jhj

[Cho et al., 2015]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Attention Mechanisms and RNNs
[Cho et al., 2015]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Regularization in RNNs

Standard dropout in recurrent layers does not work because it causes loss of
long term memory!

* slide from Marco Pedersoli and Thomas Lucas

Regularization in RNNs

Standard dropout in recurrent layers does not work because it causes loss of
long term memory!

—Dropout in input-to-hidden or hidden-to-output layers

— Apply dropout at sequence level (same zeroed units for the entire sequence)

— Dropout only at the cell update (for LSTM and GRU units)

— Enforcing norm of the hidden state to be similar along time

— Zoneout some hidden units (copy their state to the next tilmestep)

[Zaremba et al., 2014]

[Gal, 2016]

[Semeniuta et al., 2016]

[Krueger & Memisevic, 2016]

[Krueger et al., 2016]

* slide from Marco Pedersoli and Thomas Lucas

Teacher Forcing

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”SampleTraining Objective: Predict the next word 
 (cross entropy loss)

Testing: Sample the full sequence

Teacher Forcing

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

Testing: Sample the full sequence

Training and testing objectives are not consistent!

Training Objective: Predict the next word 
 (cross entropy loss)

Teacher Forcing

Slowly move from Teacher Forcing to Sampling

Probability of sampling from
the ground truth

[Bengio et al., 2015]

* slide from Marco Pedersoli and Thomas Lucas

Baseline: Google NIC captioning model

Baseline with Dropout: Regularized RNN version

Always sampling: Use sampling from the beginning of training

Scheduled sampling: Sampling with inverse Sigmoid decay

Uniformed scheduled sampling: Scheduled sampling but uniformly

Teacher Forcing

* slide from Marco Pedersoli and Thomas Lucas

Sequence Level Training

During training objective is different than at test time
— Training: generate next word given the previous

— Test: generate the entire sequence given an initial state

Optimize directly evaluation metric (e.g. BLUE score for sentence generation)

Set the problem as a Reinforcement Learning:
— RNN is an Agent

— Policy defined by the learned parameters

— Action is the selection of the next word based on the policy - Reward is the evaluation metric

* slide from Marco Pedersoli and Thomas Lucas

[Ranzato et al., 2016]

