

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 8: Word2Vec, Language Models and RNNs

Course Logistics

- Assignment 3
- Final project group Goolge form will be out tomorrow

Representing a Word: One Hot Encoding

Vocabulary

dog

1

cat

person

holding 4

tree 5

computer 6

using 7

one-hot encodings

[1,0,0,0,0,0,0,0,0,]

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Representing Phrases: Bag-of-Words

bag-of-words representation

person holding dog

$${3, 4, 1}$$

$${3, 4, 1}$$
 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat

$${3, 4, 2}$$

$${3, 7, 6}$$

person using computer person holding cat

$${3, 3, 7, 6, 2}$$
 [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

Vocabulary dog cat person holding tree computer using

Distributional Hypothesis [Lenci, 2008]

- At least certain aspects of the meaning of lexical expressions depend on their distributional properties in the linguistic contexts
- The degree of semantic similarity between two linguistic expressions is a function of the similarity of the two linguistic contexts in which they can appear

What is the meaning of "bardiwac"?

- He handed her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known **bardiwac** grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- —The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

bardic is an alcoholic beverage made from grapes

The Use Theory of Meaning

"If you can understand and predict in which context a word will appear in, then you understood the meaning of the word" [Paul Horwich]

Geometric Interpretation: Co-occurrence as feature

Row vector describes usage of word in a corpus of text

— Can be seen as coordinates o the point in an n-dimensional Euclidian space

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

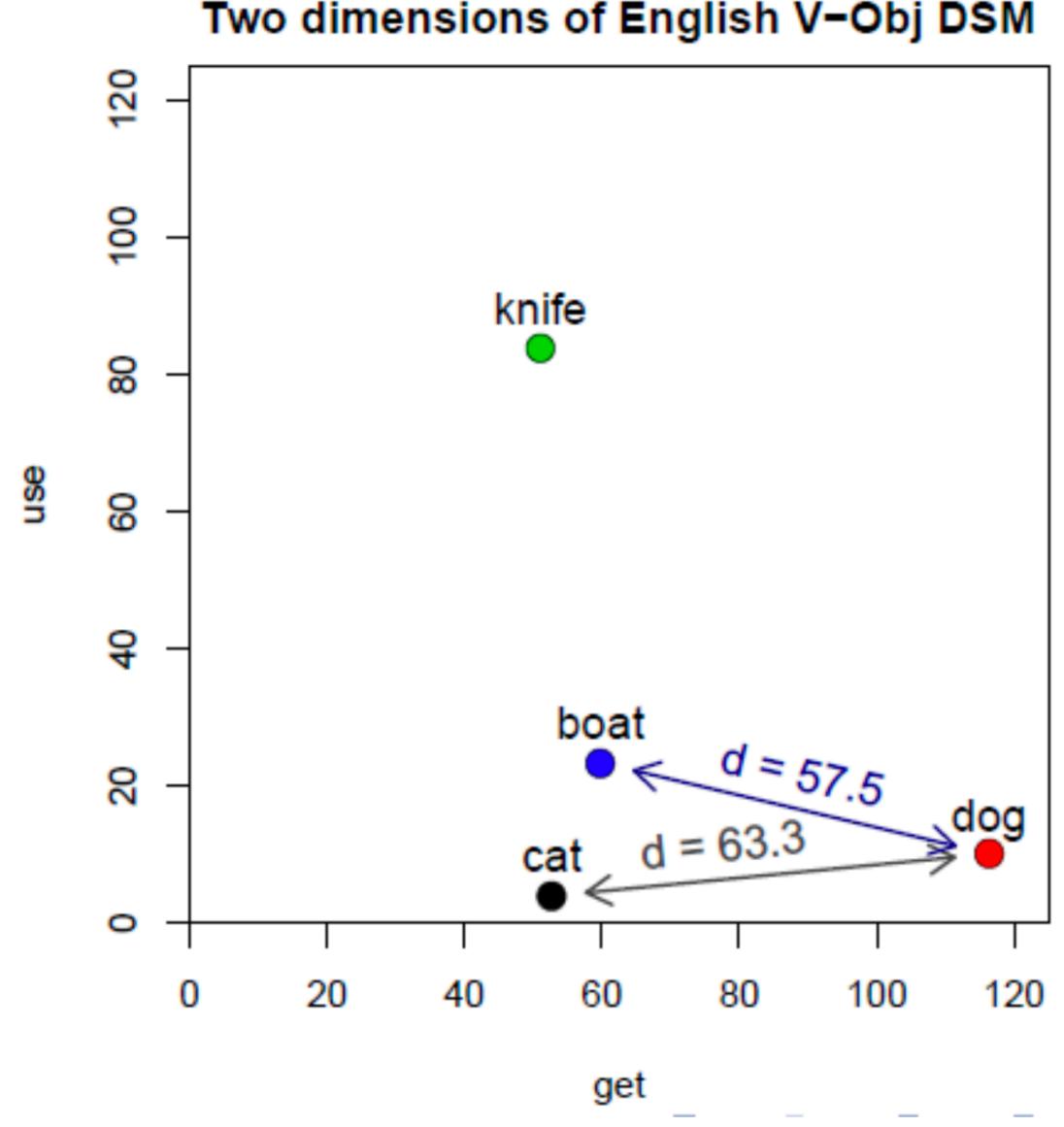
Co-occurrence Matrix

Distance and Similarity

- Illustrated in two dimensions

Similarity = spatial proximity(Euclidian distance)

Location depends on frequency of
 noun (dog is 27 times as frequent as ca)



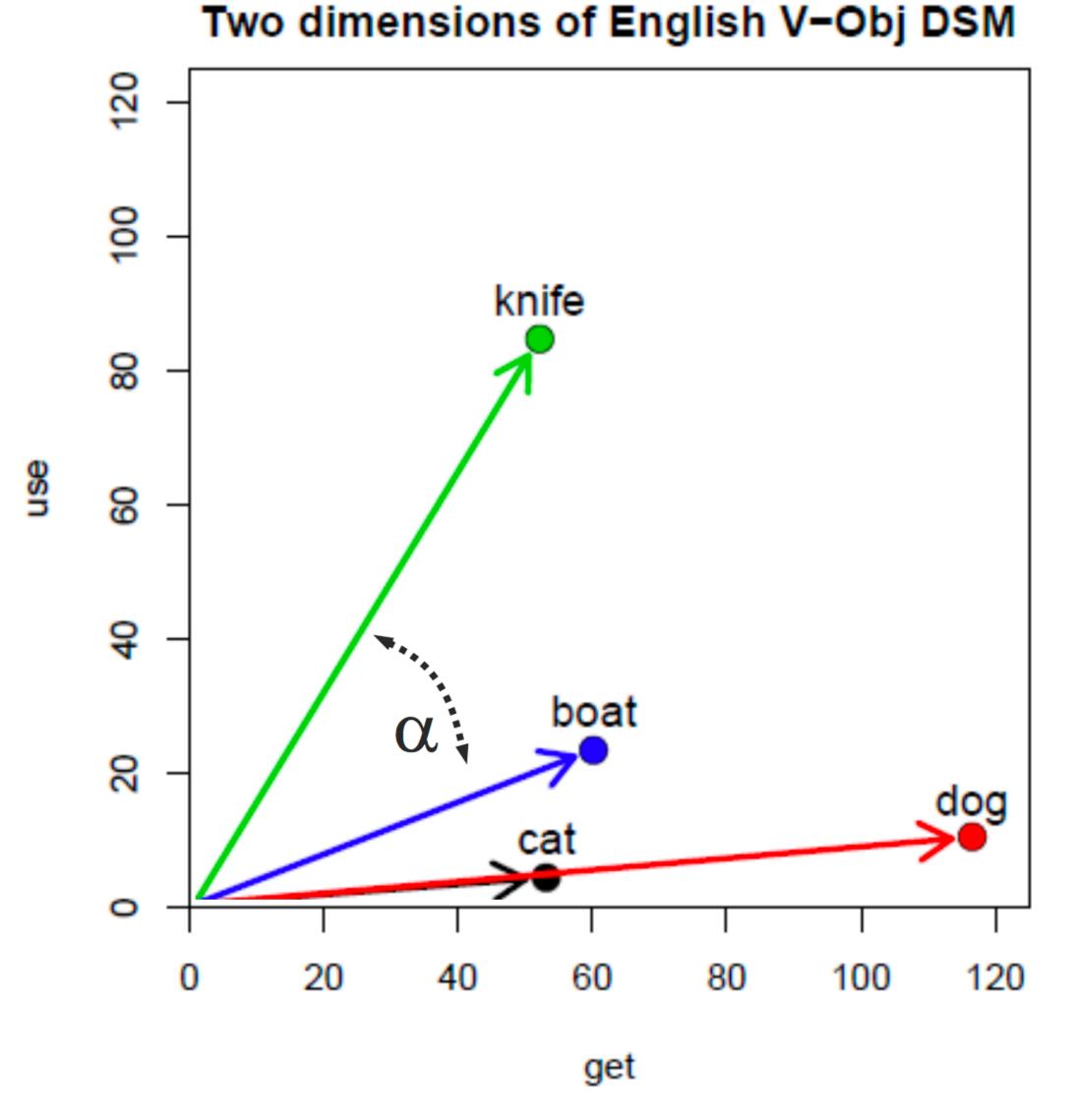
^{*} Slides from Louis-Philippe Morency

Angle and Similarity

— direction is more important than location

normalize length of vectors

- or use angle as a distance measure



^{*} Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

Row vector describes usage of word in a corpus of text

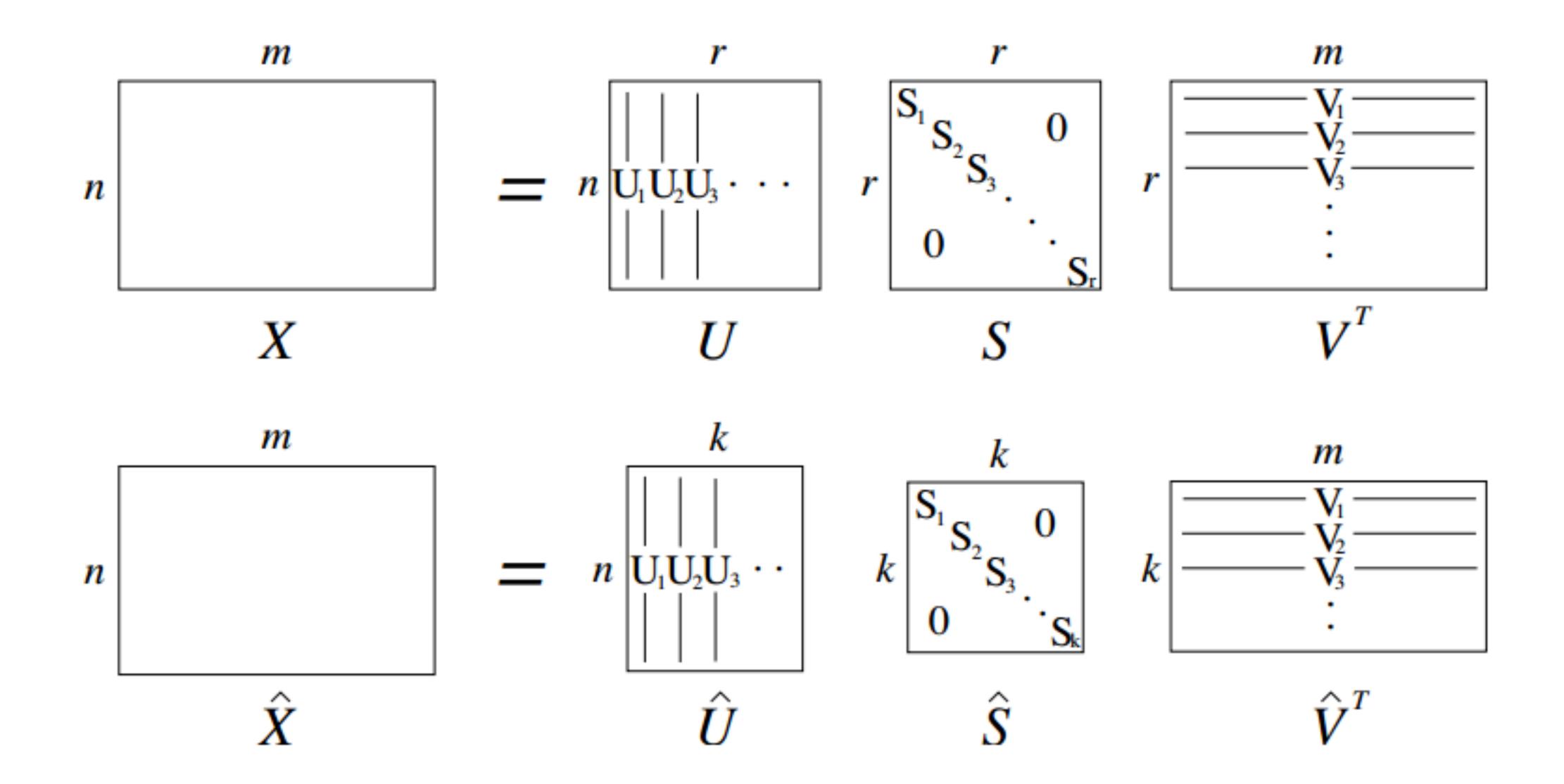
— Can be seen as coordinates of the point in an n-dimensional Euclidian space

kill hear eat use knife 51 20 84 26 52 58 6 cat 33 115 10 dog 59 39 23 boat 98 14 cup 27 pig 18 banana

Way too high dimensional!

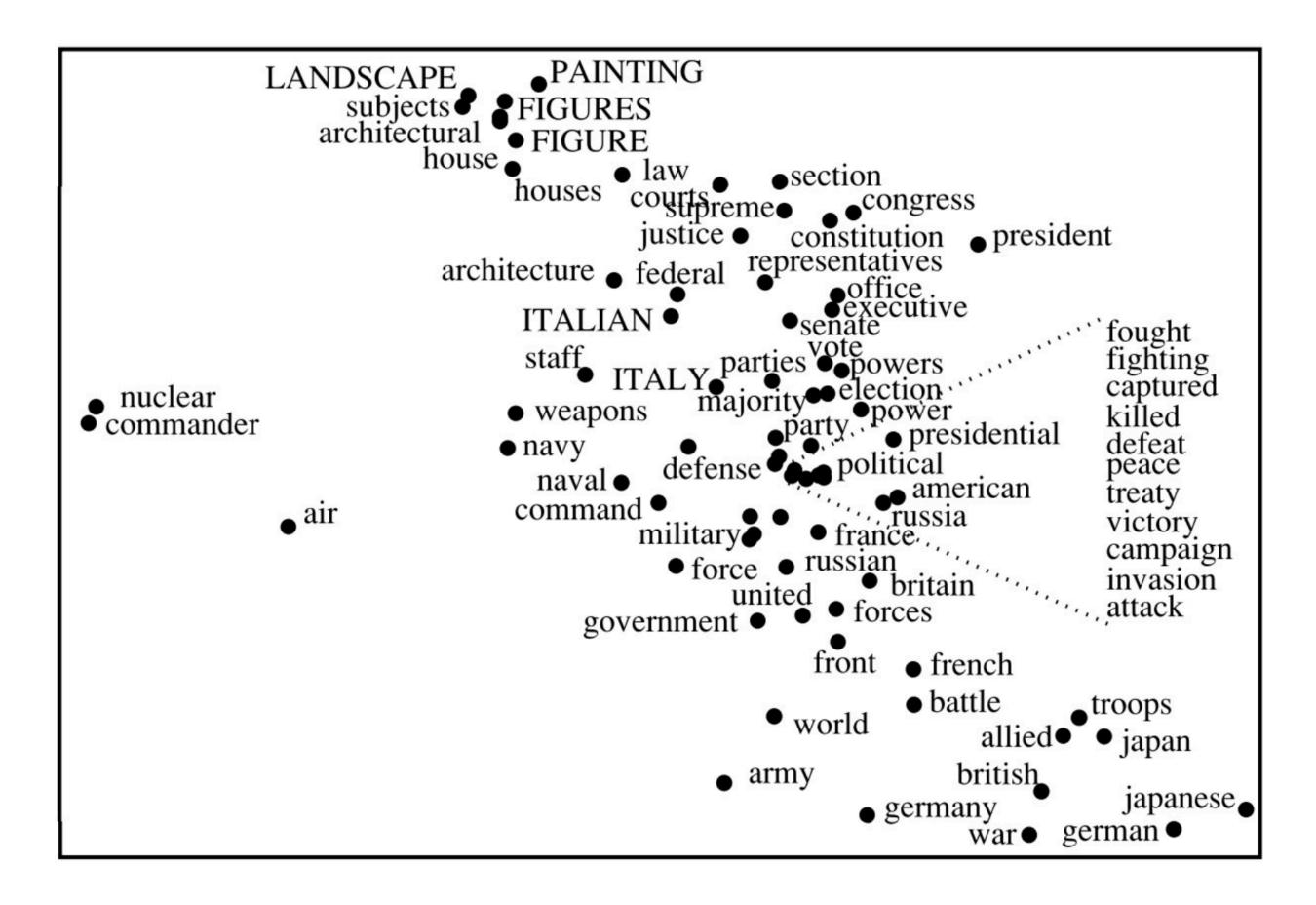
Co-occurrence Matrix

SVD for Dimensionality Reduction



Learned Word Vector Visualization

We can also use other methods, like LLE here:



Nonlinear dimensionality reduction by locally linear embedding. Sam Roweis & Lawrence Saul. Science, v.290,2000

Issues with SVD

Computational cost for a $d \times n$ matrix is $\mathcal{O}(dn^2)$, where d < n

- Makes it not possible for large number of word vocabularies or documents

It is hard to incorporate out of sample (new) words or documents

word2vec: Representing the Meaning of Words [Mikolov et al., 2013]

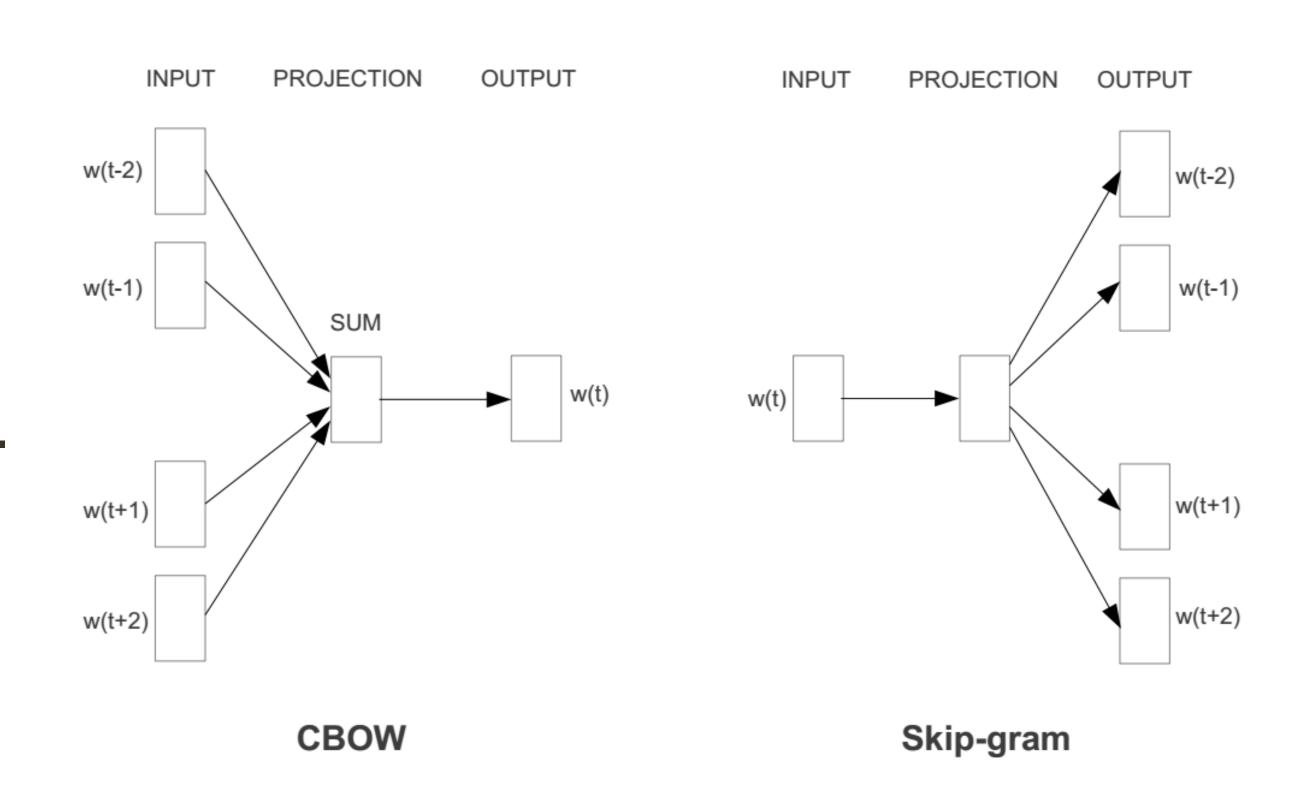
Key idea: Predict surrounding words of every word

Benefits: Faster and easier to incorporate new document, words, etc.

word2vec: Representing the Meaning of Words [Mikolov et al., 2013]

Key idea: Predict surrounding words of every word

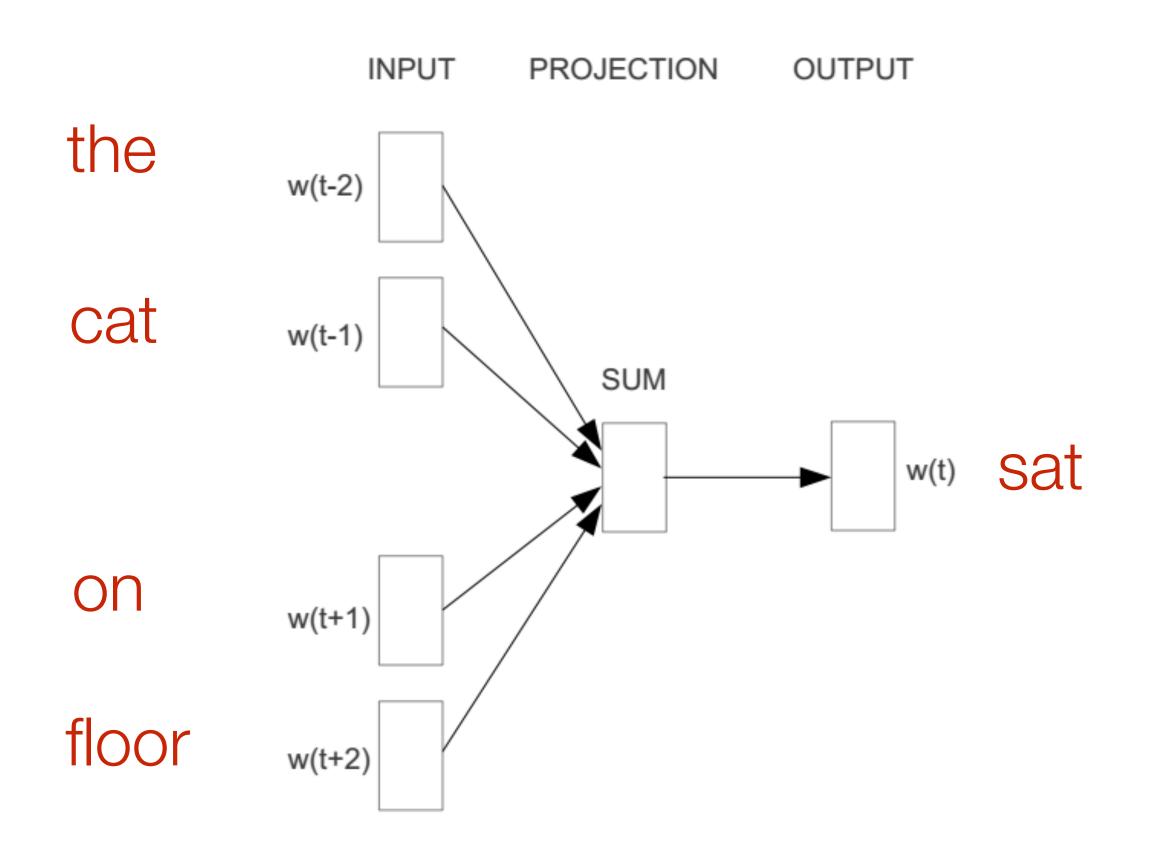
Benefits: Faster and easier to incorporate new document, words, etc.

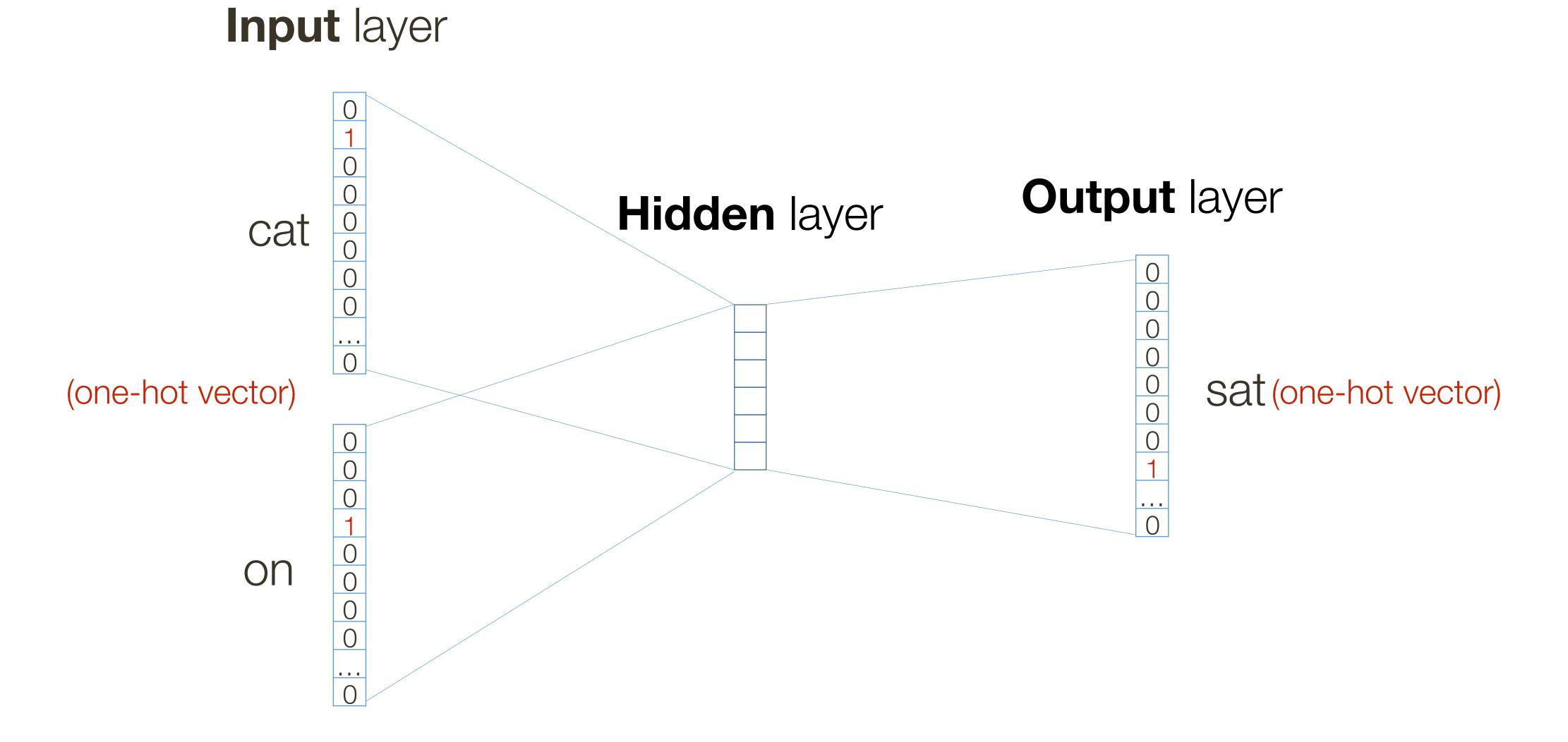


Continuous Bag of Words (**CBOW**): use context words in a window to predict middle word

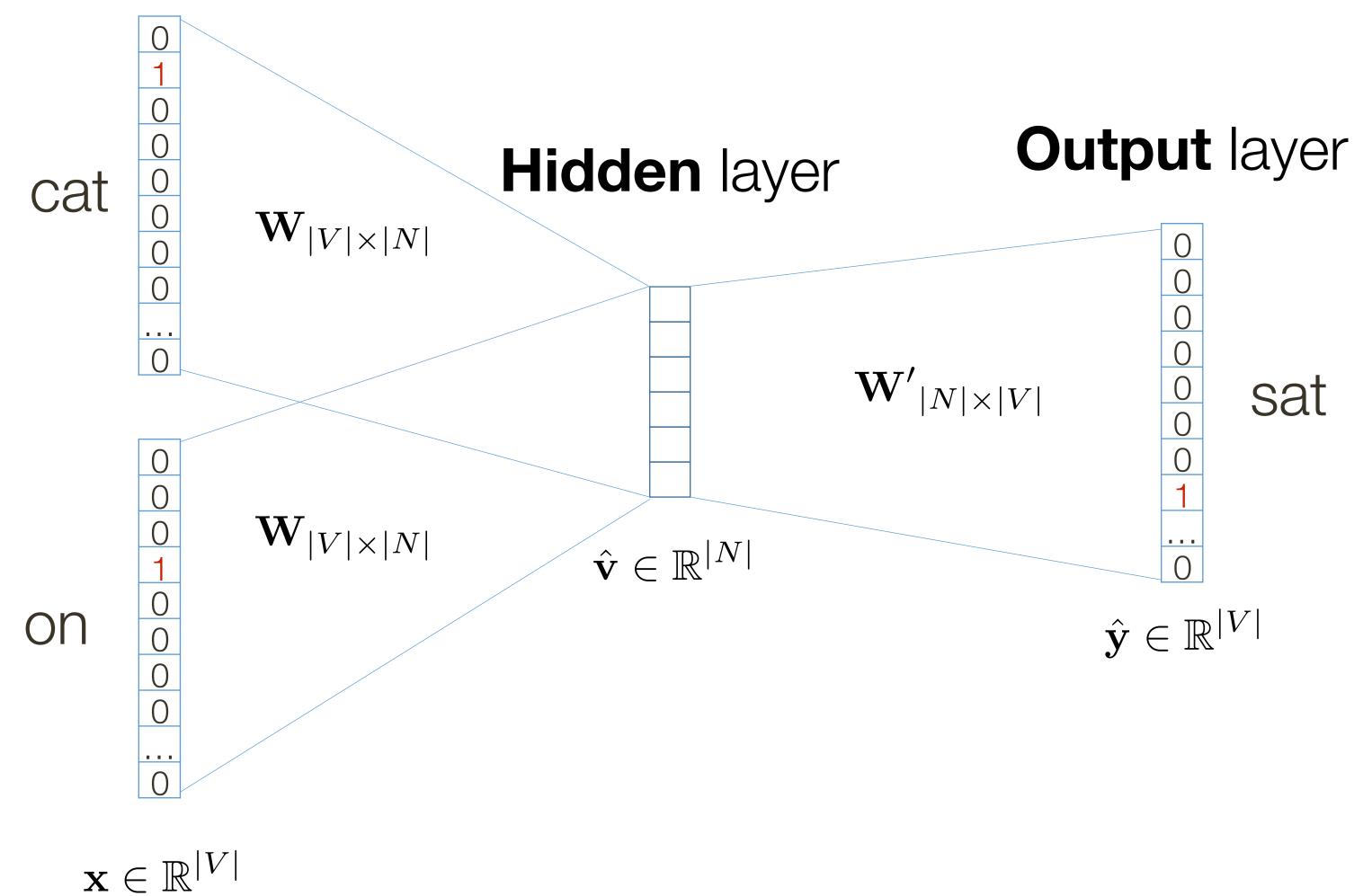
Skip-gram: use the middle word to predict surrounding ones in a window

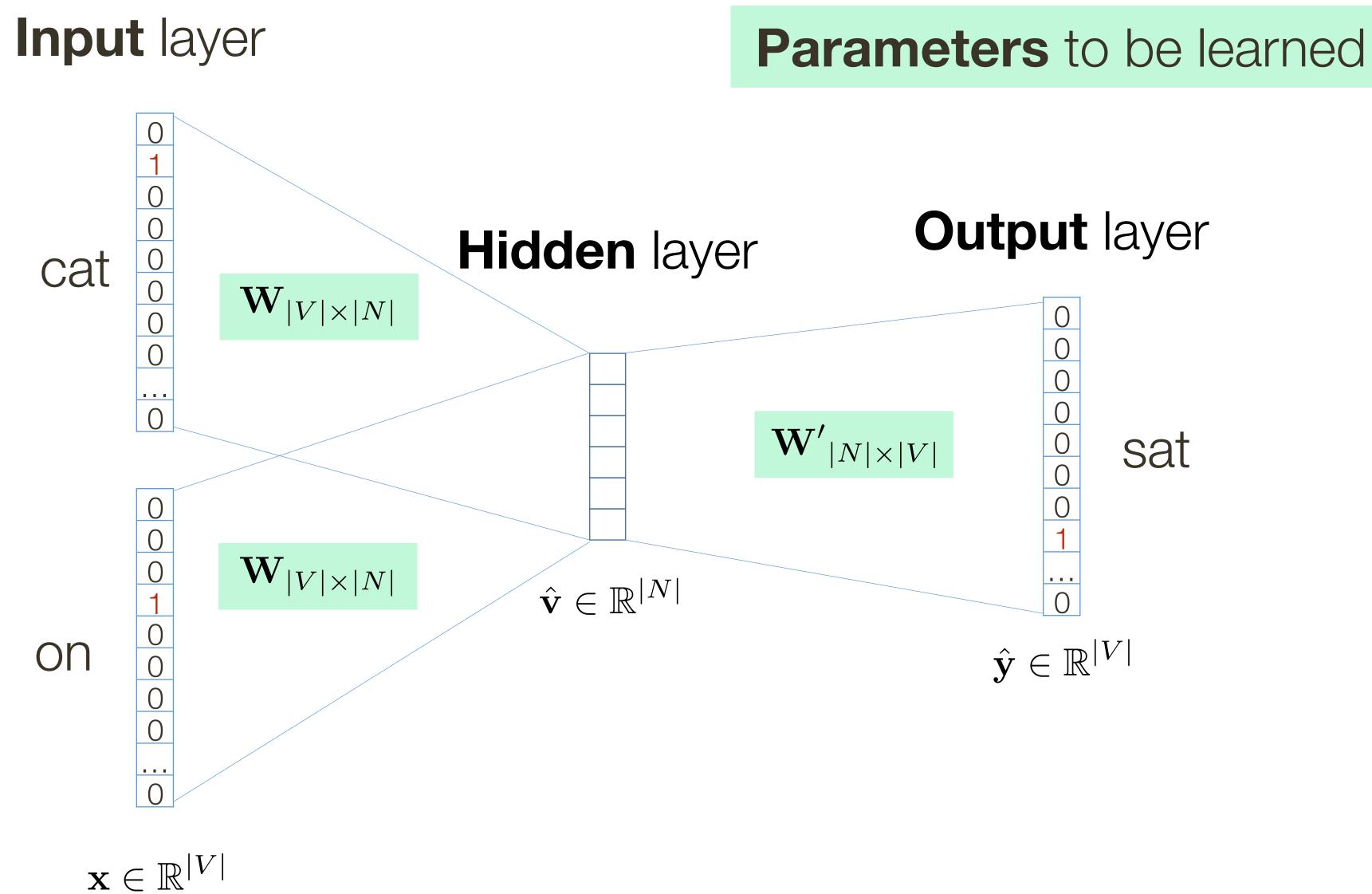
Example: "The cat sat on floor" (window size 2)





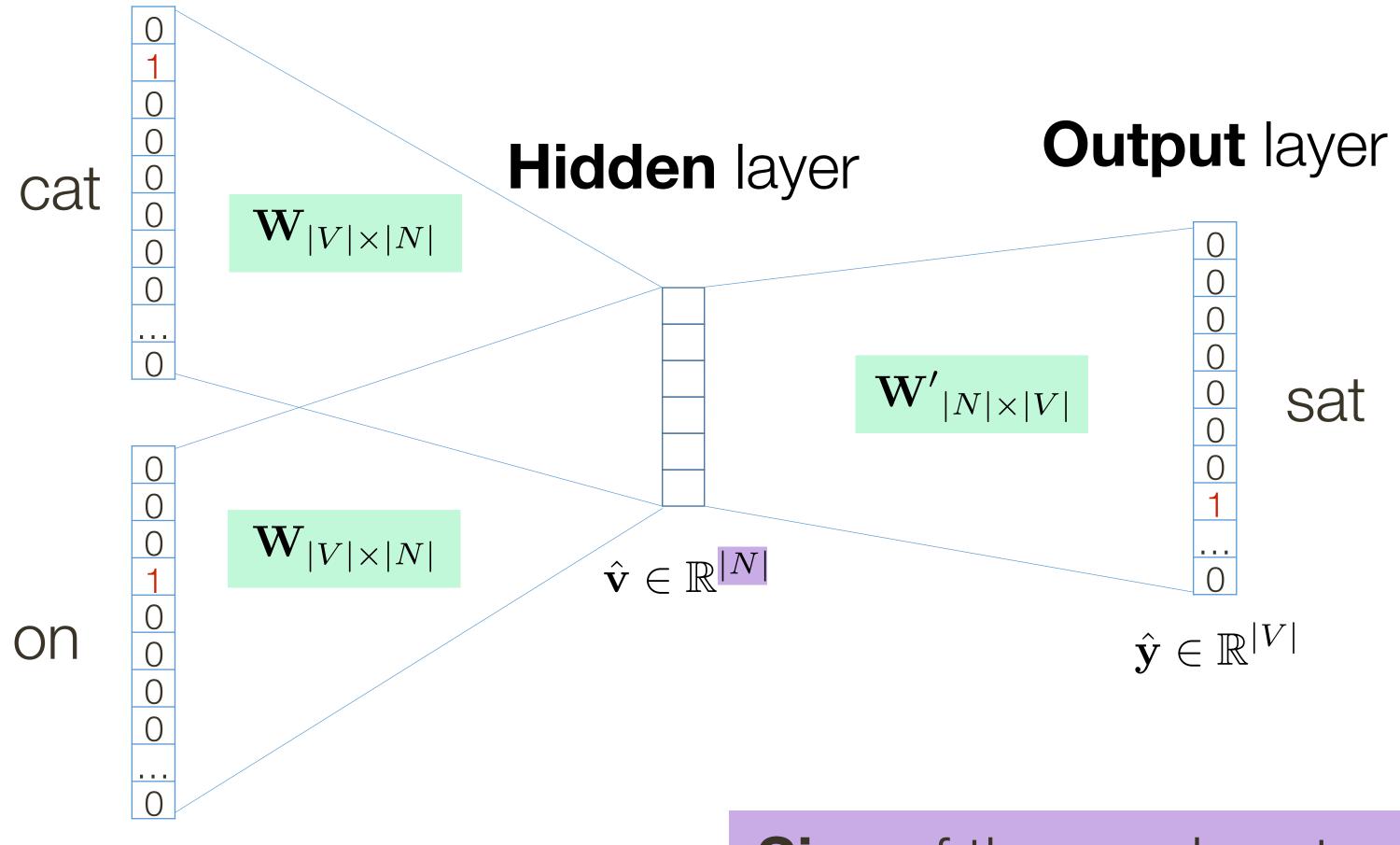
Input layer





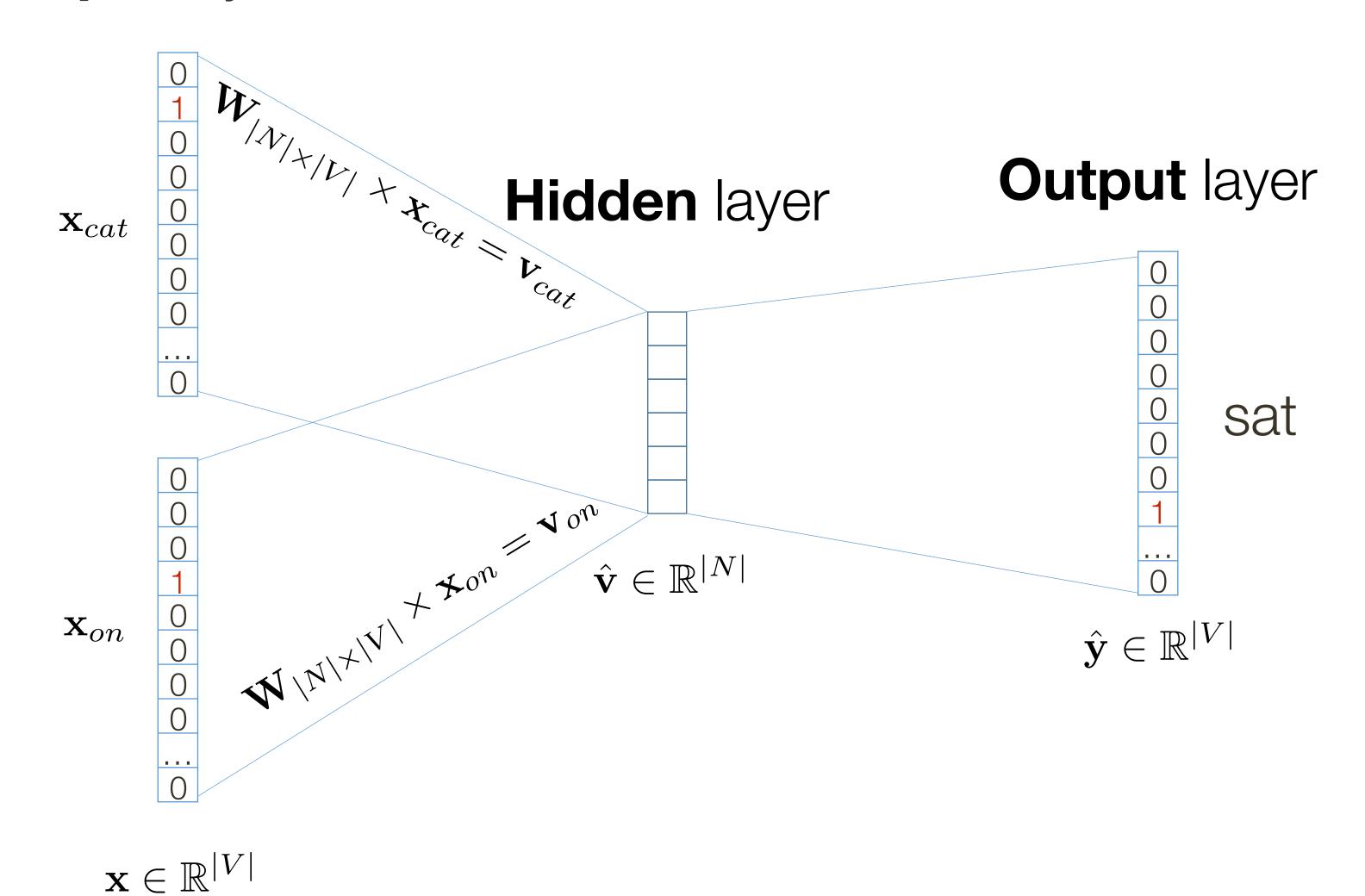
 $\mathbf{x} \in \mathbb{R}^{|V|}$

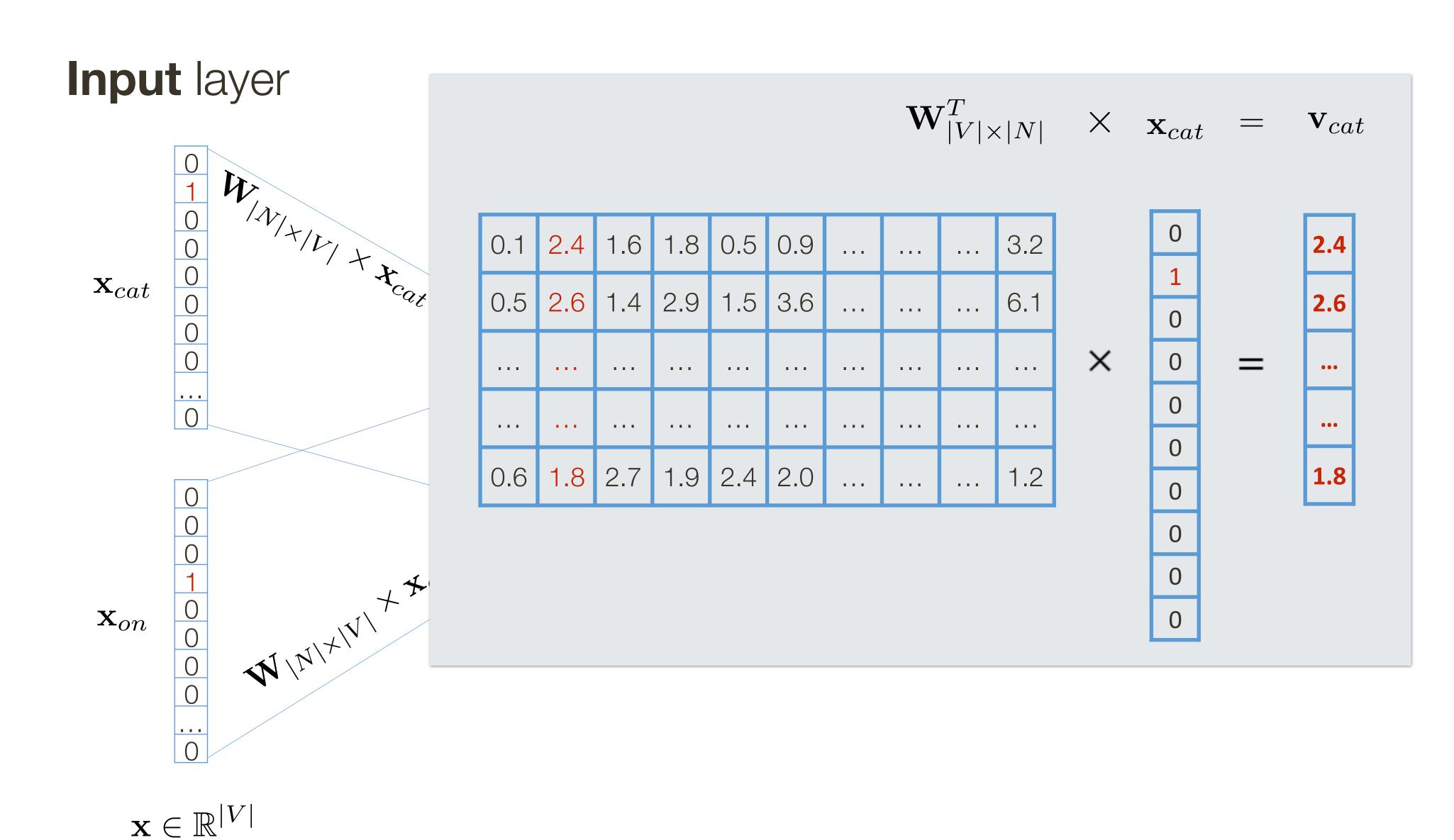
Parameters to be learned

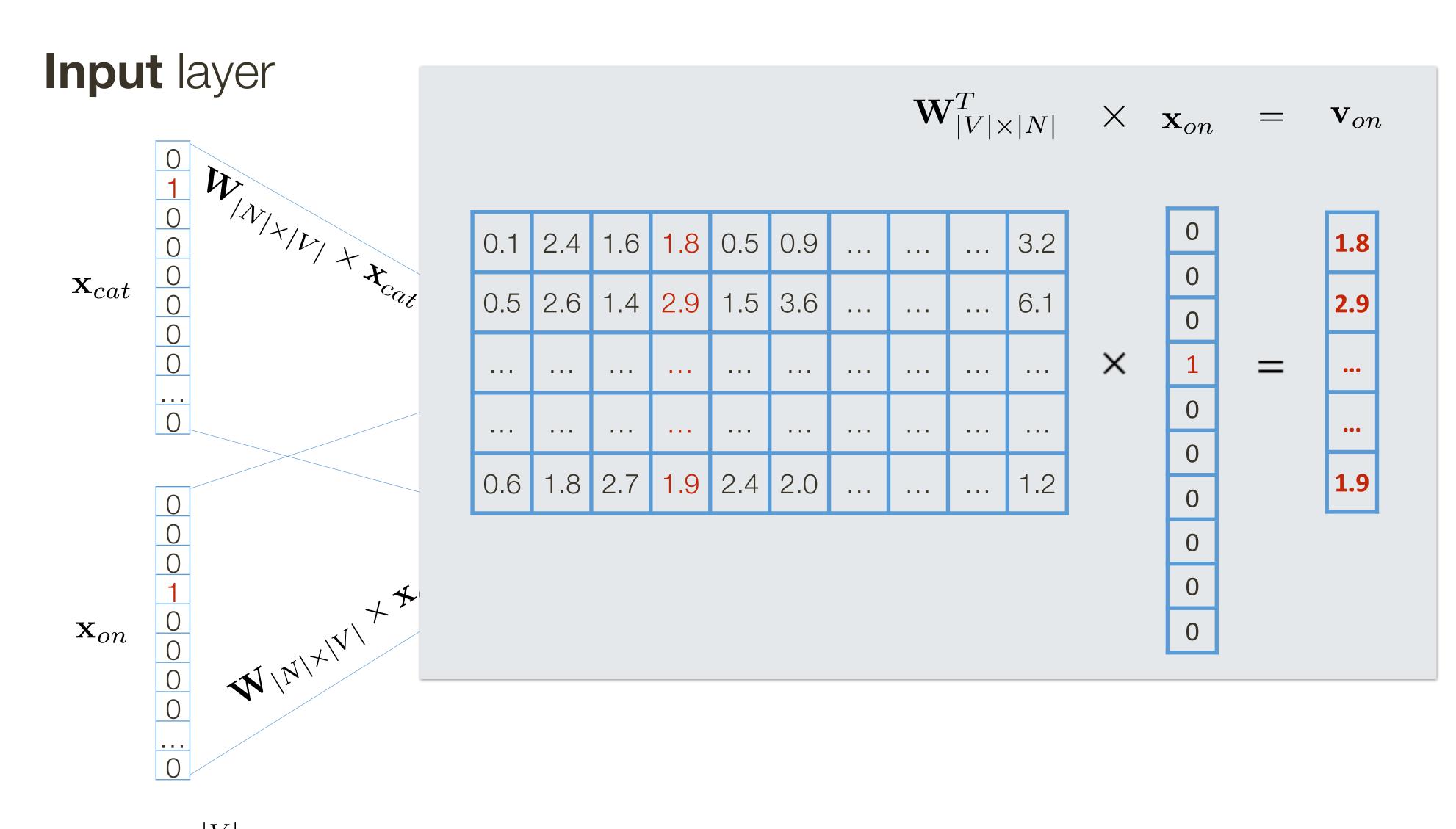


Size of the word vector (e.g., 300)

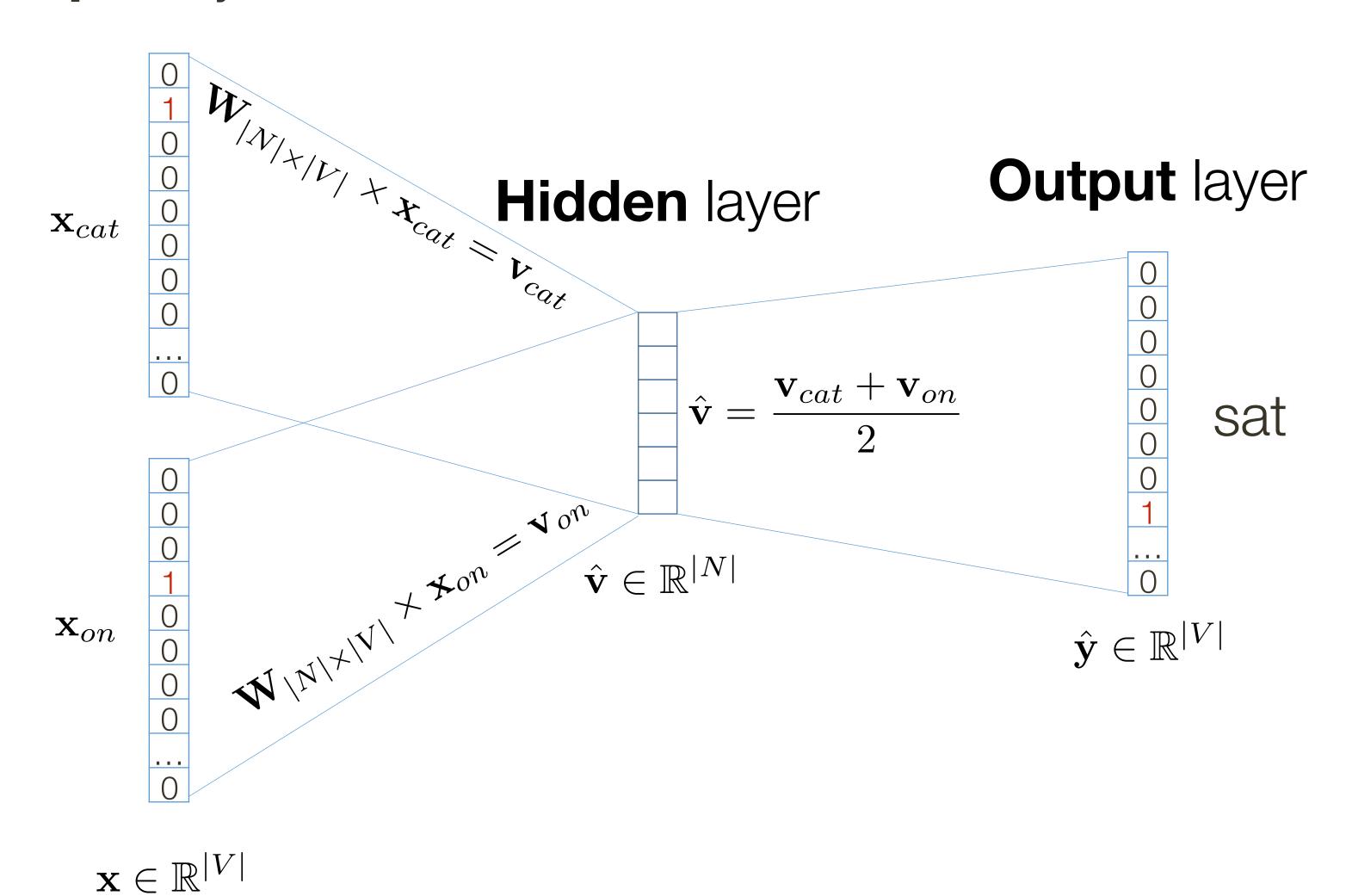
Input layer



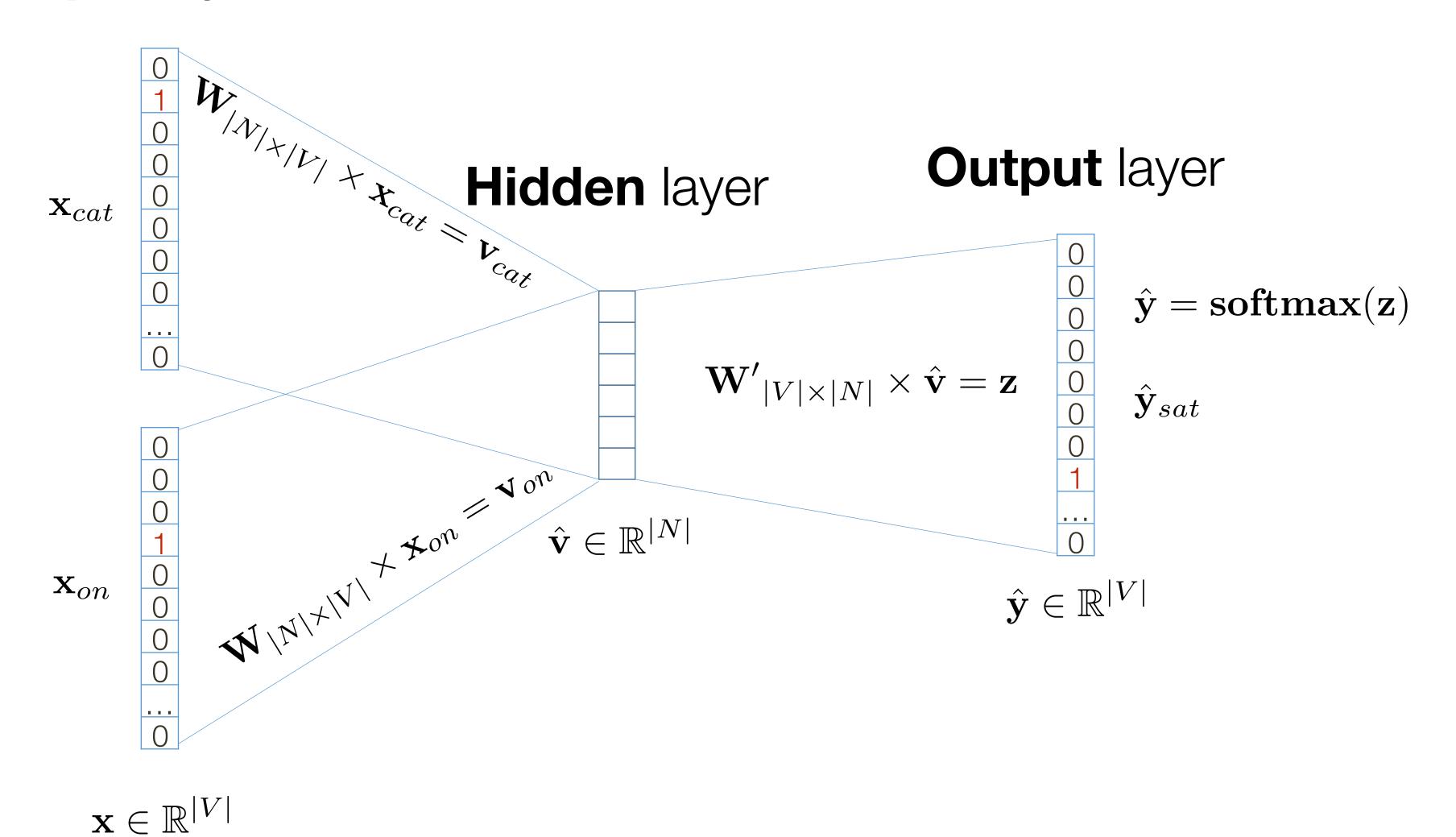




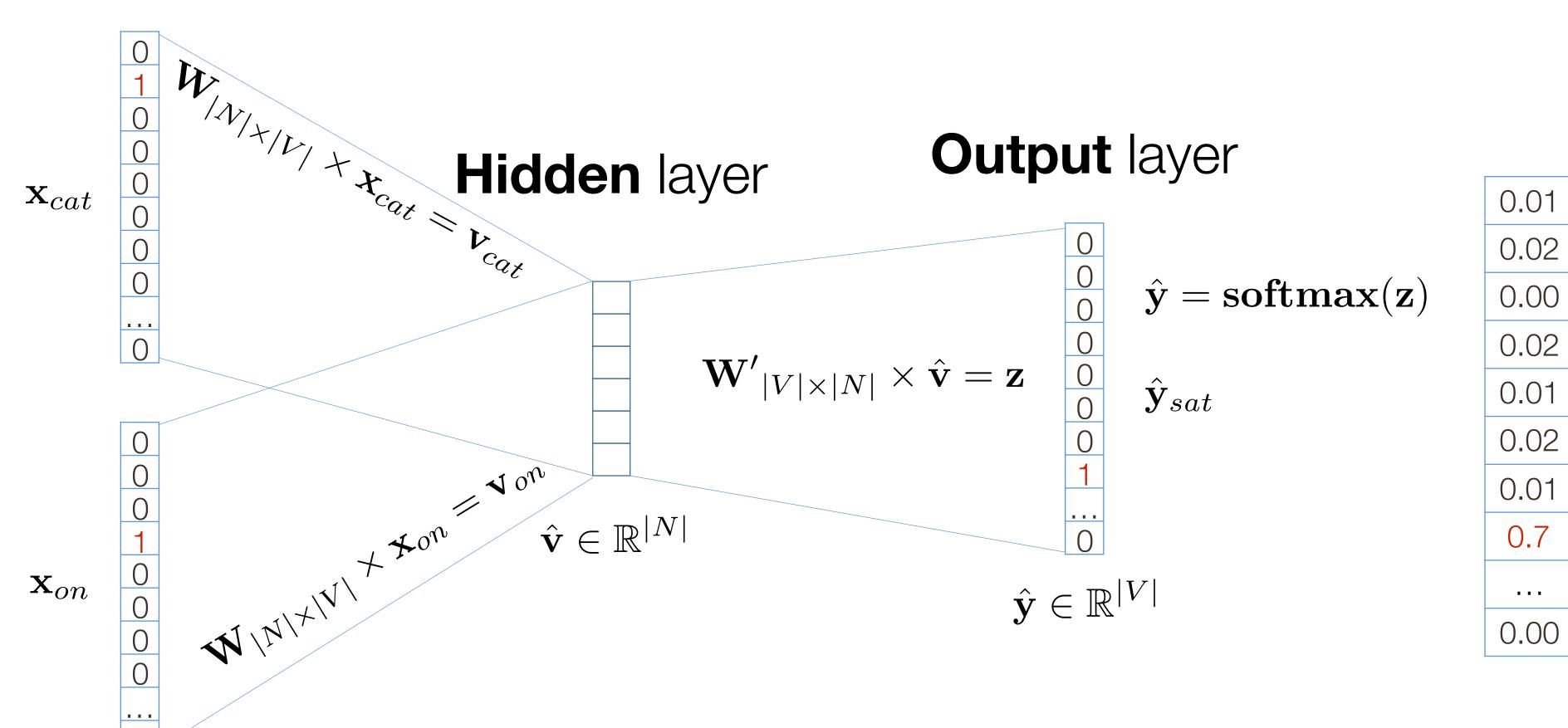
Input layer



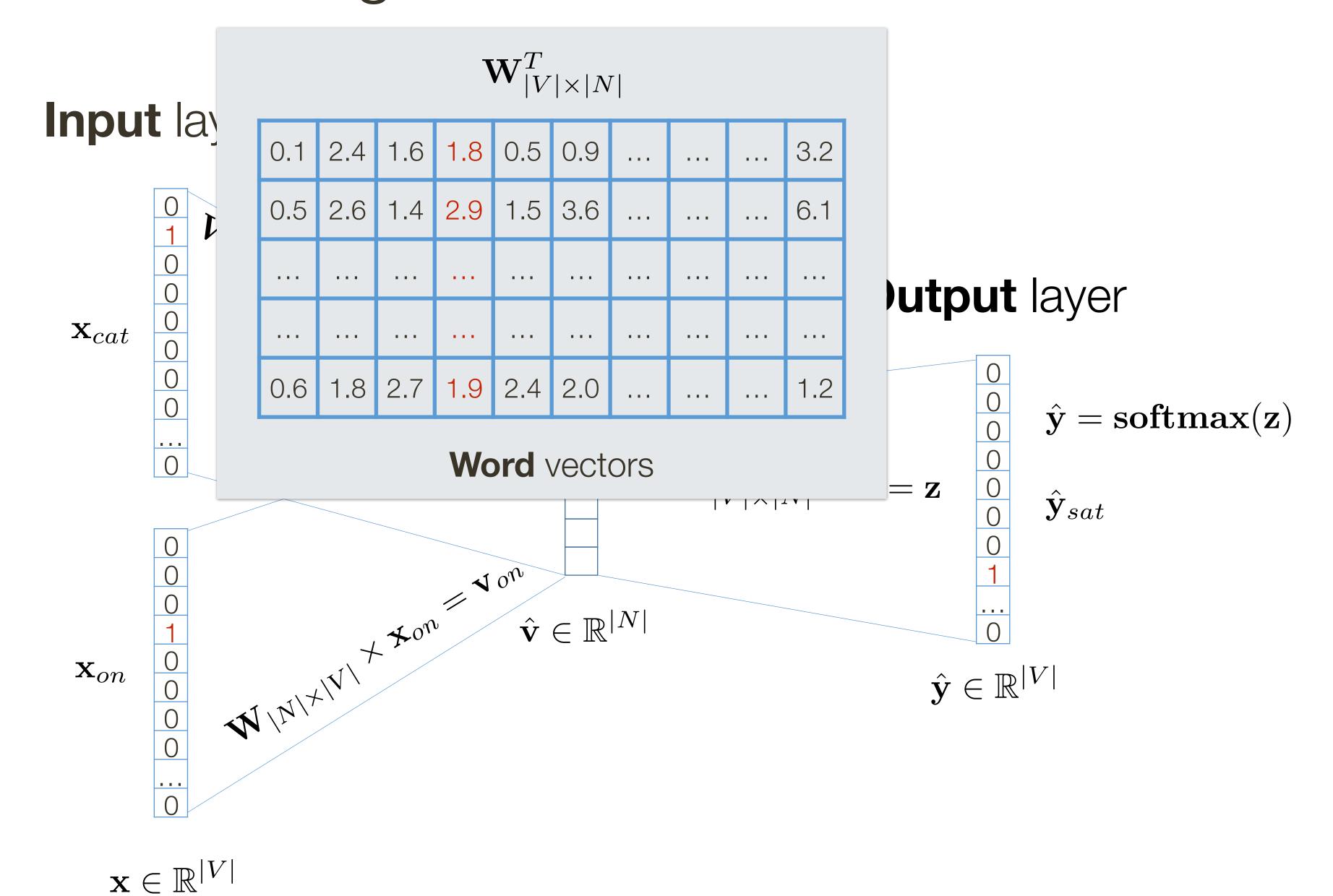
Input layer



Input layer



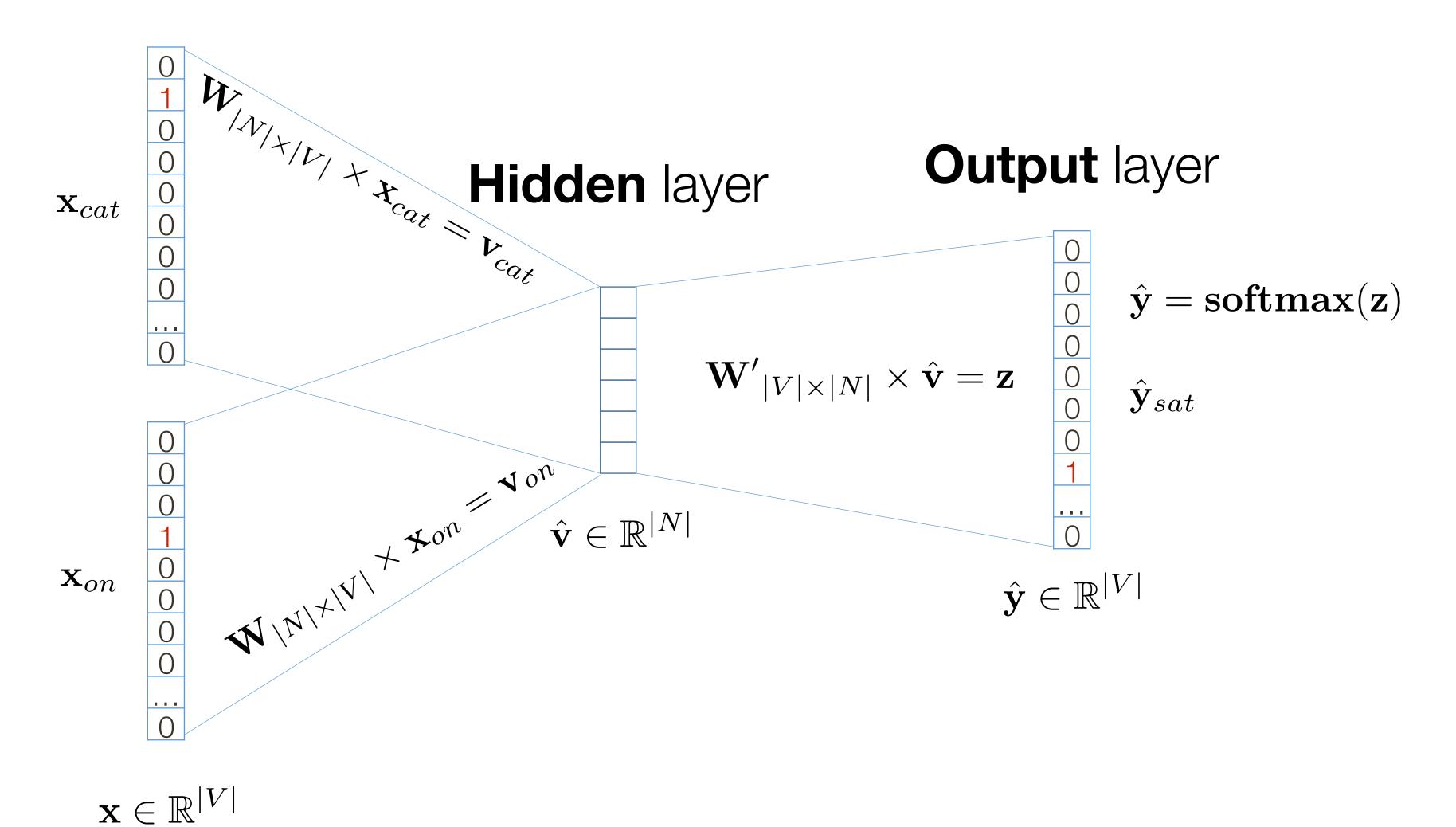
Optimize to get close to 1-hot encoding



CBOW: Interesting Observation

Input layer

There are two representations for same word!



CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word representation and the word representation itself

$$p(w|c) = \frac{\exp\left[\left(\sum_{c} \mathbf{W} \mathbf{x}_{c}\right)^{T} \left(\mathbf{W} \mathbf{x}_{w}\right)\right]}{\sum_{i}^{|V|} \exp\left[\left(\mathbf{W} \mathbf{x}_{i}\right)^{T} \left(\mathbf{W} \mathbf{x}_{w}\right)\right]}$$

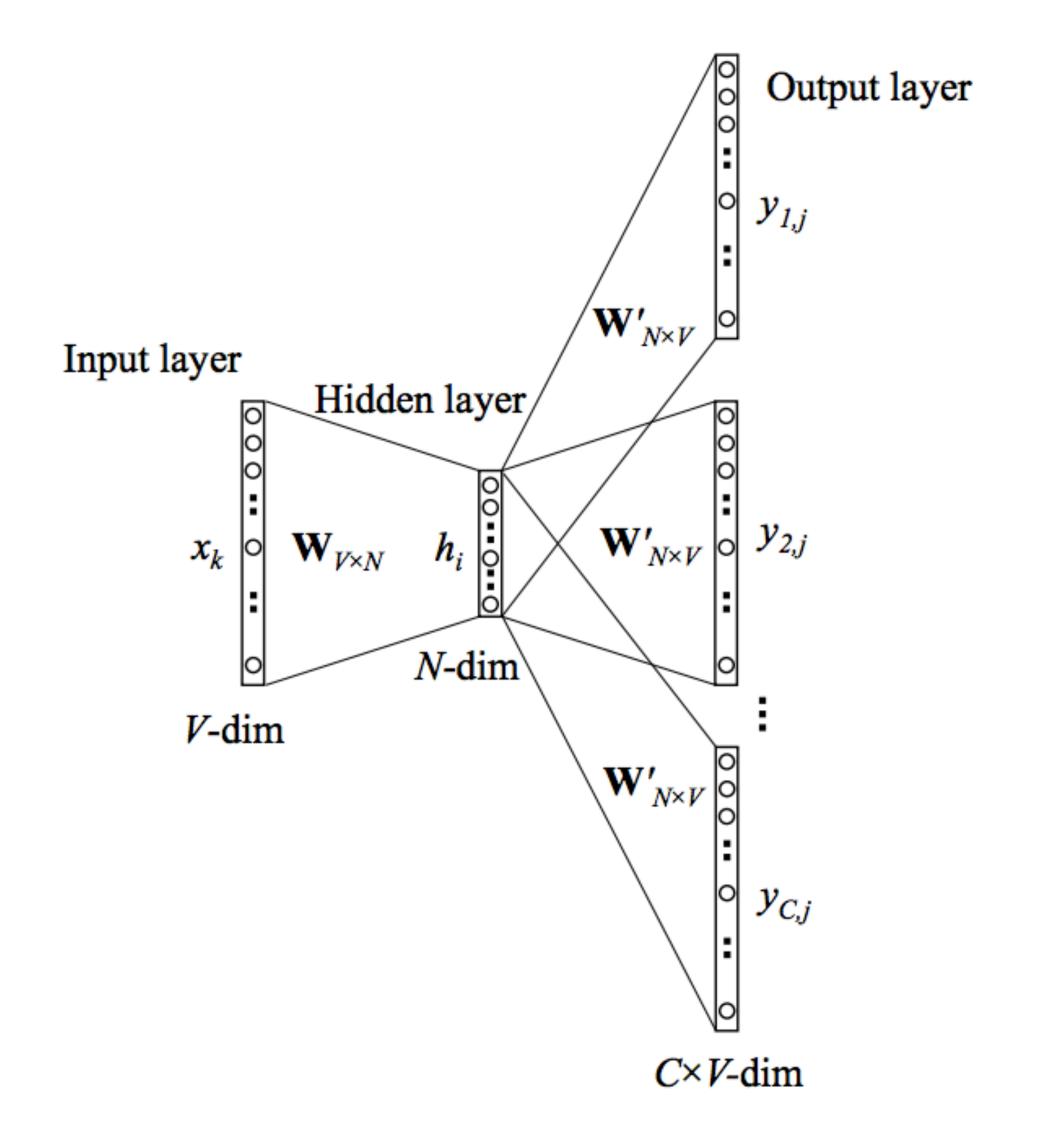
CBOW: Interesting Observation

Another way to look at it: Maximize similarity between context word representation and the word representation itself

$$J(\mathbf{W}) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m; j \ne 0} \log p(w_{t+j}|w_t)$$

$$p(w_{t+j}|w_t) = \frac{\exp(\mathbf{w}_{t+j}^T \mathbf{w}_t)}{\sum_{i=1}^{|V|} \exp(\mathbf{w}_i^T \mathbf{w}_t)}$$

Skip-Gram Model



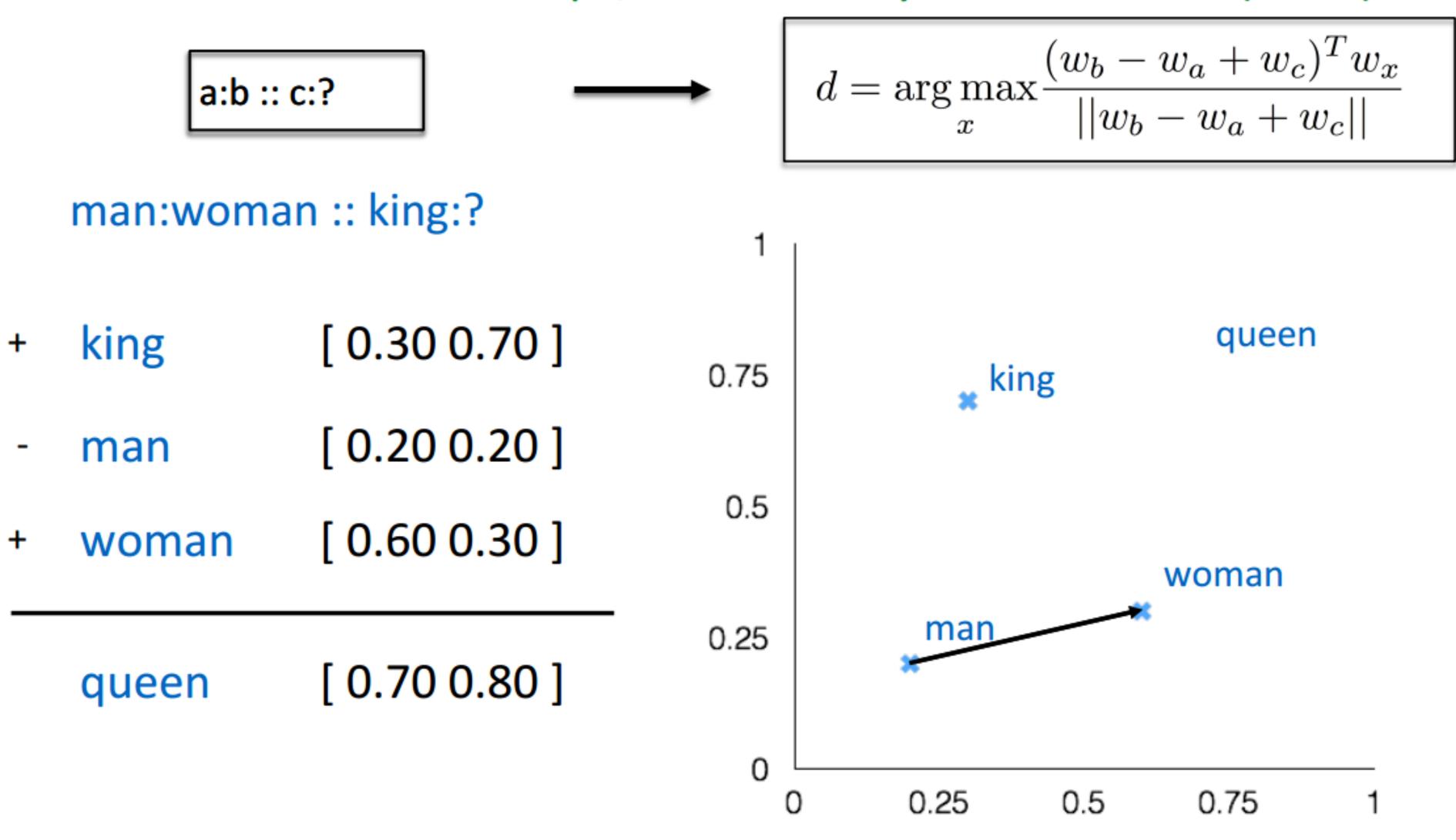
Comparison

- CBOW is not great for rare words and typically needs less data to train
- Skip-gram better for rate words and needs more data to train the model

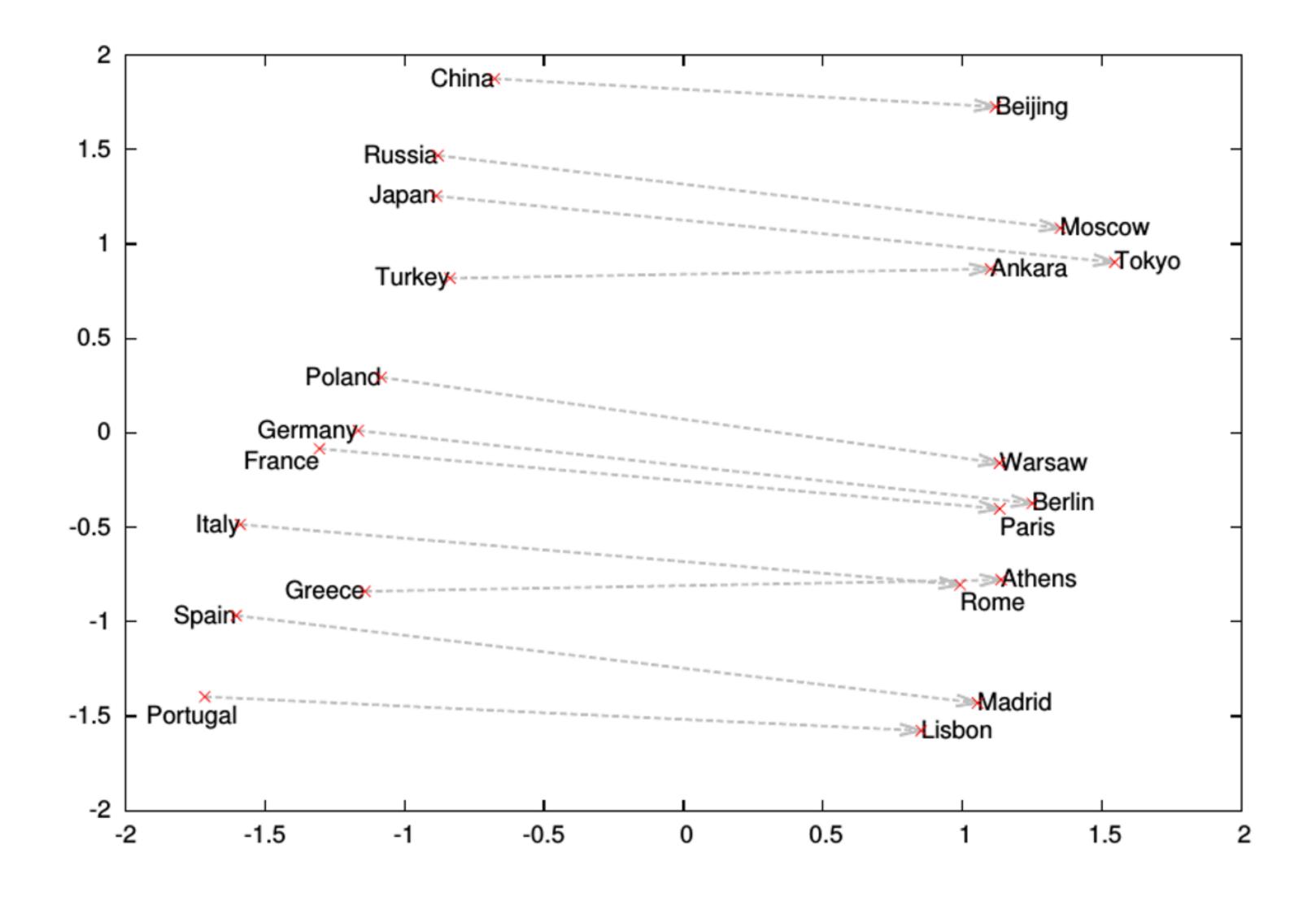
Model	Vector	Training	Accuracy [%]		
	Dimensionality	words			
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660M	9.3	12.3	11.0
Turian NNLM	50	37M	1.4	2.6	2.1
Turian NNLM	200	37M	1.4	2.2	1.8
Mnih NNLM	50	37M	1.8	9.1	5.8
Mnih NNLM	100	37M	3.3	13.2	8.8
Mikolov RNNLM	80	320M	4.9	18.4	12.7
Mikolov RNNLM	640	320M	8.6	36.5	24.6
Huang NNLM	50	990M	13.3	11.6	12.3
Our NNLM	20	6B	12.9	26.4	20.3
Our NNLM	50	6B	27.9	55.8	43.2
Our NNLM	100	6B	34.2	64.5	50.8
CBOW	300	783M	15.5	53.1	36.1
Skip-gram	300	783M	50.0	55.9	53.3

Interesting Results: Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)



Interesting Results: Word Analogies



Language Models

Model the **probability of a sentence**; ideally be able to sample plausible sentences

Why is this useful?

$$arg max P(wordsequence | acoustics) = wordsequence$$

$$\underset{wordsequence}{\operatorname{arg\,max}} \frac{P(acoustics \mid wordsequence) \times P(wordsequence)}{P(acoustics)}$$

 $\underset{wordsequence}{\operatorname{arg\,max}\,P(acoustics\,|\,wordsequence)} \times \frac{P(wordsequence)}{P(wordsequence)}$

Simple Language Models: N-Grams

Given a word sequence: $w_{1:n} = [w_1, w_2, ..., w_n]$

We want to estimate $p(w_{1:n})$

Using Chain Rule of probabilities:

$$p(w_{1:n}) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots p(w_n|w_{1:n-1})$$

Bi-gram Approximation:

$$p(w_{1:n}) = \prod_{k=1}^{n} p(w_k | w_{k-1})$$

N-gram Approximation:

$$p(w_{1:n}) = \prod_{k=1}^{n} p(w_k | w_{k-N+1:k-1})$$

Estimating Probabilities

N-gram conditional probabilities can be estimated based on raw concurrence counts in the observed sequences

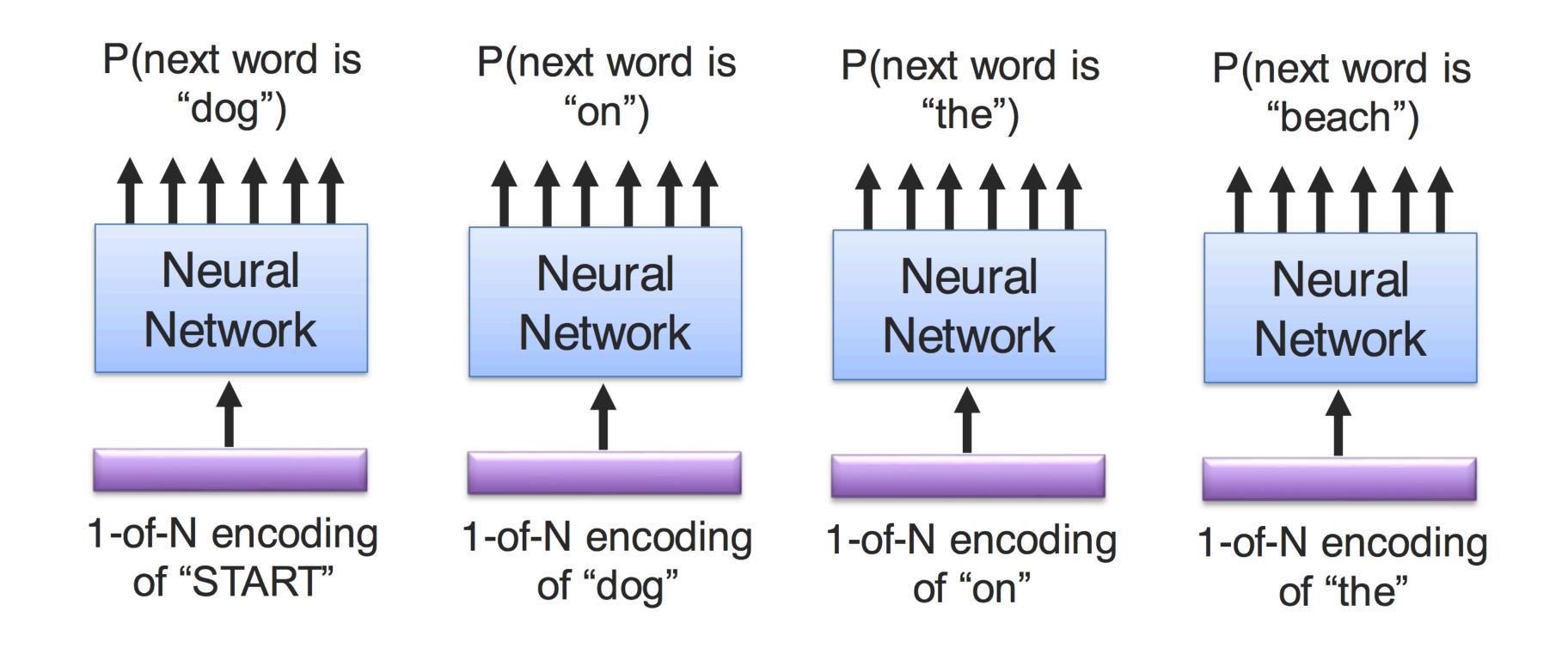
Bi-gram:

$$p(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

N-gram:

$$p(w_n|w_{n-N-1:n-1}) = \frac{C(w_{n-N-1:n-1}w_n)}{C(w_{n-N-1:n-1})}$$

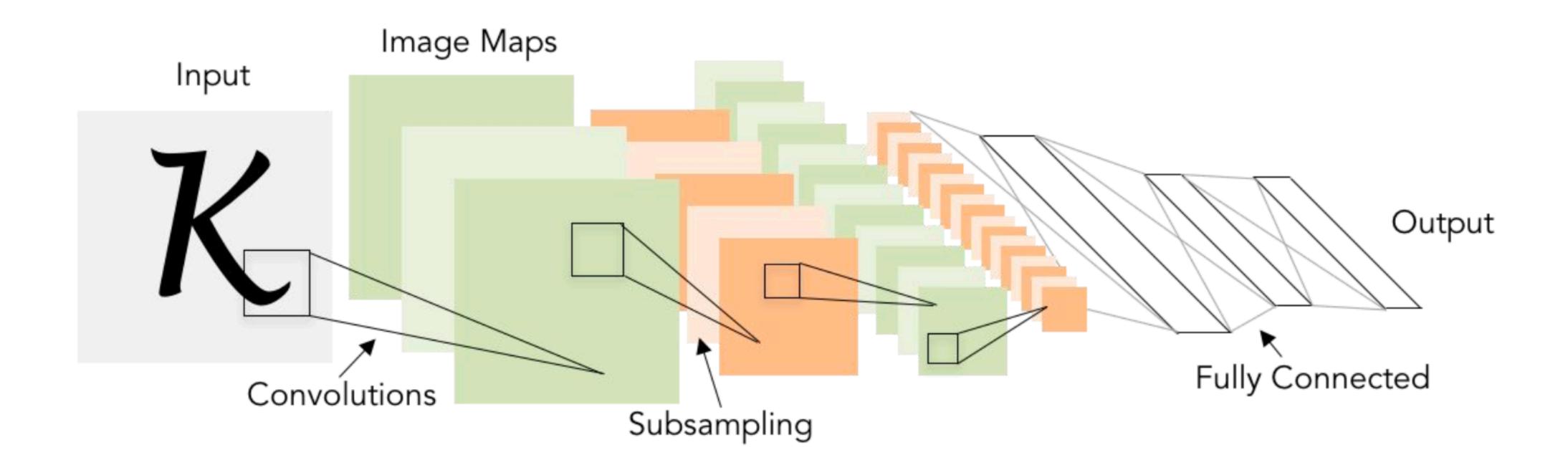
Neural-based Unigram Language Mode



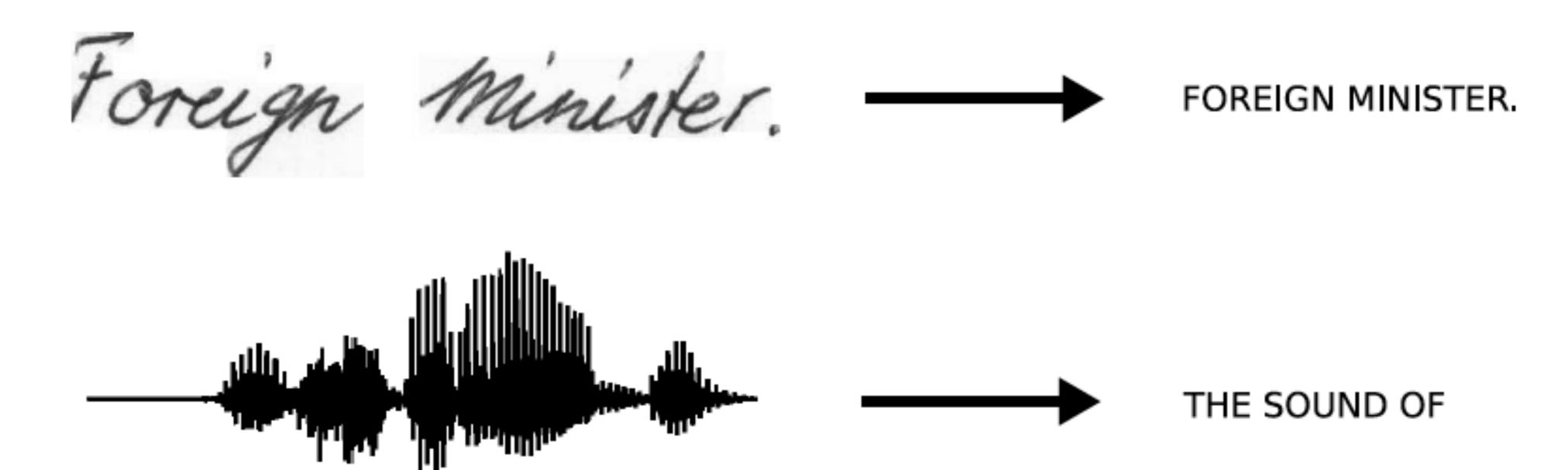
Problem: Does not model sequential information (too local)

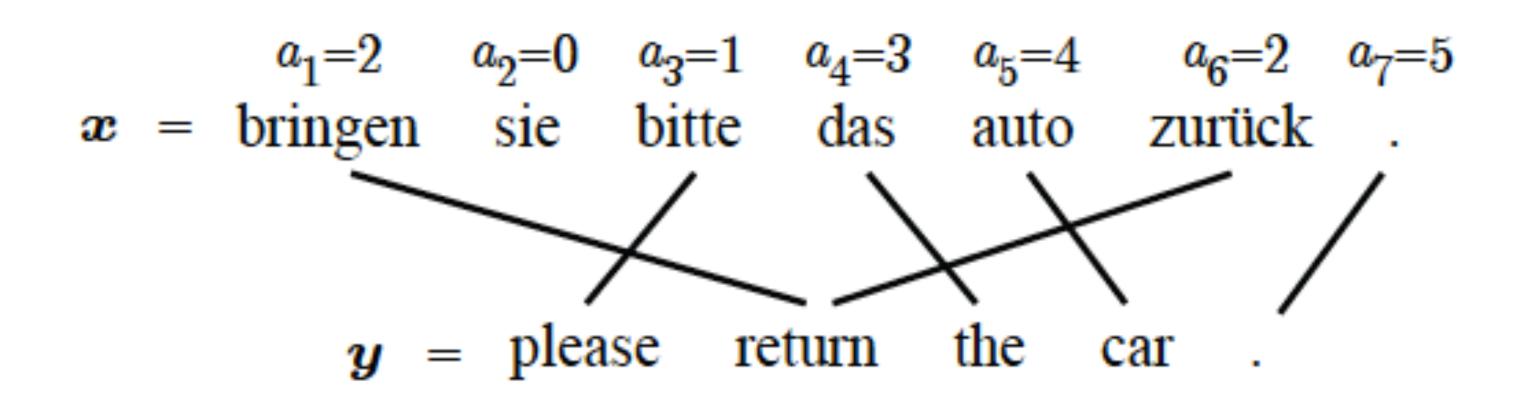
We need sequence modeling!

Sequence Modeling

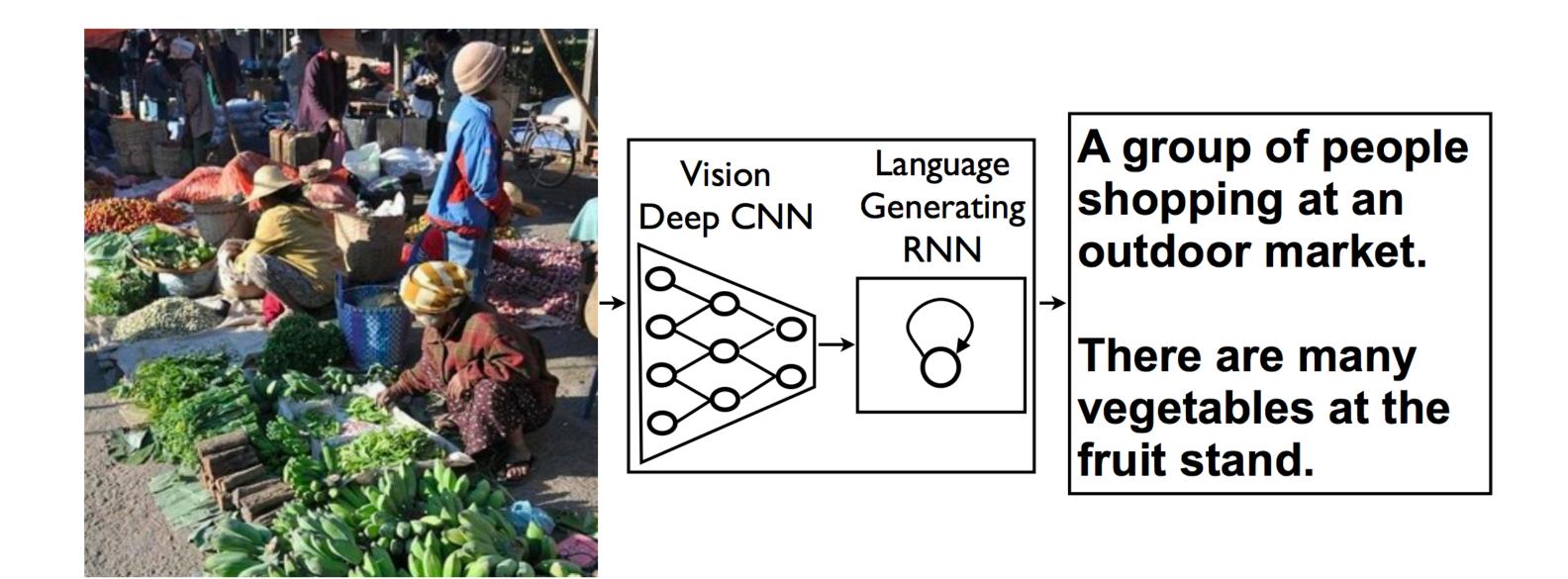


Why Model Sequences?





Multi-modal tasks



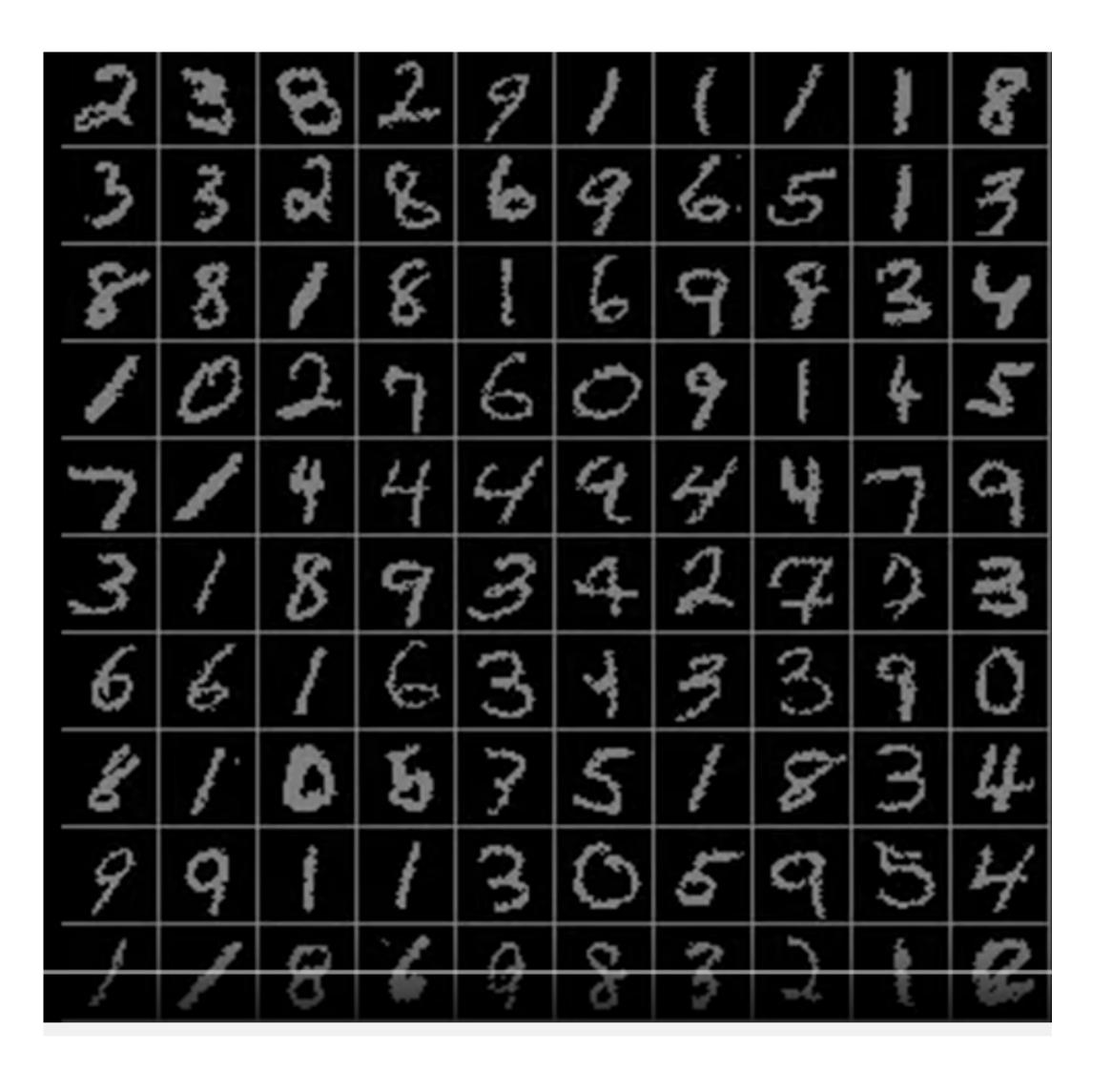
[Vinyals *et al.*, 2015]

Sequences where you don't expect them ...

Classify images by taking a series of "glimpses"

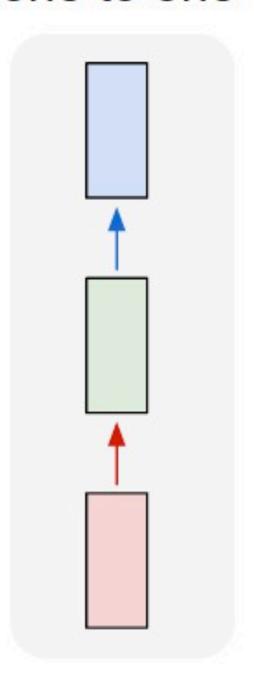
[Gregor et al., ICML 2015]

[Mnih et al., ICLR 2015]



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

one to one

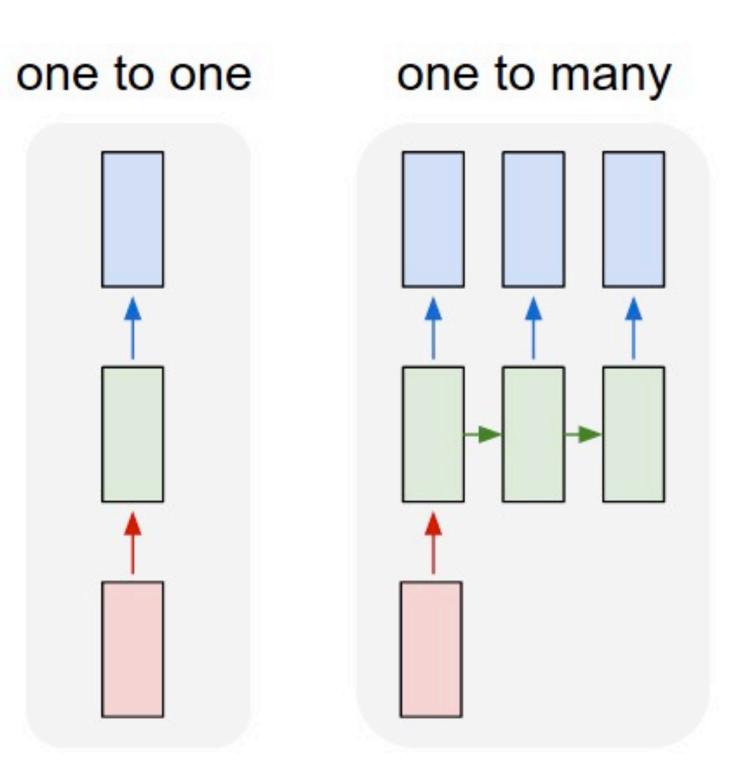


Input: No sequence

Output: No seq.

Example:

"standard"
classification /
regression problems



Input: No sequence

Output: No seq.

Example:

"standard" classification /

regression problems

Input: No

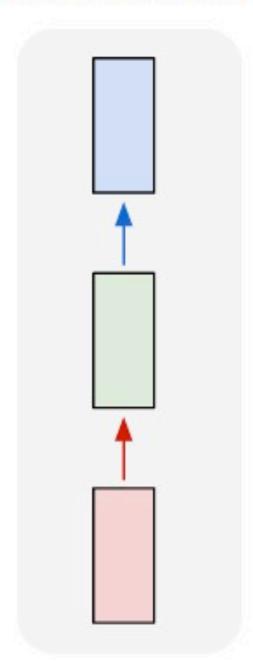
sequence

Output:

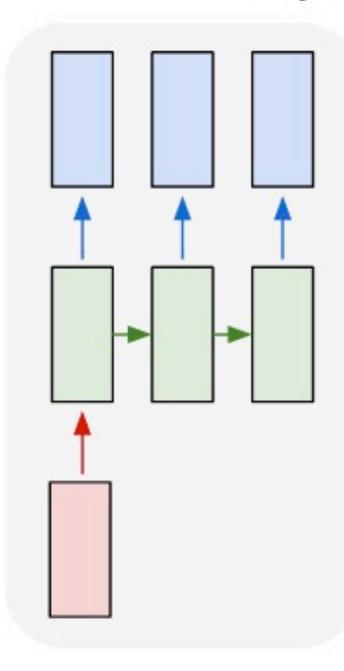
Sequence

Example: Im2Caption

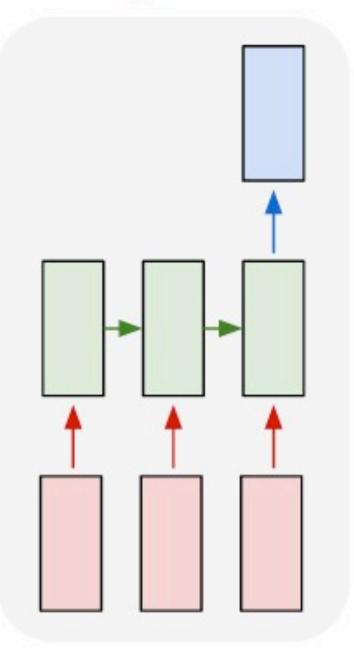
one to one



one to many



many to one



Input: No sequence

Output: No seq.

Example:

"standard"
classification /
regression problems

Input: No

sequence

Output:

Sequence

Example:

Im2Caption

Input: Sequence

Output: No seq.

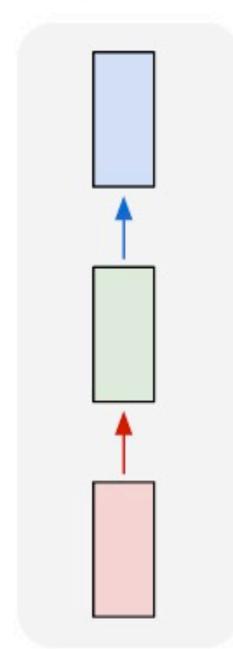
Example: sentence

classification,

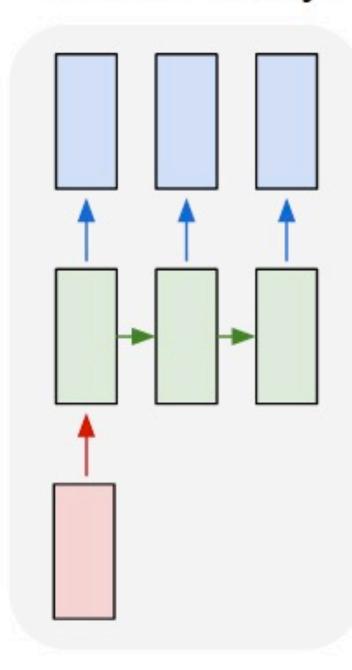
multiple-choice

question answering

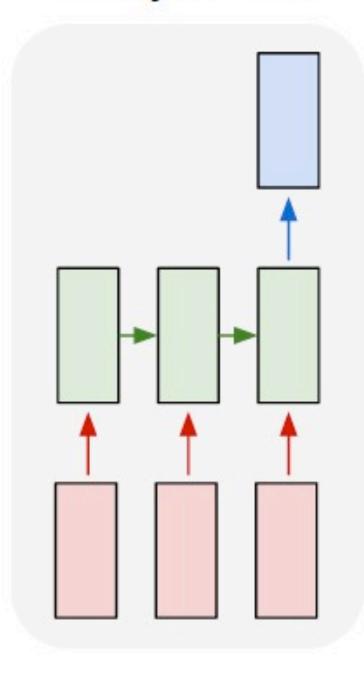
one to one



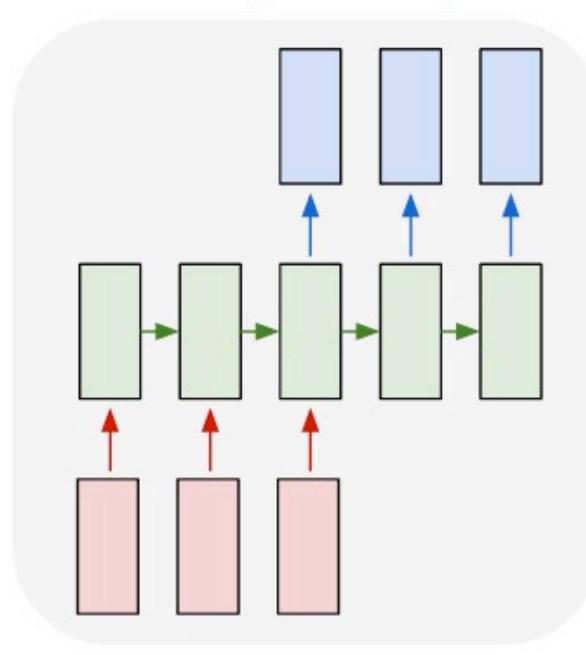
one to many



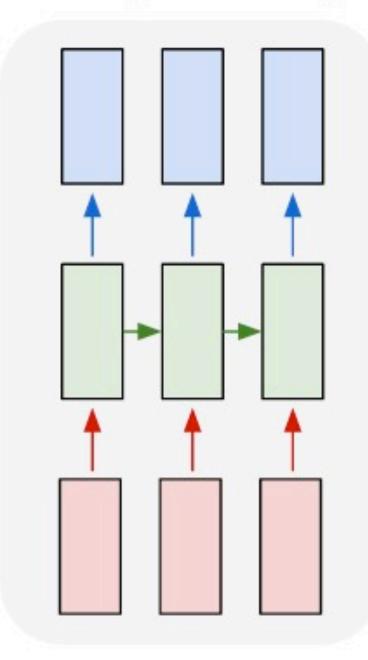
many to one



many to many



many to many



Input: No sequence

Output: No seq.

Example:

"standard" classification / regression problems

Input: No sequence

Output:

Sequence

Example: Im2Caption

Input: Sequence

Output: No seq.

Example: sentence classification, multiple-choice question answering

Input: Sequence

Output: Sequence

Example: machine translation, video captioning, open-ended question answering, video question answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Key Conceptual Ideas

Parameter Sharing

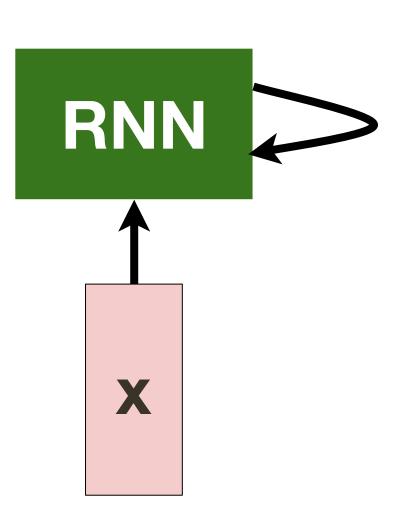
— in computational graphs = adding gradients

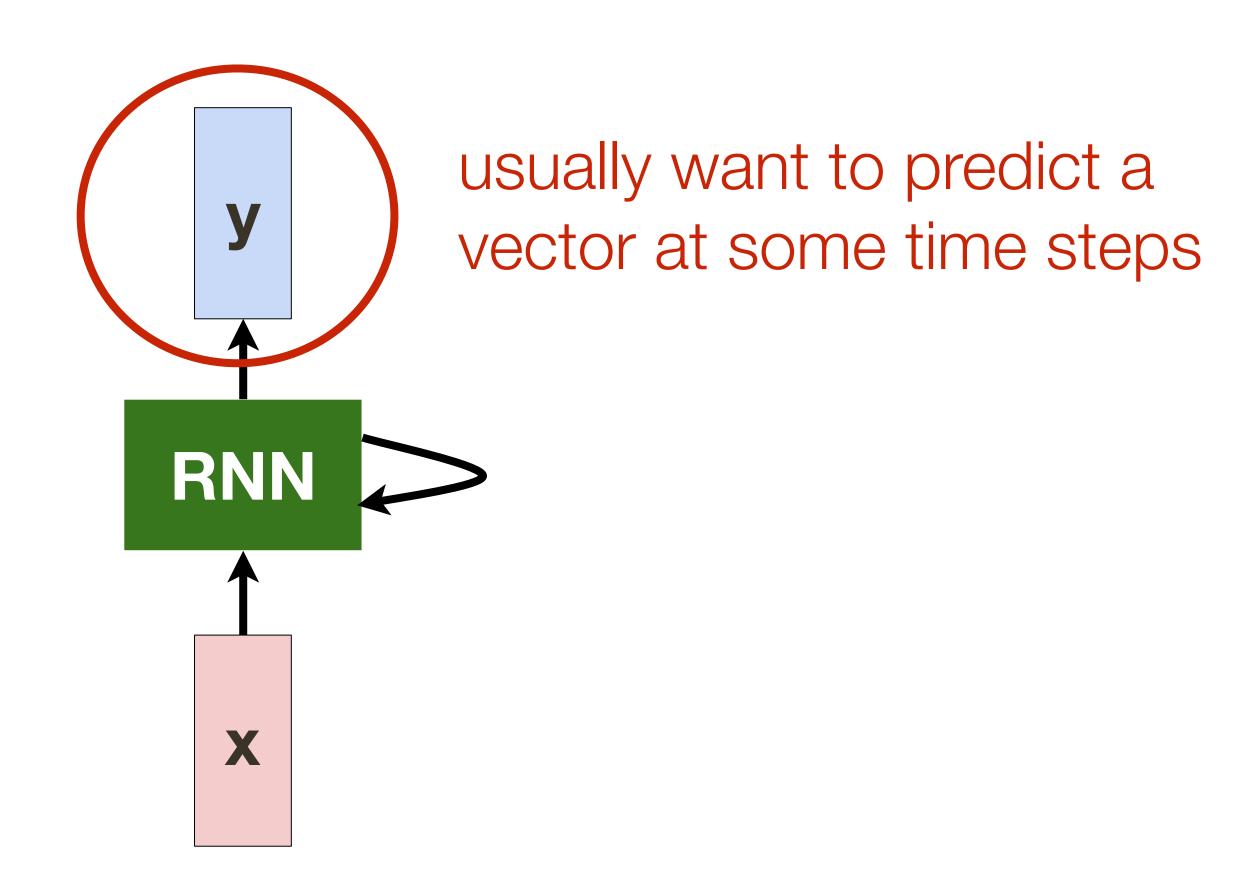
"Unrolling"

- in computational graphs with parameter sharing

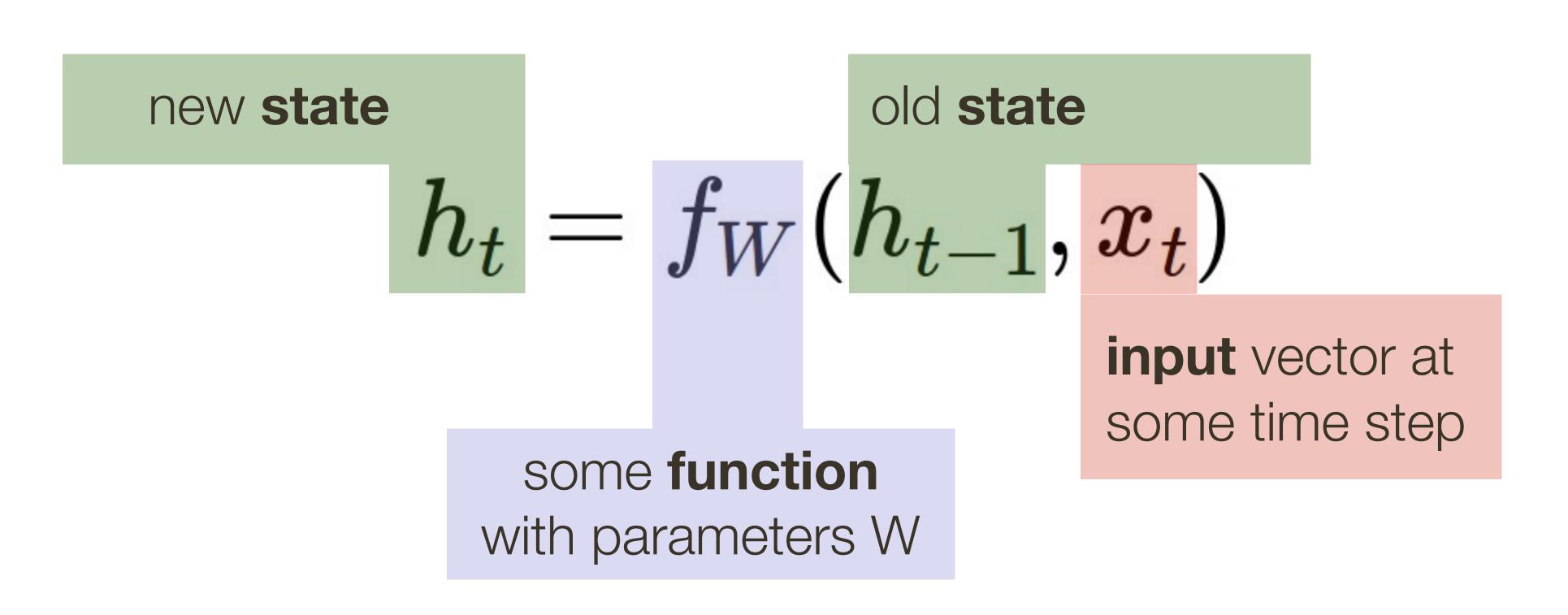
Parameter Sharing + "Unrolling"

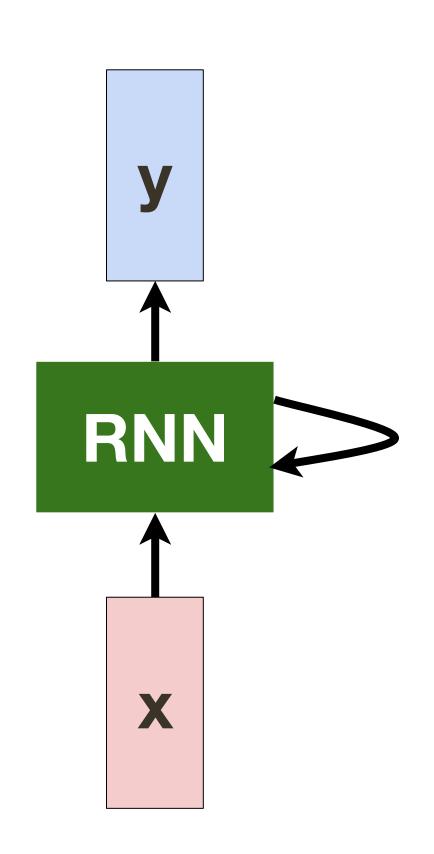
- Allows modeling arbitrary length sequences!
- Keeps number of parameters in check





We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

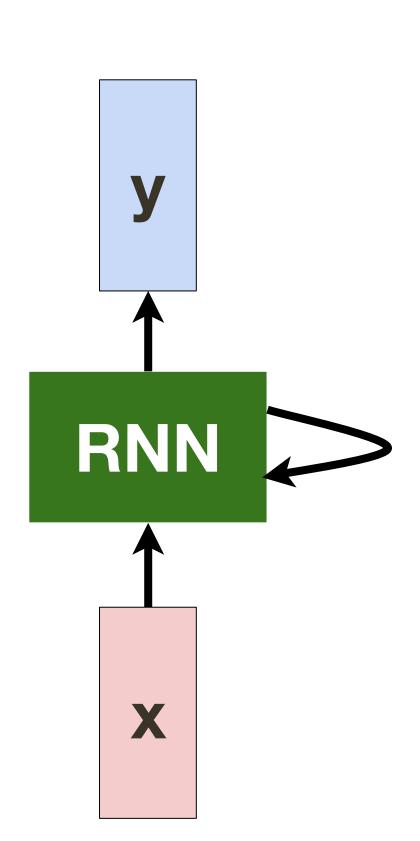




We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Note: the same function and the same set of parameters are used at every time step



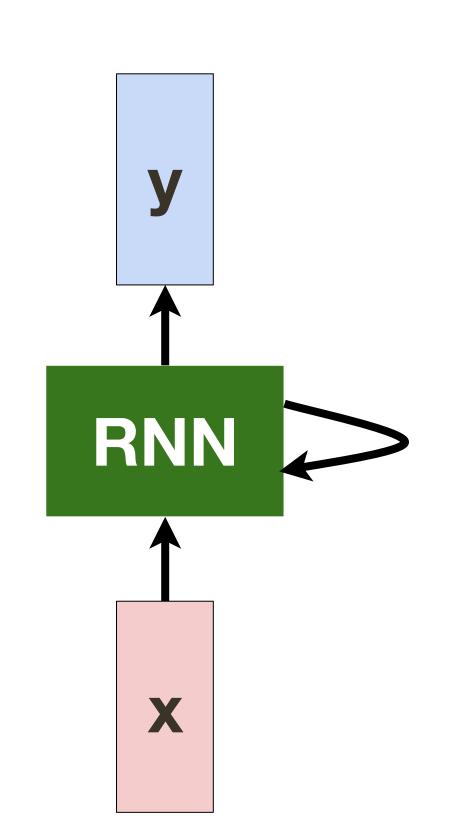
(Vanilla) Recurrent Neural Network

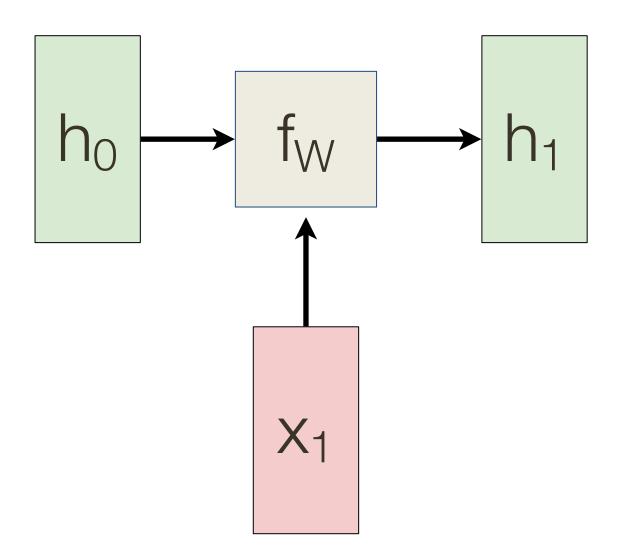
$$y_t = W_{hy}h_t + b_y$$

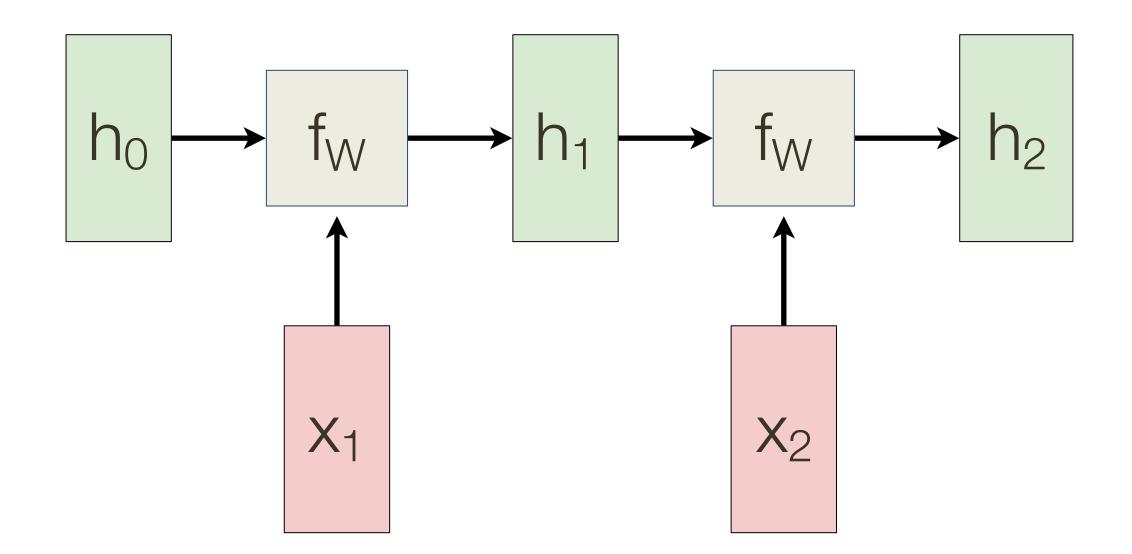
$$h_t = f_W(h_{t-1}, x_t)$$

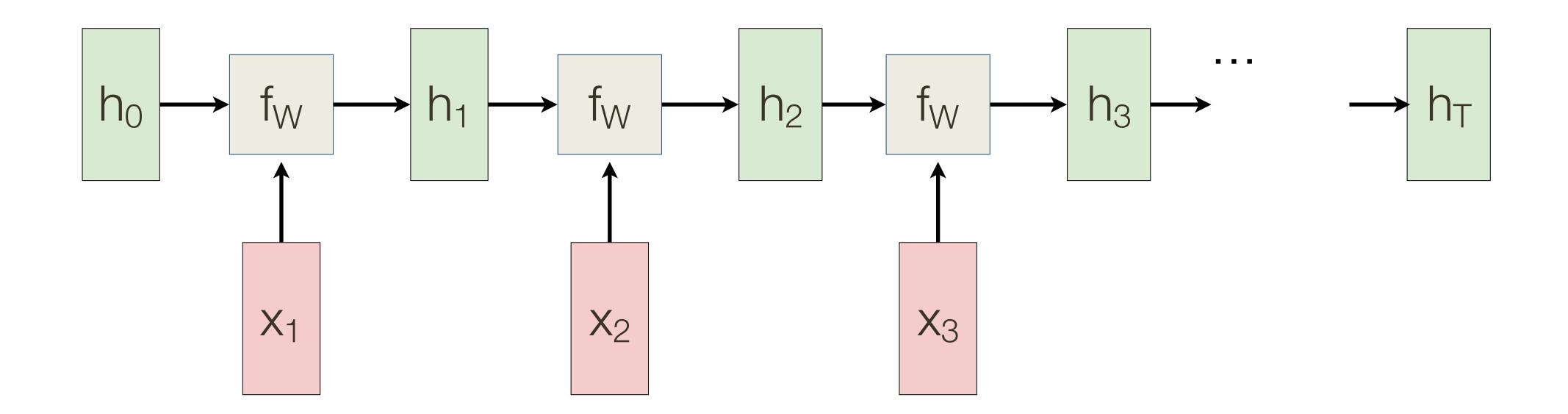
$$\downarrow$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

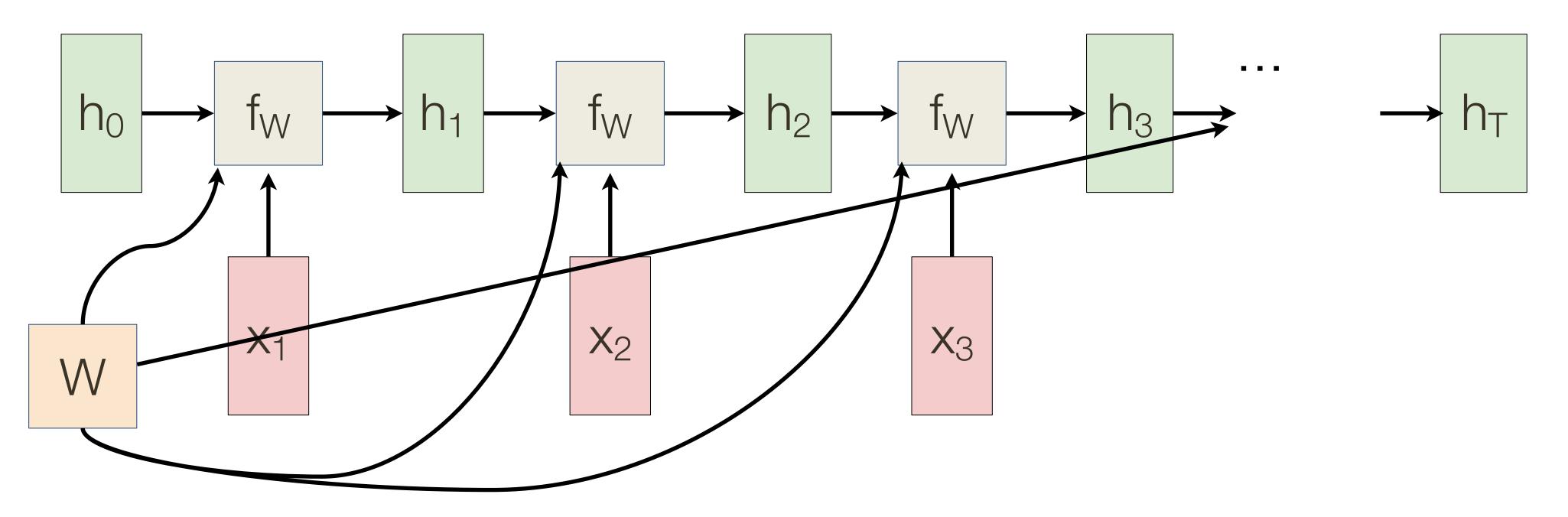






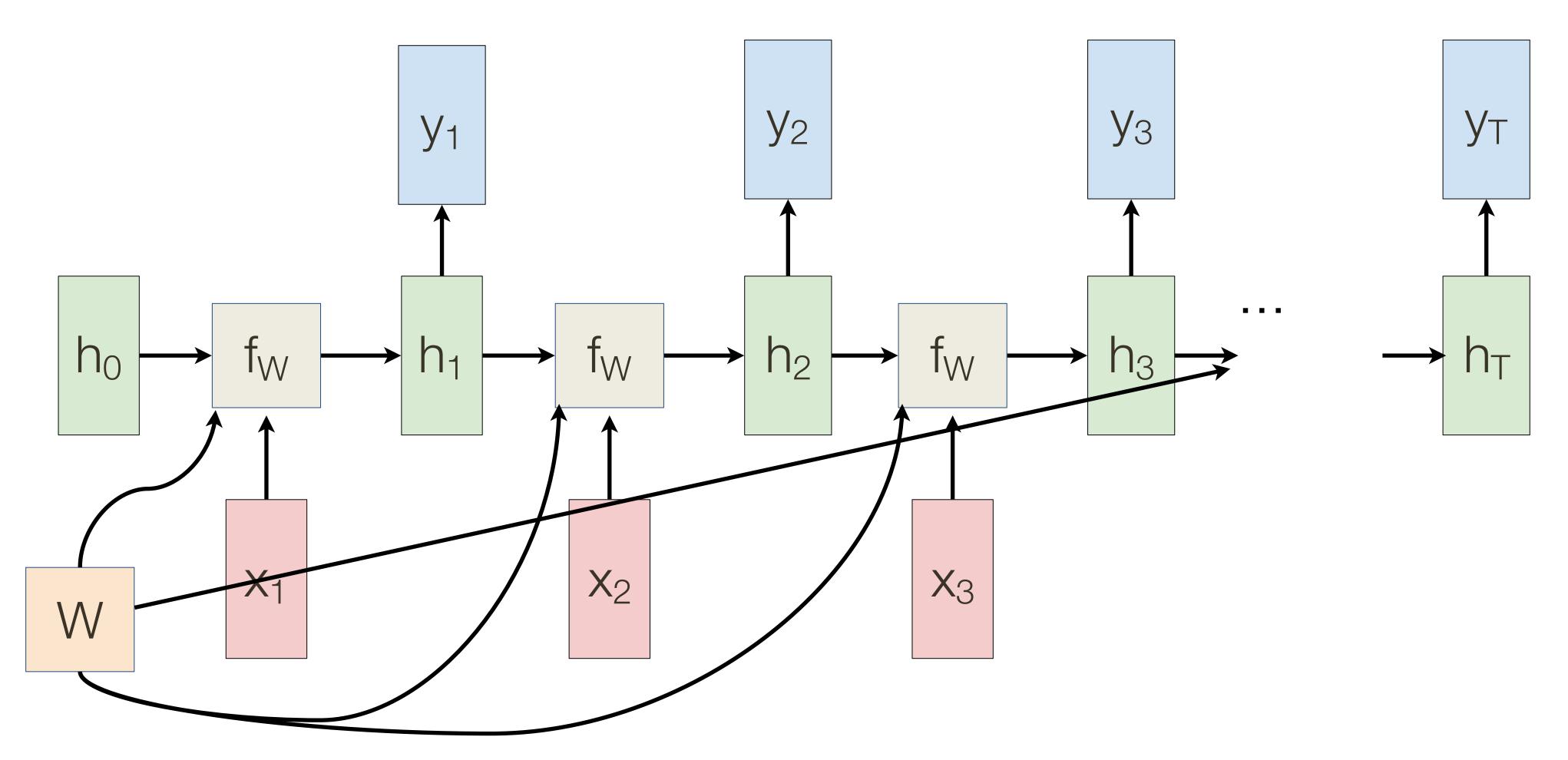


Re-use the same weight matrix at every time-step



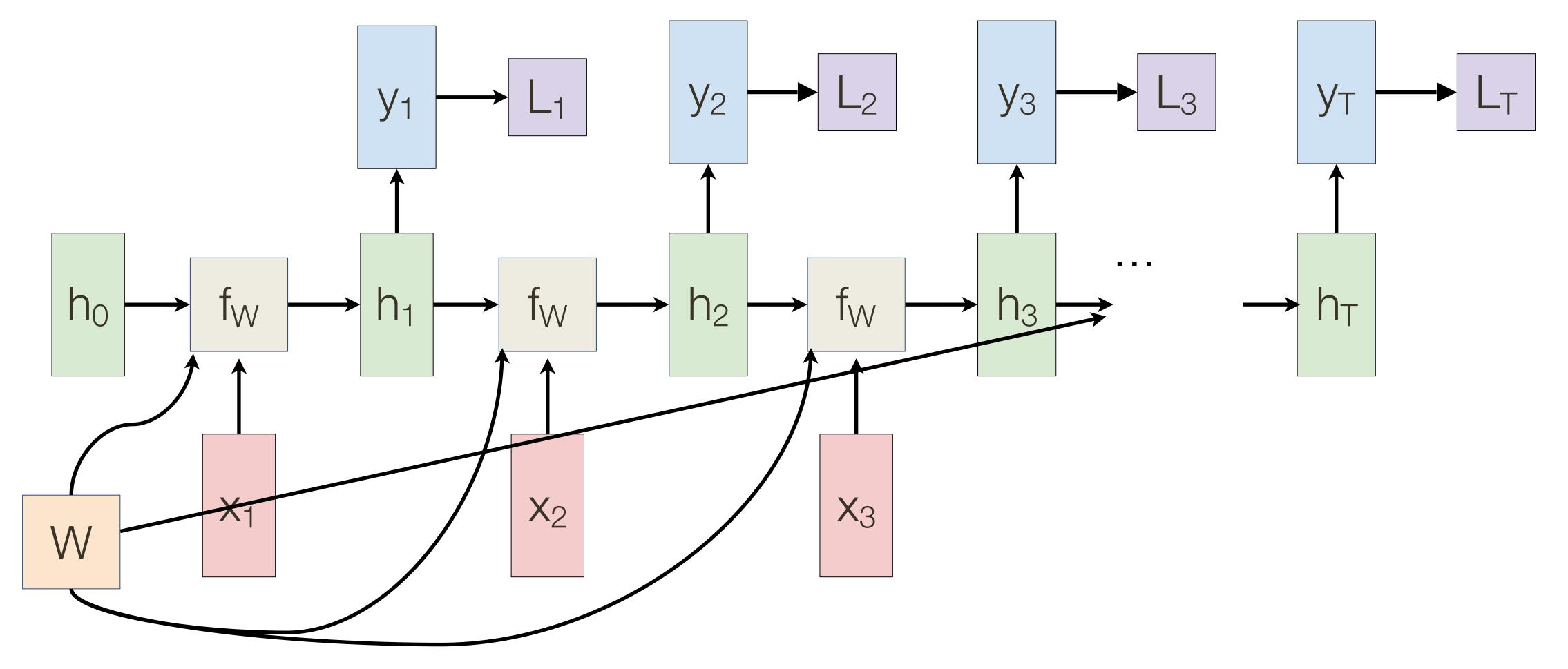
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many



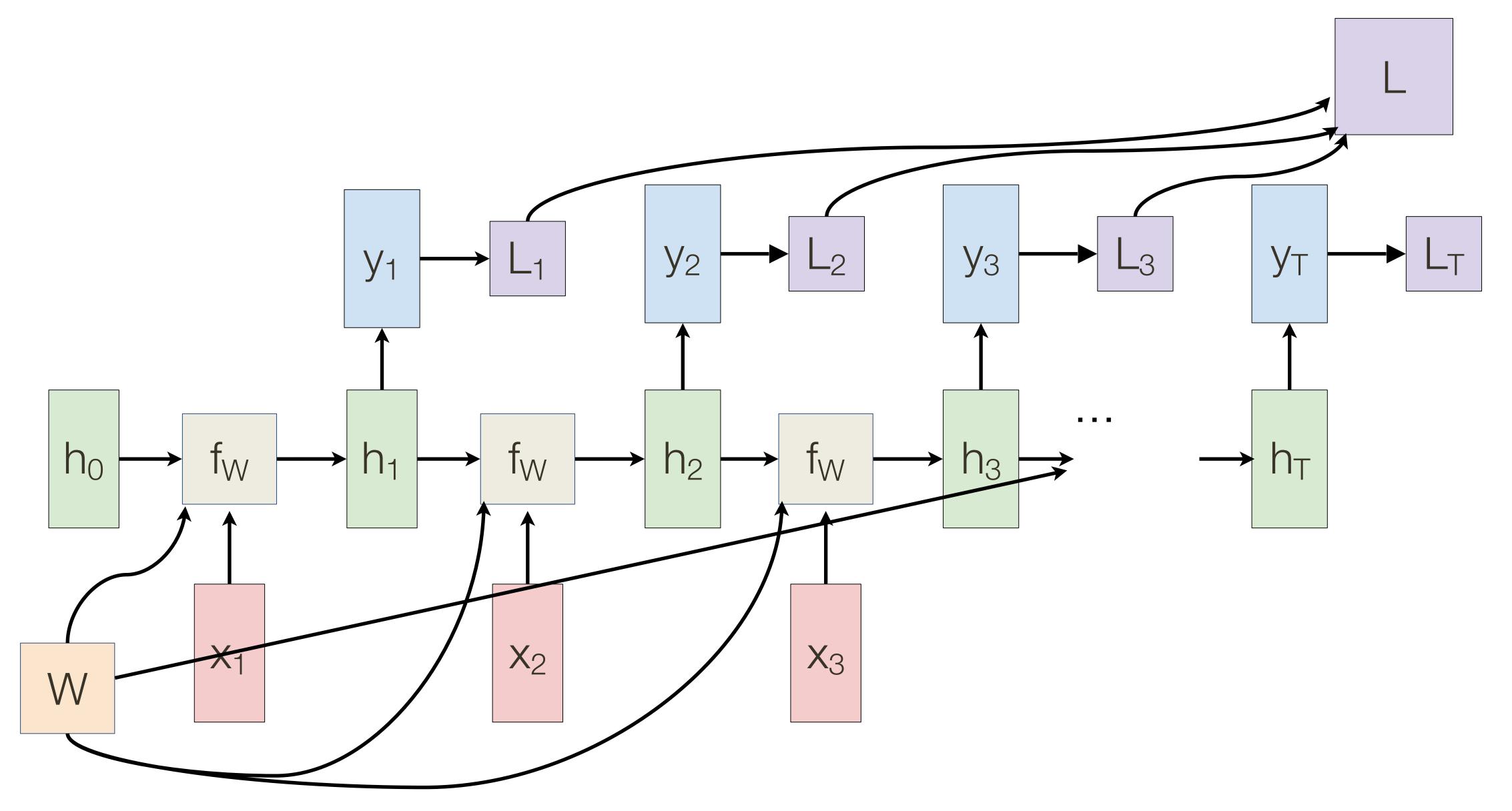
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many



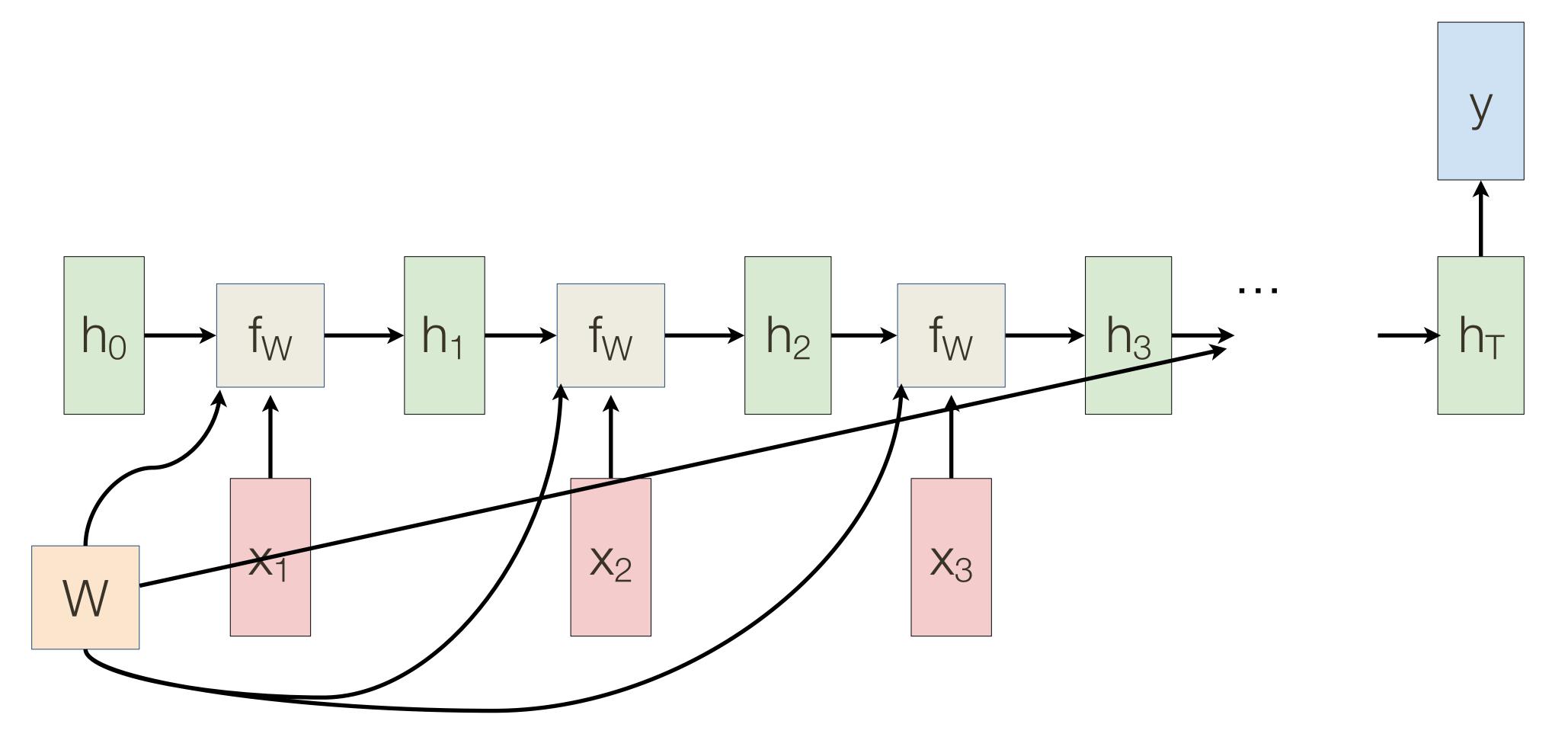
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many



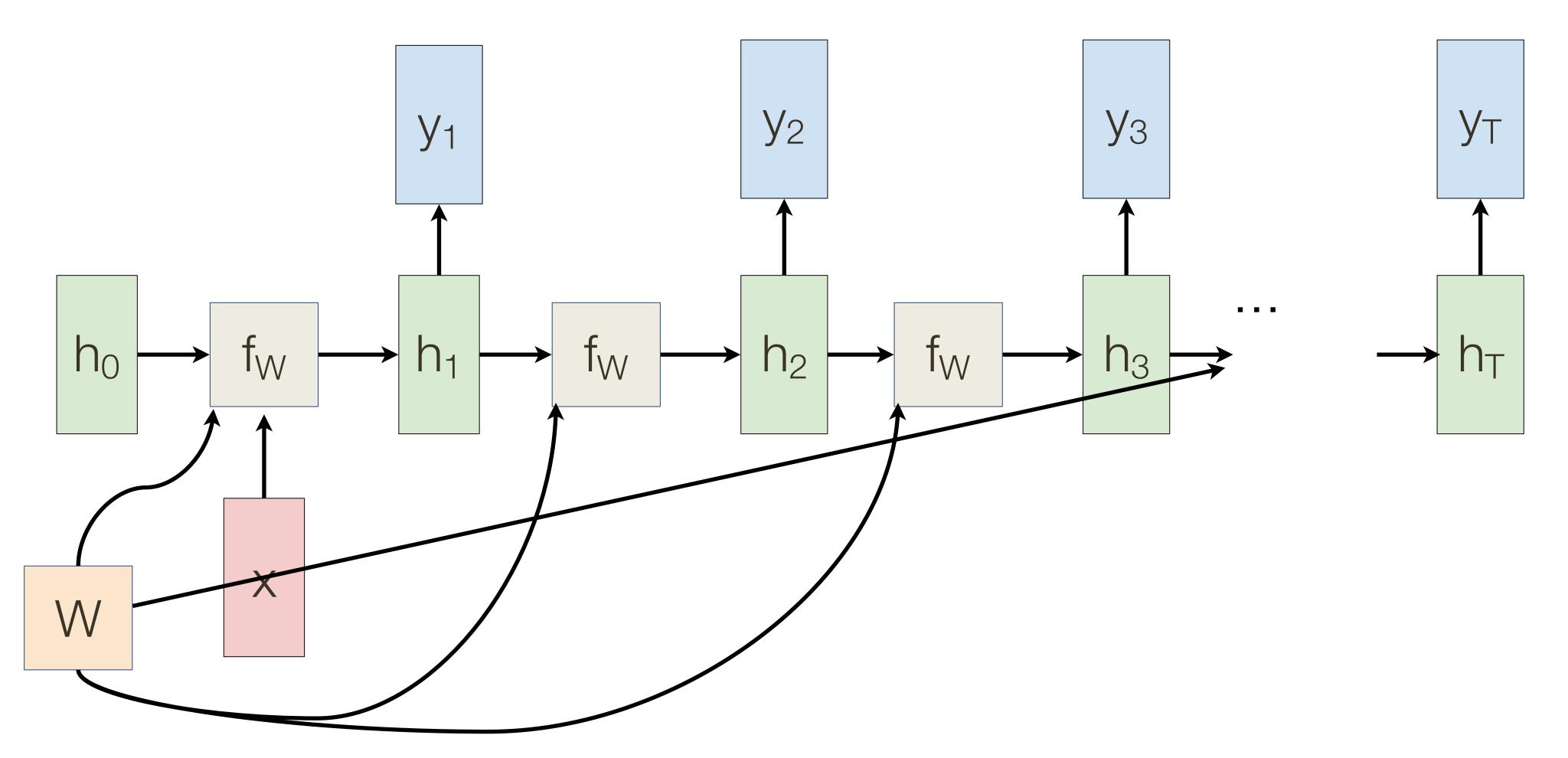
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to One



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: One to Many

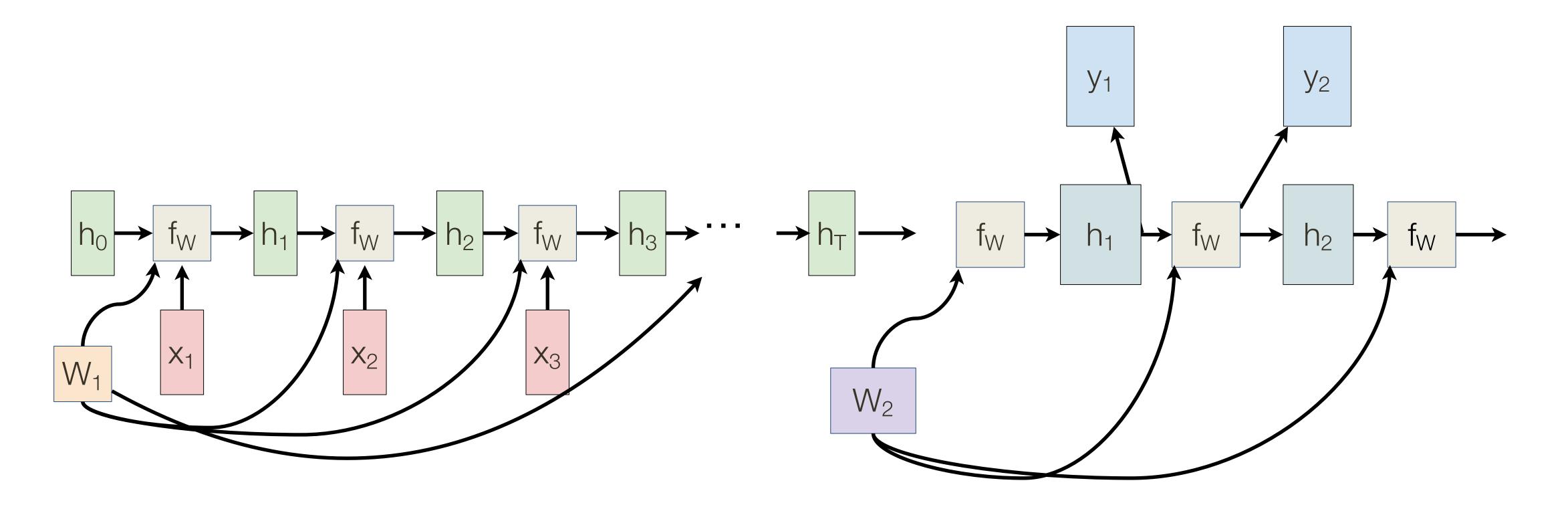


^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector



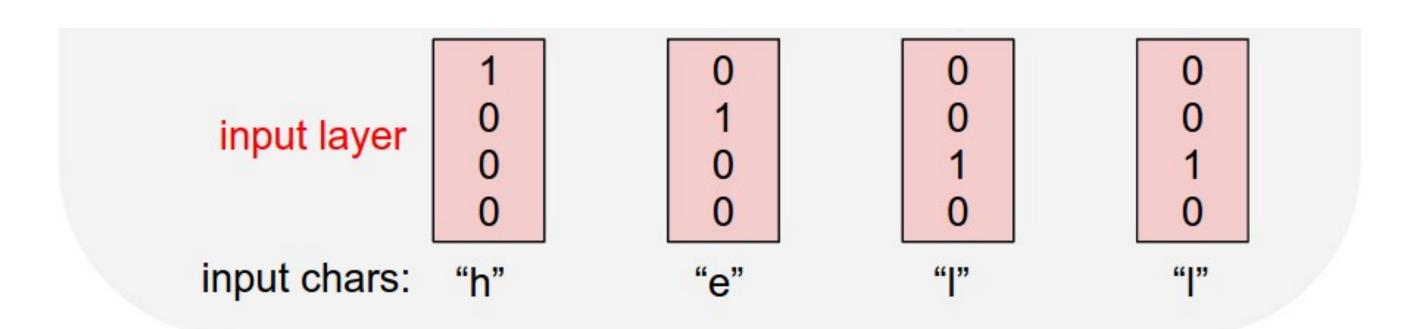
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:

['h', 'e', 'l', 'o']

Example training sequence: "hello"



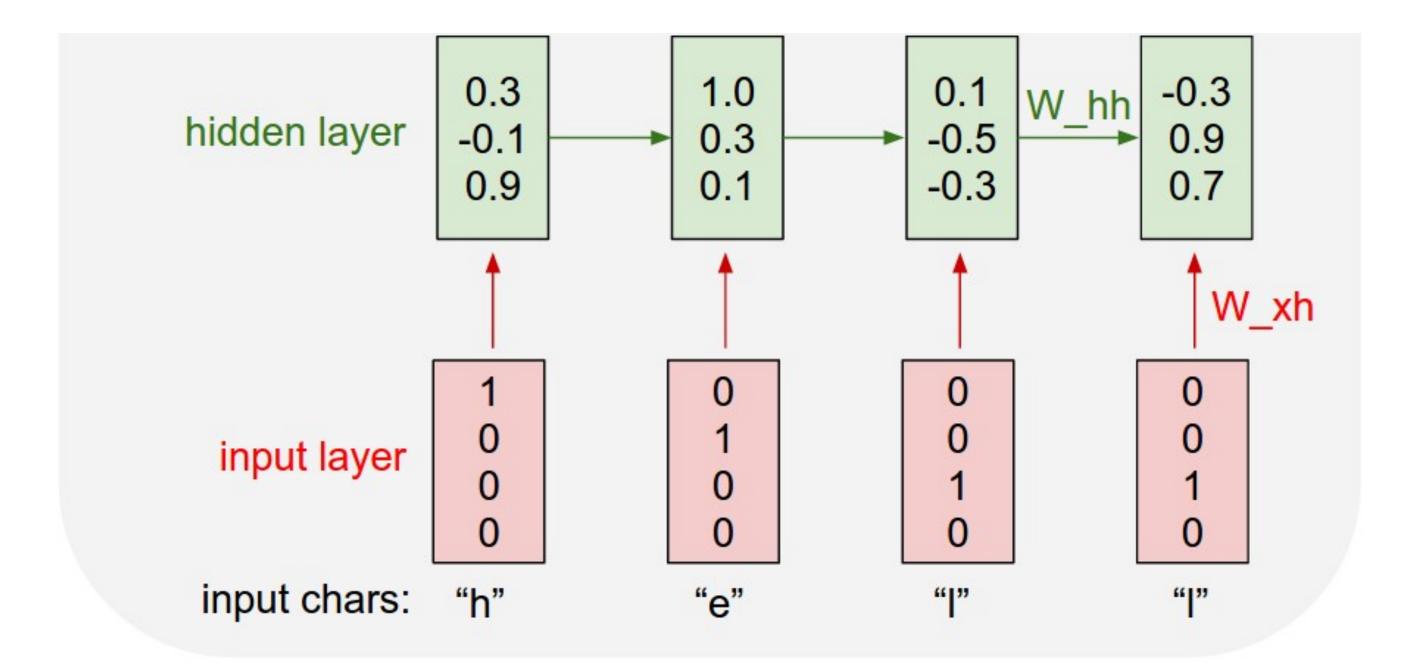
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

Example training sequence: "hello"



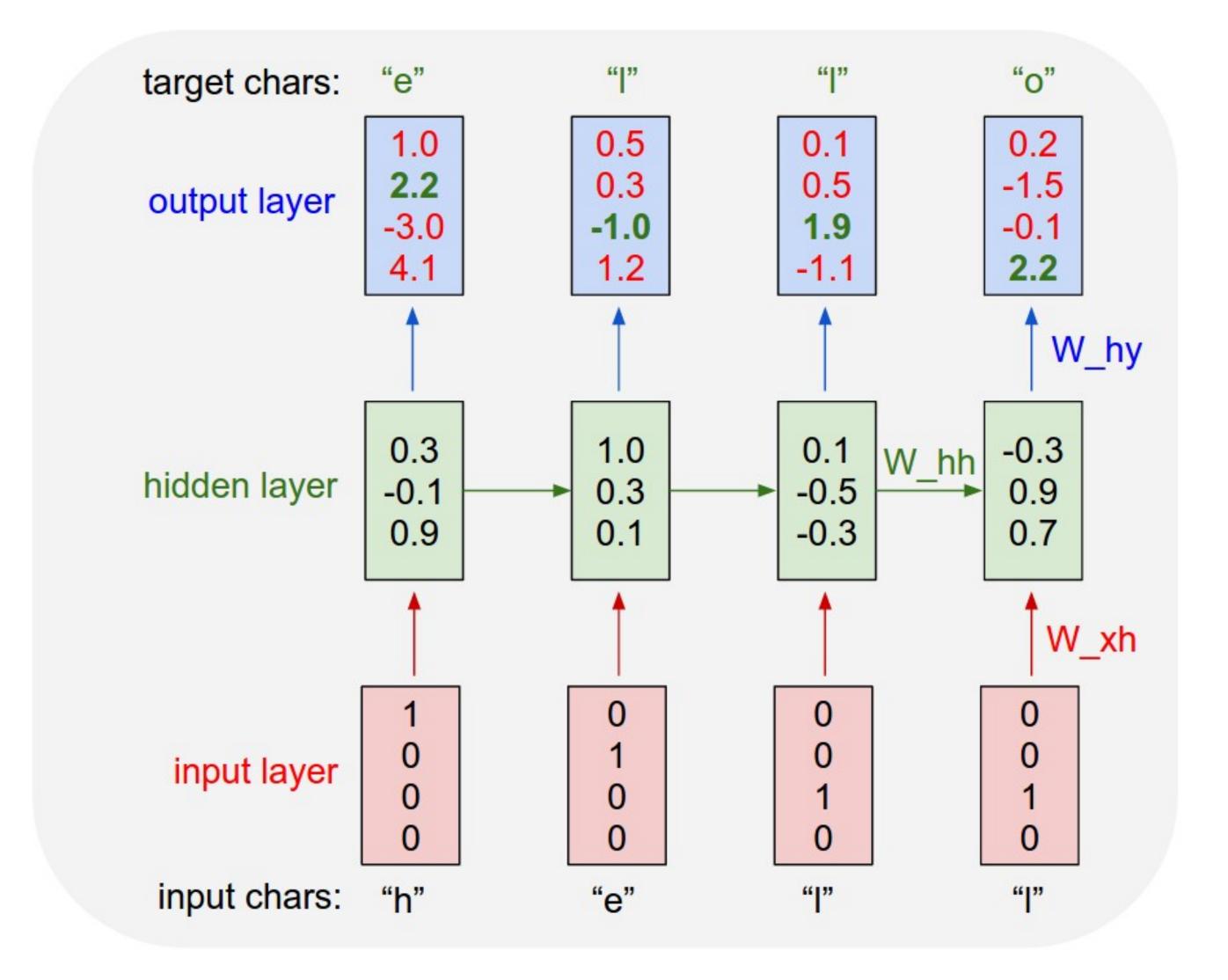
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:

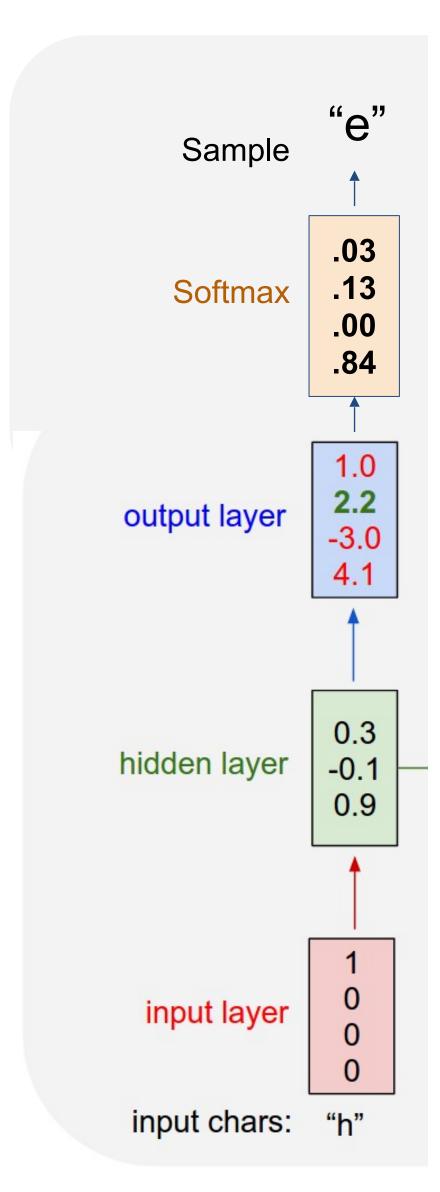
['h', 'e', 'l', 'o']

Example training sequence: "hello"



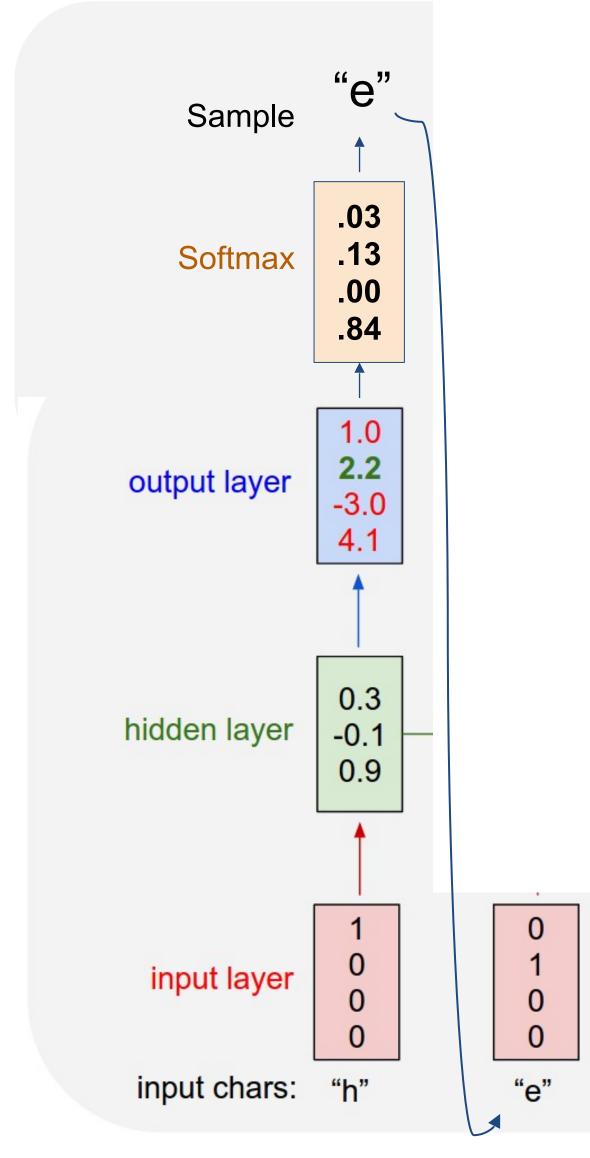
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vocabulary:



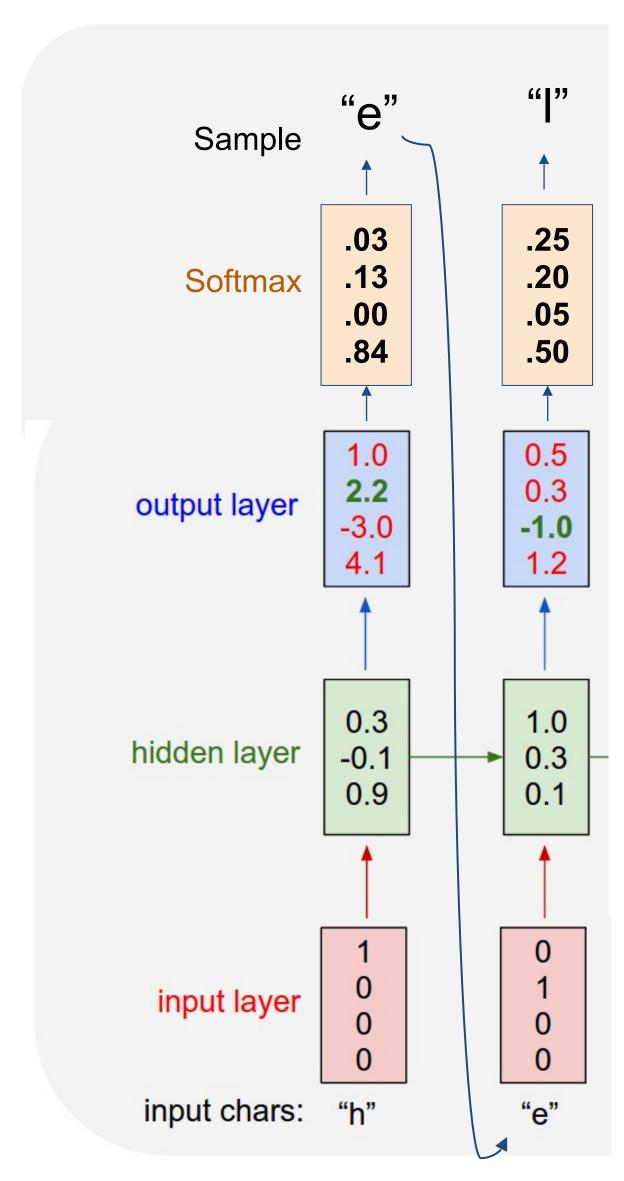
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vocabulary:



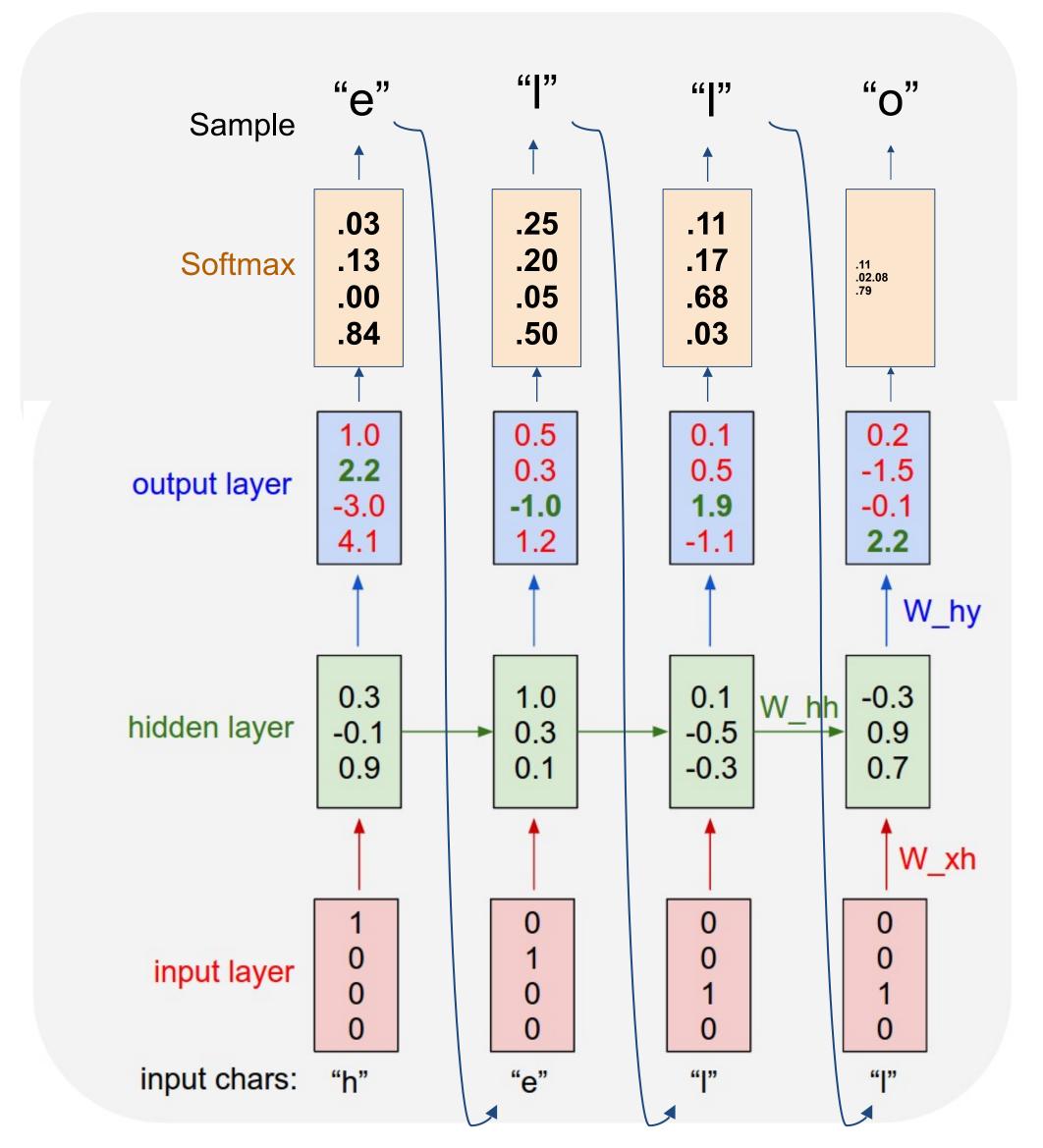
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vocabulary:



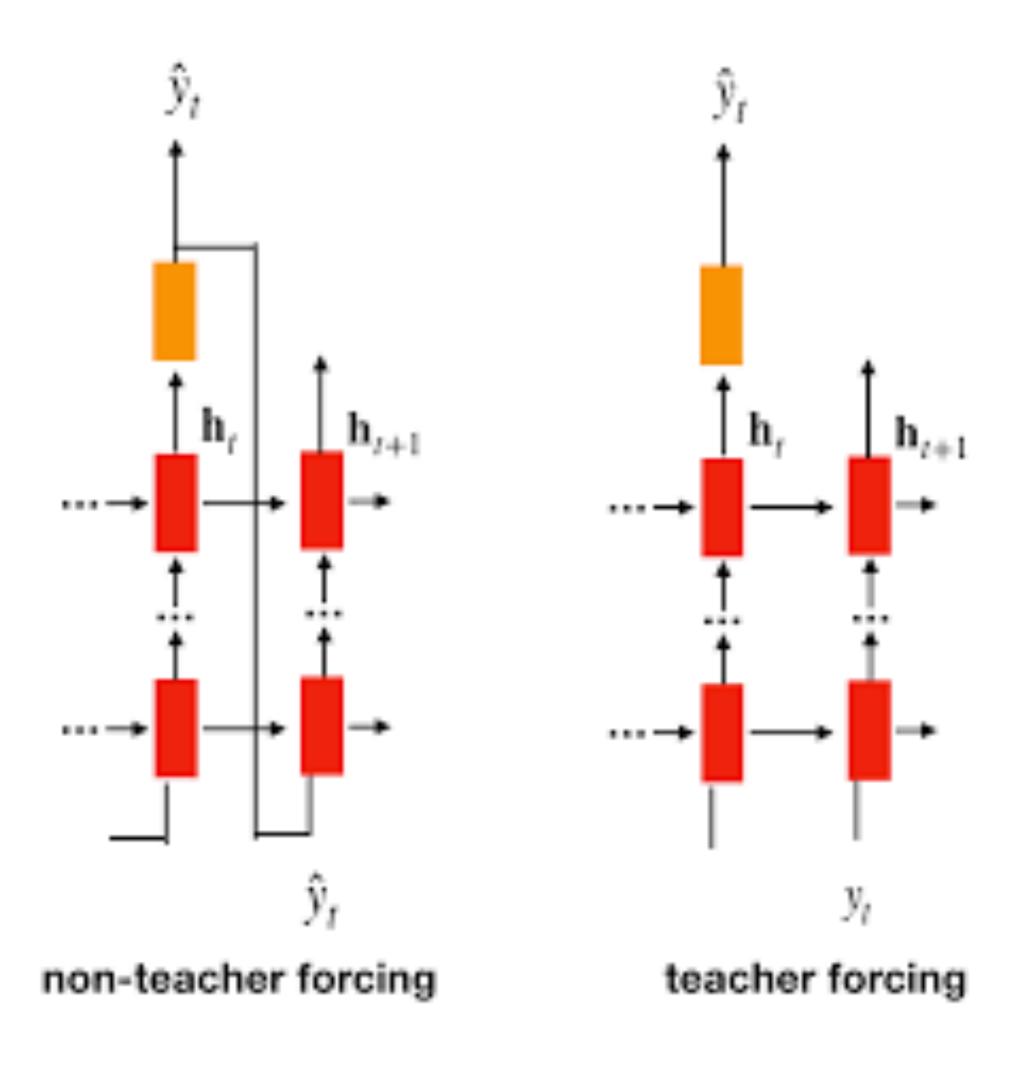
^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vocabulary:



^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Teacher Forcing



Sampling vs. ArgMax

Sampling: allows to generate diverse outputs

ArgMax: could be more stable in practice

