THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 8: Word2Vec, Language Models and RNNs



Course Logistics

— Assignment 3

— Final project group Goolge form will be out tomorrow



Representing a Word: One Hot Encoding

Vocabulary

dog

cat
person
holding
tree
computer

using

~N O O B~ W N

one-hot encodings

11,0,0,0,0,0,0,0,0,0]
10,1,0,0,0,0,0,0,0,0]
10,0,1,0,0,0,0,0,0,0]
10,0,0,1,0,0,0,0,0,0]
10,0,0,0,1,0,0,0,0,0]
10,0,0,0,0,1,0,0,0, 0]
10,0,0,0,0,0,1,0,0,0]

*slide from V. Ordonex



Representing Phrases: Bag-of-VWords

bag-of-words representation
person holding dog 3,4,1 [1,0,1,1,0,0,0,0,0,0]

person holding cat 3,4,2} [1,1,0,1,0,0,0,0,0,0]
person using computer {3,7,6} [0,0,0,1,0,1,1,0,0,0]
zs B

person using computer
person holding cat

Vocabulary

dog
cat
person
holding

tree

~N O O B~ W0 N =

computer

using

3,3,7,6,2 [0,1,2,1,0,1,1,0,0, 0]

*slide from V. Ordonex



Distributional HypothesIs | iendi 2008

— At least certain aspects of the meaning of lexical expressions depend on
thelr distributional properties in the linguistic contexts

— [he degree of semantic similarity between two linguistic expressions IS a
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac””

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.

— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— | dined off bread and cheese and this excellent bardiwac.

— I'he drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

bardic is an alcoholic beverage made from grapes

* Adopted from slides by Louis-Philippe Morency



Ihe Use Theory of Meaning

“If you can understand and predict in which context a word will appear in, then
you understood the meaning of the word” |[Paul Horwich]



Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word l i

IN a corpus of text
get | see | use | hear | eat | Kkill

e [ 1 [ [ w0 [ 3]0
— Can be seen as coordinates o the cat [ 52 [58) 4 ) 4 ] 6 [26

oint iIn an n-dimensional Euclidian space fog
P poat [ 50 [ B[ 53] ¢ [0 [0
cup [ 98 | 141 6 | 2 | 1] 0
pig [ 12 | 17 ) 3 | 2 [ 9 [271
banana | 11 [ 2 [ 2 ] 0 | 18] 0

Co-occurrence Matrix

* Slides from Louis-Philippe Morency



Distance and Similarity

Two dimensions of English V=0Obj DSM

o
— lllustrated in two dimensions -
S _
Knife
— Similarity = spatial proximity g - ¢
(Euclidian distance)
3
> 8 -
. o _
— Location depends on frequency of N
NOUN (dog is 27 times as frequent as ca) - bc;at d=g5> 5
N N
do
cat d=63.3 o
® <
< | | | | | |

0 20 40 60 80 100 120

get

* Slides from Louis-Philippe Morency



Angle and Similarity

Two dimensions of English V=0Obj DSM

-
— direction is more important than location
&2 _
Knife
. o O
— normalize length of vectors ®
3 g -
— Or use angle as a distance measure 2 - ...,
OL"‘; boat
o
™ do
cat .g
-

0 20 40 60 80 100 120
get

* Slides from Louis-Philippe Morency



Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
IN a corpus of text

— (Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Voo

get | see | use | hear | eat | Kkill
e [ 1 [0 [ 8] 0 [ 3]0
| s [ 4 [ & [ o [%
Jog
N I I I
cop [ B | 1416 ]2 [1]0
8 I I N I
amans | 1] 2 [ 2 [ 0[]0

Co-occurrence Matrix

* Slides from Louis-Philippe Morency



SVD for Dimensionality Reduction

m r m
S, Vi
S, O V;
n — r S; r Vs
0o - '
S
T
X S V
m k m
S, V,
s, U v/
n = k S, k Y
0 'S, .
\ N\ \ T
X S |74

*slide from Vagelis Hristidis



Learned \Vord Vector Visualization

We can also use other methods, like LLE here:

LANDSCAPE o PAINTING
subjects @ & FIGURES
archltecthural ® FIGURE
Ot e o law section
houses Cogﬂﬁr.em : oCONEIESS
justice @ consttitttl.tion e president
: representatives
architecture g fed.era] P g
ITALIAN ® oseng ccutive Y
statfy partjes K% owers flgt;gtmg

® commander P party id I killed
e navy e ' presidential  jefeat

haval e deferise '~ political peace

' command ® ° ruasrsrizelrlcan Loaty
o mllltaryo ® france victory

® force © russian campaign
umted bI’ltall‘l o Invasion
government @ @ ® forces .. attack
@
front ¢ french
@ battle troops
®
world alliedO. ® japan
e army britis ,
e germany Japanecsc
ware german@®

Nonlinear dimensionality reduction by locally linear embedding. Sam Roweis & Lawrence Saul. Science, v.290,2000

[ Roweis and Saul, 2000 |



Issues with SVD

Computational cost for a d X n matrix is O(dn?), where d < n

— Makes it not possible for large number of word vocabularies or documents

't Is hard to incorporate out of sample (hew) words or documents

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words  (Mioovetal, 2013]

Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
iIncorporate new document, words, etc.

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words  (Mioovetal, 2013]

Key idea: PrediCt SurrOUHdiﬂg WOrdS INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
of every word o | | ‘

w(t-2)

w(t-1) w(t-1)

Benefits: Faster and easier to
iIncorporate new document, words, etc.

1

w(t) w(t)

w(t+1) w(t+1)

w(t+2)

w(t+2)
CBOW Skip-gram

Continuous Bag of Words (CBOW): use context words in a window to predict
middle word

Skip-gram: use the middle word to predict surrounding ones in a window

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

olf

floor

INPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

\\“"//

PROJECTION

SUM

OUTPUT

» wit Sat

A
| Mikolov et al., 2013 |

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
1
0
O [ ]
cat 0 Hidden layer Output layer
: 0
’ 0
0
’ 0
(one-hot vector) 0 sat (one-hot vector)
5 0
; 1
O s
1 0
on
0
0
-

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Input layer

cat

OFf Oooooooo—

Onn

oOFf OoOooco—oo oo

'S

M

=i
=~

Wivix N

Hidden layer

| Mikolov et al., 2013 |

Output layer

/
W Nix v

sat

O mRoocoooooo

<

0

=
=~

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Input layer

cat

OFf Oooooooo—

Onn

oOFf OoOooco—oo oo

'S

M

=i
=~

W v ix|n|

Hidden layer

| Mikolov et al., 2013 |

Parameters to be learned

Output layer

/
W Nix v

sat

O mRoocoooooo

<

0

=
=~

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Input layer

cat

OFf Oooooooo—

Onn

oOFf OoOooco—oo oo

'S

M

=i
=~

W v ix|n|

| Mikolov et al., 2013 |

Parameters to be learned

Hidden layer Output layer

0

0

0

, 0

WiNx v, 0. sat

0

1

v ¢ RIVI 0

y € R|V|

Size of the word vector (e.g., 300)

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer
0
i
X //V/*/p
0 .
Xcat O '*x  Hidden layer Output layer

0 2N
0 b q
0 @ g
5
U 0

0

0 sat
0 0
1 %o* v eRW 5

Xon 8 \\I\+ }’} c R|V|
0 qﬂ\ﬁvL
0
"
x ¢ RV

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer

T
W|V|><|N| X Xecat

ox[ex[rerefosos] [ [ [ez

|
<
S

cat

os[zs[afzo o8 || e
L ] %
B o O S B

P4
S
~
OFf Oooooooo—

|
=
00

0
0
0
1 >
Xon O \I\+
0 WA
N\
0 N\
0
-
x € RV

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer W ’ )
|V | x| V]| Xon T on
Iy~
M, o[ isos os[ ] [e2
>

os[ze[afzo o8 || e
L ] %
B o O S B

P4
S
~
OFf Oooooooo—

0
0
0
1 >
Xon O \I\+
0 WA
N\
0 N\
0
-
x € RV

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer
0
i
X //V/*/p
0 -
Xcat O '*x  Hidden layer Output layer

O 2N
0 s 0
O “z 0
0
: A Veat T Von 0

— 0

M 9 5 sat
) 0
0 g ov 1
O & .o
1 +o" v e RIVI 5
Xon 8 \\I\+ }’} c R|V|
0 qﬂ\ﬁvL
O
.
x € RIVI

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer
0
i W
; //V/)f/p
0 :
K. |0 '*x  Hidden layer Output layer
0 “r N
0 Voo, 0
. 8 y = softmax(z)
0 , ) 0
Wivin xv=2z 0 o
0 0
; P |
1 %" v € RIMI 0
X 0 T
0 +\\T\ y € RH/'
0 qﬂ\ﬁ\
0
»
x € RV

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer

0
i W
: //V/)f/p
0 -

Xonp 0 '*x  Hidden layer Output layer .
O Qx % .
0 Voo, 0 0.02
) 8 y = softmax(z) | 0.00
0 / ) 0 0.02

Wiy xv=2z 0 ¢ 0.0

0 0 0.02
. ot 1 0.01
1 %ot v e RW 0 0.7

X 0 T

on o +\\[\ }A’ c R|V|
0 0.00
0
: Optimize to get close to 1-hot encoding
x € RV

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Input |a)

J

P4
S
~
OFf Oooooooo—

T
Wivixiv

ox[es[rereos]os] [ [ [ez
os[z[efzs] rsfos | | [r

oa[afar]ofealeo |||

Word vectors

0
O qw
0 2
1 &0t ‘GERW|
X 0 I
n J\
0 WA
N\
0 N\
0
5
x ¢ RV

| Mikolov et al., 2013 ]

)utput layer

— 0
O
O
O
=7 |0 A
0 Ysat
0
1
6

y = softmax(z)

*slide from Vagelis Hristidis



CBOW: Interesting Observation [ Mikolov et al., 2013

Input layer There are two representations for same word!

I

[y

Xcat

x Hidden layer Output layer

GQZ‘

| 2

CQZ‘

A

y = softmax(z)

OFf Oooooooo—

/ A
“”wxwpﬁvzz

YSCLt

Y eoleoleo]lo]leo]ele

~

+

2.

~
>

m O
2=

=

oOFf OoOooco—oo oo

PS

0

2=l
=

*slide from Vagelis Hristidis



CBOW: Interesting Observation

| Mikolov et al., 2013 |

Another way to look at it: Maximize similarity between context word
representation and the word representation itself

p(wc) =

(2 e WXC)T (Wxy)

(Wx;)" (Wxy,)




CBOW: Interesting Observation [ Mikolov et al., 2013

Another way to look at it: Maximize similarity between context word
representation and the word representation itself

T
Y togplwng )

t=1 —m<5j<m;j#0

exp (W, ;Wy)

Z'Vl exp(wW; wy)

p(wt+j wy) =



Skip-Gram Mode] [ Mikolov et al., 2013 ]

gl Output layer
O
Ol y 1
w'NxV C_)l
Input layer
——_Hidden layer -
O ' .
X, o0 Wyw A, a» W'y 1ol Y2
O N-dim C
V-dim
’ O
W' o
o
Ol y oF,




Comparison

| Mikolov et al., 2013 |

— CBOW is not great for rare words and typically needs less data to train

— SKkip-gram better for rate words and needs more data to train the model

Model Vector Training Accuracy [%]
Dimensionality | words

Semantic | Syntactic | Total
Collobert-Weston NNLM 50 660M 9.3 12.3 11.0
Turian NNLM 50 37M 1.4 2.6 2.1
Turian NNLM 200 37M 1.4 2.2 1.8
Mnih NNLM 50 37M 1.8 9.1 5.8
Mnih NNLM 100 37M 3.3 13.2 8.8
Mikolov RNNLM 80 320M 4.9 18.4 12.7
Mikolov RNNLM 640 320M 8.6 36.5 24.6
Huang NNLM 50 990M 13.3 11.6 12.3
Our NNLM 20 6B 12.9 26.4 20.3
Our NNLM 50 6B 27.9 55.8 43.2
Our NNLM 100 6B 34.2 64.5 50.8
CBOW 300 783M 15.5 53.1 36.1
Skip-gram 300 783M 50.0 55.9 53.3




Interesting Results: Word Analogies

-+

-+

Test for linear relationships, examined by Mikolov et al. (2014)

|ad33(:? I

man:woman :: king:?

king
man

woman

queen

10.300.70 ]

[0.200.20 }
[0.600.30}

[0.700.80 }

——

0.75

0.5

0.25

(wp — wq + W,

)Tu%

d = arg max
I

wp — we + we||

queen
xlqng
woman
man
0.25 0.5 0.75 1




Interesting Results: Word Analogies

1.5

0.5

-0.5

-1.5

| | Chinas | | |
Beijing
B Russia«
Japarx
_ Moscow
Turkey< yAnkara ﬂ'okyo
Poland«
- Germany«
France Warsaw
v »Berlin
- Italy« Paris
*Athens
Greece« "
1 - Spain¢ Fome
> Madrid
- Portugal Lisbon
| | | | |
2 -1.5 1 0.5 1 1.5

| Mikolov et al., 2013 |



Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x _
arg max

wordsequence P (Cl coustics )

arg max P(acoustics | wordsequence) X _

wordsequence

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi., = |W1, W, ..., Wy

We want to estimate p(w1:n)

Using Chain Rule of probabilities:
p(wlzn) — p(wl)p(wz\wl)p(w:&\wla wz) ' 'p(wn|w1:n—1)

Bi-gram Approximation' N-gram Approximation:

wl n H P wk\wk 1 P(wlzn) — Hp(wk\wk—NH:k—ﬁ
k=1

* Slides from Louis-Philippe Morency



Estimating Probabilities

N-gram conditional probabilities can be estimated based on raw concurrence
counts In the observed sequences

Bi-gram:
C(wn_ 1wn)

C’(wn_l)

p(wn‘wn—l) —

N-gram:

C(wn—N—lzn—lwn)
C(Wn—N—-1:n—1)

p<wn|wn—N—1:n—1) —

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is
“dog”) “on”) “the™) “beach”)
tttttt  tttttt  tetttt  tttttt
Neural Neural Neural Neural
Network Network Network Network

f f f f

1-0f-N encoding 1-of-N encoding  1-of-N encoding 1-0f-N encoding
Of “START” Of “dog” Of “On” Of “th e”

Problem: Does not model sequential information (too local)

We need sequence modeling!

* Slides from Louis-Philippe Morency



Sequence Modeling

Image Maps
Input
K x \Nutput
a ‘\ ®
Convolutions Fully Connected

Subsampling



Why Model Sequences”

7,07‘67/7/ M/é/ m———)  FOREIGN MINISTER.

—l  THE SOUND OF

bringen sie bitte das auto zuriick

A X/

= please return the car

£

* glide from Dhruv Batra



Multi-modal tasks

Vision

Deep CNN  Generating

O

-

Language

RNN

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

| Vinyals et al.,, 2015 ]



Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015 ]
[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

one to many

Input: NO
seqguence

Output:
Seqguence

Example:
Im2Caption

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

one to many

Input: NO
seqguence

Output:
Seqguence

Example:
Im2Caption

Sequences in Inputs or Outputs?

many to one

Input: Sequence
Output: No seq.

Example: sentence
classification,
Mmultiple-choice
guestion answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences in Inputs or Outputs?

one to one one to many many to one many {o many many to many

Input: No sequence Input: NoO Input: Sequence Input: Sequence
Output: No sea. sequence Output: No seq. Output: Sequence
Example: Output: Example: sentence Example: machine translation, video captioning,
“standard” Sequence classification, open-ended question answering, video question
classification / Example: multiple-choice answering
regression problems  Im2Caption question answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Key Conceptual [deas

Parameter Sharing

— In computational graphs = adding gradients

“Unrolling”

— In computational graphs with parameter sharing

Parameter Sharing + “Unrolling”
— Allows modeling arbitrary length sequences!

— Keeps number of parameters in check

* glide from Dhruv Batra



Recurrent Neural Network

AN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

usually want to predict a
vector at some time steps

NN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

new state old state

hy = fW(ht—la $t)

Input vector at

_ some time step
some function X

with parameters W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

hy = fW(ht—la mt)

Note: the same function and the same set of

parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

Yt — Whyht aE by

hy = fW(ht—la xt)
1

ht — tanh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

hg— fy — hy— fy — ho— fy — hs — — Nt
T T T
X1 X5 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

Re-use the same weight matrix at every time-step

No— fw — N1 — fw —hp— tw — N3 = — Nt
W i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

Y1

Yo Y3 YT
T T T
Ny — foy —> hg —  —» hy

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

Y1

yo —> Lo y3 — L3 yr —> Lt
T T T
Ny — foy —> hg —  —» hy

X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

/_//4 -
vi — L ya —> Lo Y3 —* Ls yr —> Lt
T T T T
No— tw —hi— fw — ho— tw — 3 = — N7
VV/ i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to One

Y
No— tw —hi— fw — ho— tw — 3 = — N7
W 1 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: One to Many

Y1

Yo Y3 YT
T T T
Ny — foy —> hg —  —» hy

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequence to Sequence: Many to One + One to Many

Many to one: Encode input One to many: Produce output
seguence in a single vector seguence from single input vector
Y Yo
No—> f\/\/—)h1 f\/\/—)hg f\/\/—>h3_).“ - N |—> fw = D “’f\/\/th —> v —>
W, X4 X2 X3 /
~— ‘ Wo

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model

Vocabulary:
[‘hi, ie!, “1, GO!]

Example training sequence:

“hello”
1 0 0 0
: 0 1 0 0
tl
input layer 0 0 1 1
0 0 0 0
input chars: “h” fa® | |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model

Vocabulary:
[ih!, ﬂe!, (l!, GO!]

Example training sequence:
‘nello”

ht — taﬂh(Whhht_l —+- thl‘t —+ bh)

W _hh| -

(.5
hidden layer | -0.1
0.9
1
- 0
tl
input layer 0
0
input chars: “h”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung,

cs231n Stanford



Example: Character-level Language Model

target chars: ‘e’ il " ‘0’
1.0 05 0.1 .2
Vocabulary: output layer | 2-2 0.3 0.5 -1.5
s e -3.0 -1.0 1.9 -0.1
‘n’, ‘e’, I', ‘o'l 4.1 1.2 1.1 2.2
I S
o DEE 1.0 0.1 |w nhl| -0-3
Example training sequence: hidden layer | -0.1 > 0.3 ~ -0.5 —= 0.9
HheHO” 09 01 ‘03 07
R N R 2
1 0 0 0
iInput layer 8 (1) (1) (1)
0 0 0 0
input chars: “n’ “e” | I

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)

“e”
T
Vocabulary: 03

Softmax | .13
(L) 7 ) ) 00
'h’, ‘e’, ', "o’}
i
1.0
2.2

-3.0
4.1

Sample

output layer

At test time sample one
character at a time and feed T

0.3

baCk tO the mOde‘ hidden layer | -0.1 —

09

iInput layer

1
0
0
0
input chars: “p”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model (Sampling)

(1P L)
e

Sample
| \\
.03

Softmax | .13
(L) 7 ) ) 00
'h’, ‘e’, ', "o’}
i
1.0
2.2

-3.0
4.1

Vocabulary:

output layer

At test time sample one
character at a time and feed T

0.3

baCk tO the mOde‘ hidden layer | -0.1 —

09

iInput layer

1
0
0
0
“h”

CD= e o e o i )|

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

input chars:



Example: Character-level Language Model (Sampling)
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Example: Character-level Language Model (Sampling)
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Teacher -orcing

non-teacher forcing teacher forcing



Sampling vs. ArgMax

Sampling: allows to generate
diverse outputs

ArgMax: could be more stable In
practice
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