Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound
BackProp Through Time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence, instead of the whole sequence

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Truncated BackProp Through Time

Run backwards and forwards through (fixed length) **chunks of the sequence**, instead of the whole sequence.

Carry hidden states forward, but only BackProp through some smaller number of steps.

slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence, instead of the whole sequence

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Implementation: Relatively Easy

... you will have a chance to experience this in the Assignment 3
Learning to Write Like Shakespeare

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud lustiest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this gluton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Learning to Write Like Shakespeare … after training a bit

at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwyl fil on aseterlome
coaniogene Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Learning to Write Like Shakespeare ... after training

PANDARUS:
Alas, I think he shall be come approached and the day
When little strain would be attain’d into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENZIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
My fair nues begun out of the fact, to be conveyed,
Whose noble souls I’ll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my worldly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Learning Code

Trained on entire source code of Linux kernel

```c
static void do_command(struct seq_file *m, void *v)
{
    int column = 32 << (cmd[2] & 0x80);
    if (state)
        cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
    else
        seq = 1;
    for (i = 0; i < 16; i++) {
        if (k & (1 << i))
            pipe = (in_use & UMXTHREAD_UNCCA) +
            ((count & 0x00000000000000ff) & 0x00000000) << 8;
        if (count == 0)
            sub(pid, ppc_md.kexec_handle, 0x20000000);
        pipe_set_bytes(i, 0);
    }
    /* Free our user pages pointer to place camera if all dash */
    subsystem_info = &of_changes[PAGE_SIZE];
    rek_controll(offset, idx, &soffset);
    /* Now we want to deliberately put it to device */
    control_check_polarity(&context, val, 0);
    for (i = 0; i < COUNTER; i++)
        seq_puts(s, "policy ");
}
```

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
DopeLearning: Computational Approach to Rap Lyrics

Everybody got one
And all the pretty mommies want some
And what i told you all was
But you need to stay such do not touch
They really do not want you to vote
what do you condone
Music make you lose control
What you need is right here ahh oh
This is for you and me
I had to dedicate this song to you Mami
Now I see how you can be
I see u smiling i kno u hattig
Best I Eva Had x4
That I had to pay for
Do I have the right to take yours
Trying to stay warm

(2 Chainz - Extremely Blessed)
(Mos Def - Undeniable)
(Lil Wayne - Welcome Back)
(Common - Heidi Hoe)
(KRS One - The Mind)
(Cam’ron - Bubble Music)
(Missy Elliot - Lose Control)
(Wiz Khalifa - Right Here)
(Missy Elliot - Hit Em Wit Da Hee)
(Fat Joe - Bendicion Mami)
(Lil Wayne - How To Hate)
(Wiz Khalifa - Damn Thing)
(Nicki Minaj - Best I Ever Had)
(Ice Cube - X Bitches)
(Common - Retrospect For Life)
(Everlast - 2 Pieces Of Drama)

[Malmi et al., KDD 2016]
Sunspring: First movie generated by AI

Sunspring, a short science fiction movie written entirely by AI, debuts exclusively on Ars today.
Multilayer RNNs

\[h_t^l = \tanh W^l \begin{pmatrix} h_{t-1}^l \\ h_{t-1}^l \end{pmatrix} \]

\(h \in \mathbb{R}^n \quad W^l \in [n \times 2n] \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Vanilla RNN Gradient Flow

\[h_t = \tanh(W_{hh}h_{t-1} + W_{hx}x_t) \]

\[= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \]

\[= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \]

*B slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Vanilla RNN Gradient Flow

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^T)

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

$$= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Vanilla RNN **Gradient Flow**

Computing gradient of h_0 involves many factors of W (and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, [cs231n Stanford](#)
Vanilla RNN Gradient Flow

Computing gradient of h_0 involves many factors of W (and repeated tanh)

Largest singular value > 1: Exploding gradients

Largest singular value < 1: Vanishing gradients

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Vanilla RNN **Gradient Flow**

Computing gradient of h_0 involves many factors of W (and repeated tanh)

Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: **Vanishing gradients**

Gradient clipping: Scale gradient if its norm is too big

```python
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```
Vanilla RNN Gradient Flow

Computing gradient of h_0 involves many factors of W (and repeated tanh)

Largest singular value > 1: Exploding gradients

Largest singular value < 1: Vanishing gradients

Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Long-Short Term Memory (LSTM)

Vanilla RNN

\[h_t = \tanh \left(W \left(h_{t-1} \right) \right) \]

LSTM

\[
\begin{pmatrix}
 i \\
 f \\
 o \\
 g
\end{pmatrix}
= \begin{pmatrix}
 \sigma \\
 \sigma \\
 \sigma \\
 \tanh
\end{pmatrix}
W
\begin{pmatrix}
 h_{t-1} \\
 x_t
\end{pmatrix}
\]

\[c_t = f \odot c_{t-1} + i \odot g \]

\[h_t = o \odot \tanh(c_t) \]

[Hochreiter and Schmidhuber, NC 1977]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

* slide from Dhruv Batra
Long-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

* slide from Dhruv Batra
LSTM Intuition: Forget Gate

Should we continue to **remember** this “bit” of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can be though of as binary (0 or 1)

\[
f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)
\]

* slide from Dhruv Batra

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
LSTM Intuition: Input Gate

Should we **update** this “bit” of information or not?
If yes, then what should we **remember**?

\[i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i) \]
\[\tilde{C}_t = \text{tanh}(W_C \cdot [h_{t-1}, x_t] + b_C) \]

* Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
* slide from Dhruv Batra
LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]
LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

\[
\begin{align*}
o_t &= \sigma (W_o [h_{t-1}, x_t] + b_o) \\
h_t &= o_t \ast \tanh(C_t)
\end{align*}
\]
LSTM Intuition: Additive Updates

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W
LSTM Intuition: Additive Updates

Uninterrupted gradient flow!

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

* slide from Dhruv Batra
LSTM Intuition: Additive Updates

Uninterrupted gradient flow!

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

* slide from Dhruv Batra
LSTM Variants: with Peephole Connections

Let's gates see the cell state / memory

\[
\begin{align*}
f_t &= \sigma (W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f) \\
i_t &= \sigma (W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i) \\
o_t &= \sigma (W_o \cdot [C_{t}, h_{t-1}, x_t] + b_o)
\end{align*}
\]
LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

\[
C_t = f_t \ast C_{t-1} + (1 - f_t) \ast \tilde{C}_t
\]
Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

\[z_t = \sigma (W_z \cdot [h_{t-1}, x_t]) \]
\[r_t = \sigma (W_r \cdot [h_{t-1}, x_t]) \]
\[\tilde{h}_t = \tanh (W \cdot [r_t \ast h_{t-1}, x_t]) \]
\[h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t \]

\(z = \) memorize new and forget old

* Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
* slide from Dhruv Batra
RNNs: Review

Key Enablers:

- Parameter sharing in computational graphs
- “Unrolling” in computational graphs
- Allows modeling **arbitrary length sequences**!
RNNs: Review

Key Enablers:

— Parameter sharing in computational graphs
— “Unrolling” in computational graphs
— Allows modeling arbitrary length sequences!

Vanilla RNN

\[y_t = W_y h_t + b_y \]
\[h_t = f_W (h_{t-1}, x_t) \]
\[h_t = \tanh(W_h h_{t-1} + W_x x_t + b_h) \]
RNNs: Review

Key Enablers:

- Parameter sharing in computational graphs
- “Unrolling” in computational graphs
- Allows modeling **arbitrary length sequences**!

Vanilla RNN

\[y_t = W_y h_t + b_y \]

\[h_t = f_W (h_{t-1}, x_t) \]

\[h_t = \tanh(W_h h_{t-1} + W_x x_t + b_h) \]
RNNs: Review

Key Enablers:

— Parameter sharing in computational graphs
— “Unrolling” in computational graphs
— Allows modeling arbitrary length sequences!

Vanilla RNN

\[
y_t = W_{hy} h_t + b_y
\]

\[
h_t = f_W(h_{t-1}, x_t)
\]

\[
h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h)
\]

Long-Short Term Memory (LSTM)

\[
\begin{pmatrix}
i \\ f \\ o \\ g
\end{pmatrix} =
\begin{pmatrix}
\sigma \\ \sigma \\ \sigma \\ \tanh
\end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}
\]

\[
c_t = f \odot c_{t-1} + i \odot g
\]

\[
h_t = o \odot \tanh(c_t)
\]

Uninterrupted gradient flow!
RNNs: Review

Key Enablers:
- Parameter sharing in computational graphs
- “Unrolling” in computational graphs
- Allows modeling **arbitrary length sequences**!

Loss functions: Often cross-entropy (for classification); could be max-margin (like in SVM) or Squared Loss (regression)

Vanilla RNN

\[y_t = W_{hy} h_t + b_y \]

\[h_t = f_W(h_{t-1}, x_t) \]

\[h_t = \tanh(W_{hh}h_{t-1} + W_{hx}x_t + b_h) \]

Long-Short Term Memory (LSTM)

\[
\begin{pmatrix}
 i \\
 f \\
 o \\
 g
\end{pmatrix} = \begin{pmatrix}
 \sigma \\
 \sigma \\
 \sigma \\
 \tanh
\end{pmatrix} W \begin{pmatrix}
 h_{t-1} \\
 x_t
\end{pmatrix}
\]

\[c_t = f \odot c_{t-1} + i \odot g \]

\[h_t = o \odot \tanh(c_t) \]
LSTM/RNN Challenges

— LSTM can remember some history, but not too long
— LSTM assumes data is regularly sampled
Phased LSTM

Gates are controlled by **phased** (periodic) oscillations

[Neil et al., 2016]
Bi-directional RNNs/LSTMs

\[y_t = W_{hy} h_t + b_y \]

\[h_t = f_W(h_{t-1}, x_t) \]

\[h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h) \]
\[y_t = W_{hy} [\vec{h}_t, \overleftarrow{h}_t]^T + b_y \]

\[\vec{h}_t = f_W(\vec{h}_{t-1}, x_t) \]
\[\overleftarrow{h}_t = f_W(\overleftarrow{h}_{t+1}, x_t) \]

\[\vec{h}_t = \tanh(\overrightarrow{W}_{hh} \vec{h}_{t-1} + \overrightarrow{W}_{xh} x_t + \overrightarrow{b}_h) \]
\[\overleftarrow{h}_t = \tanh(\overleftarrow{W}_{hh} \overleftarrow{h}_{t+1} + \overleftarrow{W}_{xh} x_t + \overleftarrow{b}_h) \]
Attention Mechanisms and RNNs

Consider a translation task: This is one of the first neural translation models.

Attention Mechanisms and RNNs

Consider a **translation task** with a bi-directional encoder of the source language.
Attention Mechanisms and RNNs

Consider a translation task with a bi-directional encoder of the source language.
Attention Mechanisms and RNNs

Consider a translation task with a bi-directional encoder of the source language French.

Build a small neural network (one layer) with softmax output that takes
(1) everything decoded so far and (encoded by previous decoder state Z_i)
(2) encoding of the current word (encoded by the hidden state of encoder h_j)

and predicts relevance of every source word towards next translation.

[Cho et al., 2015]

Consider a **translation task** with a bi-directional encoder of the source language.

Build a **small neural network** (one layer) with softmax output that takes

1. everything decoded so far and (encoded by previous decoder state Z_i)
2. encoding of the current word (encoded by the hidden state of encoder h_j)

and predicts **relevance of every source word** towards next translation

$$c_i = \sum_{j=1}^{T} \alpha_j h_j$$

[Cho et al., 2015]

Attention Mechanisms and RNNs

Economic growth has slowed down in recent years.

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt.
Economic growth has slowed down in recent years.

La croissance économique s' est ralenti ces dernières années.
Regularization in RNNs

Standard dropout in recurrent layers does not work because it causes loss of long term memory!

* slide from Marco Pedersoli and Thomas Lucas
Regularization in RNNs

Standard dropout in recurrent layers does not work because it causes **loss of long term memory**!

— Dropout in input-to-hidden or hidden-to-output layers [Zaremba et al., 2014]
— Apply dropout at sequence level (same zeroed units for the entire sequence) [Gal, 2016]
— Dropout only at the cell update (for LSTM and GRU units) [Semeniuta et al., 2016]
— Enforcing norm of the hidden state to be similar along time [Krueger & Memisevic, 2016]
— Zoneout some hidden units (copy their state to the next timestep) [Krueger et al., 2016]
Teacher Forcing

Training Objective: Predict the next word (cross entropy loss)

Testing: Sample the full sequence

```
Training Objective: Predict the next word (cross entropy loss)

Testing: Sample the full sequence
```

```
Teacher Forcing

Training Objective: Predict the next word (cross entropy loss)

Testing: Sample the full sequence
```
Teacher Forcing

Training Objective: Predict the next word (cross entropy loss)

Testing: Sample the full sequence

Training and testing objectives are not consistent!
Teacher Forcing

Slowly move from Teacher Forcing to Sampling

[Bengio et al., 2015]

* slide from Marco Pedersoli and Thomas Lucas
Teacher Forcing

<table>
<thead>
<tr>
<th>Approach vs Metric</th>
<th>BLEU-4</th>
<th>METEOR</th>
<th>CIDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>28.8</td>
<td>24.2</td>
<td>89.5</td>
</tr>
<tr>
<td>Baseline with Dropout</td>
<td>28.1</td>
<td>23.9</td>
<td>87.0</td>
</tr>
<tr>
<td>Always Sampling</td>
<td>11.2</td>
<td>15.7</td>
<td>49.7</td>
</tr>
<tr>
<td>Scheduled Sampling</td>
<td>30.6</td>
<td>24.3</td>
<td>92.1</td>
</tr>
<tr>
<td>Uniform Scheduled Sampling</td>
<td>29.2</td>
<td>24.2</td>
<td>90.9</td>
</tr>
<tr>
<td>Baseline ensemble of 10</td>
<td>30.7</td>
<td>25.1</td>
<td>95.7</td>
</tr>
<tr>
<td>Scheduled Sampling ensemble of 5</td>
<td>32.3</td>
<td>25.4</td>
<td>98.7</td>
</tr>
</tbody>
</table>

Baseline: Google NIC captioning model

Baseline **with Dropout**: Regularized RNN version

Always sampling: Use sampling from the beginning of training

Scheduled sampling: Sampling with inverse Sigmoid decay

Uniformed scheduled sampling: Scheduled sampling but uniformly

* slide from Marco Pedersoli and Thomas Lucas
Sequence Level Training

During training objective is different than at test time

- **Training:** generate next word given the previous
- **Test:** generate the entire sequence given an initial state

Optimize directly evaluation metric (e.g. BLUE score for sentence generation)

Set the problem as a Reinforcement Learning:

- RNN is an Agent
- Policy defined by the learned parameters
- Action is the selection of the next word based on the policy - Reward is the evaluation metric

[Ranzato et al., 2016]