THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 6: Convolutional Neural Networks (Part 3)



Logistics:

Assignment 2 is due on Wednsday, 11:59pm

Groups + idea for project by Thursday, January 31st

Paper list to be posted by Monday, January 28th



ILSVRC winner 2012

( 152 layers ]
A
\
\
\
\
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\
22 Iayers 19 Iayers
\ 6.7
3 57 l_ . l 8 layers 8 layers shallow

ILSVRC'15  ILSVRC'14 ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



ResNet He ot al., 2015]

even deeper — 152 layers!

using residual connections T relu
F(x) + X

conyv
F(x) ] relu

conv

X
iIdentity

X
Residual block

[x7 cony. 64 /2

ot ]
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford




ResNet: Motivation [He et al., 2015

What happens when we continue to stacking deeper layers on a “plain” CNN

56-layer
56-layer

20-layer

raining error
est error

20-layer

lterations lterations

Whats the problem®

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ResNet: Motivation [He etal, 2015]

Hypothesis: deeper models are harder to optimize (optimization problem)

Observation: the deeper model should (conceptually) perform just as well
(e.q., take shallower model and use identity for all remaining layers)

How do we implement this idea In practice



ResNet He ot ., 20151

Solution: use network to fit residual mapping instead of directly trying to fit a
desired underlying mapping

B Use layers to fit residual
H(X) — F(X) + X F(x) = H(X) - X Instead of H(x) directly
relu
H(x) F(x) + X
X

] relu F() |re|u iIdentity

T

X X

"Plain” layers Residual block

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



ResNet He ot al., 2015]

Full detalls

— Stacked residual blocks F(x) + x

T relu

— Every residual block consists of two 3x3 filters

3X3 conv

— Periodically double # of filters and downsample spatially I X
. . relu . . Toon
using stride of 2 identity :
L_3x3¢co
3X3 conv [ aoonv, 12872 )
— Additional convolutional layer in the beginning ——
‘;gll l i Fl o- -

— No FC layers at the end (only FC to output 1000 classes)

:
]

Residual block —
I Poo |

[xzcony. 64 /2
C——out ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



ILSVRC winner 2012

MSRA @ [LSVRC & COCO 2015 Competitions 28

* 1st places in all five main tracks 25 8
{ 1 sz I ay e r s ] * ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
A * ImageNet Localization: 27% better than 2nd

\ * COCO Detection: 11% better than 2nd
\ * COCO Segmentation: 12% better than 2nd

| —
\
\ 11.7
[ 22 layers } [ 19 layers
\
\ 6.7 7.3
3.57 l_ ' 8 layers H 8 layers shallow

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Regularization: Stochastic Depth (Huang et al. ECCV 2016

Effectively "dropout” but for layers

Stochastically with some probability turn off

some layer (for each batch)

Effectively trains a collection of neural networks

Residual Block

=

1
[ Input }—-
4

fe(Hg—1)

\
ReLU -'[ Output ]
id(Hy-1)
J

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

System
y Stage 1 Stage 2 Stage 3
S
;e, a"‘ ||-‘|'|*- iy e
oF = |G block1 block 2 block1 block2 block1  block 2
T 15 T

[ Cheng et al., ICLR 2018 |



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

System Stage 1 Stage 2 Stage 3
o L block1 block 2 b|00k1 block 2 I
1o
Time
Y
|dentity
G(Y;) Y;

[ Cheng et al., ICLR 2018 |



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

SyStem Stage 1 Stage 2 Stage 3

"”"”' z H %
block 1 block 2 block 1 block 2 block 1 block 2

Cat

What happens if you take more layers and take smaller steps®

| Chen et al., NIPS 2018 best paper |



ResNet: A little theory

One can view a seqguence of outputs from residual layers as a Dynamical

SyStem Stage 1 Stage 2 Stage 3

block 1 block 2 block 1 block 2 block 1 block 2

1o

-
Convolution

What happens if you take more layers and take smaller steps®

dh(t)
2 = 1((),t,6)

| Chen et al., NIPS 2018 best paper |

You can actually treat a neural network as an ODE:



Comparing Complexity

J Inception-v4
80 - 80 - _ :
Inception-v3 ‘ ResNet-152
____________________________________________________________________ ResNet- 50‘ NSE VGG-16 = VGG-19
751 ResNet-101
. ResNet-34
ks 9
= 70 = 70 ﬂ ResNet-18
® © GoogLeNet
v > ENet
9 65 1 3 65
-
& jg' © BN-NIN
" 60 4 " 60 5M 35M - 65M - 95M - 125M - 155M
BN-AlexNet
351 55 AlexNet
50 X $ 6 5 S A ’L ’b N 50 T T T T — - - -
et et N et aev 2 A .\ 3 c) QO c) N2 N 5 10 15 20 25 30 35 40
Pke*\; *$%$$ $ 6“$e‘ (,6 e"$ eV \\\e $ '&'\\;\e Q"\O(\Q‘\O(\ Operations [G-Ops]
S S

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection Segmentation Instance Segmentation

ne ¢ L

. -~
»

l ;‘Y‘.‘:c N
4] .
L a g
4 A \‘t} P

Horse1
Horse?

Horse (X, vy, w, h)

Multi-class: Horse
Horse (X, vy, w, h)

? hutfg N Person (X, vy, w, h) PersonT
OOtbIUs Person (X, vy, w, h) - Person?
Person Common Objects in Context

IMAGENET

Multi-label: Horse
Church
Toothbrush

Person




COmpUter ViSiOn PrOblemS (no language for now)

Segmentation

: ~ ,‘:’ e\ % B A
l e “ y .‘ 5 - N

Common Objects in Context



emantic Segmentation

Label every pixel with a

category label without
differentiating instances

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Sliding Window  Farabet et al, TPAMI 2013]

| Pinheiro et al, ICML 2014 |

Extract patches Classify center pixel with CNN

7’ A N

Sl .. || ey COW

ﬁl j]—) Cow

ol - )—) Grass

VERY Inefficient, no reuse of computations for overlapping patches

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers to make
oredictions for all pixels at once!

B

-

Input Image Class Scores Predicted Labels

3XHxW CxHxW HxW

Convolutions
DxHxW

Problem: Convolutions at the original image scale will be very expensive

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Semantic Segmentation: Fully Convolutional CNNs

Design a network as a number of convolutional layers with
downsampling and upsampling inside the network!

Med-res: Med-res:
Do x H/4 x \W/4 Do x H/4 x \W/4

Low-res:
Input Image 1 Dy x H/4 x W/4 Predicted Labels
3w Hx W High-res: High-res: H x W
Dy x H/2 x W/2 Dy x H/2 x W/2
Downsampling = Pooling Upsampling = 777

[ Long et al, CVPR 2015 |
[ Noh et al, ICCV 2015 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



INn-network Up Sampling (a.k.a “Unpooling”)

Nearest Neighlbor “‘Bed of Nalls”
T 112 2 1T 012 O
1 2 1T 112 2 1 2 O 0|0 O
3 4 — 3 3|4 4 3 4 — 3 014 O
3 3|14 4 O 0|0 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Max Unpooling

Max Pooling Max Unpooling
Remember which element was max! Use positions from pooling layer

1T 210 3 O 012 O
3 52 1 5 6 1 2 O 110 O
T 212 7 /8 Rest of the network 3 4 O 010 0
([ 3|4 3 3 0|0 4

Output: 2 x 2 Input: 2 x 2
Input: 4 x 4 Output: 4 x 4

A — v

Corresponding pairs of downsampling and upsampling layers

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

—_—

Dot product between
filter and input

Input: 4 x 4 Output: 4 x 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Input: 4 x4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—_—

Dot product between
filter and input

Output: 2 x 2

Filter moves 2 pixels in the input for every one
Input: 4 x 4 pixel in the output

Stride gives ratio in movement in input vs output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1

——
Input gives
welight for

filter

Output: 4 x 4
Input: 2 x 2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



INn-network Up Sampling: Transpose Convolution

3 X 3 transpose convolution, stride 2 pad 1
Sum where

output overlaps

——
Input gives
welight for

filter

Output: 4 x 4
Input: 2 x 2

Filter moves 2 pixels in the output for every one
pixel In the input

Stride gives ratio iIn movement in output vs input

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transpose Convolution: 1-D Example

Output
d
Yy Az H| X
o
k / / by

Output contains copies of the filter weighted multiplied by the input, summing
at overlaps in the output

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



U-Net Architecture

ResNet-like Fully convolutional CNN

1 64 64

128 64 64 2
ir:1n£ uet > > output
t?le > N . segmentation

& % map
x x

N E S 3

X| Xj X

SRl S I

| O WO

’128 128
256 128

2842
282

¥ s 256 512 256 t

o N> %ﬂ?l*l =» conv 3x3, ReLU
S EE SL i &
~# O O t S 2 = copy and crop
¥ 512 512 1024 512
Mol — i [elei # max pool 2:2
© o¥ 102 5 B 4 up-conv 2x2
%-E_'E_ =» conv 1x1
m N

| Ronneberger et al, CVPR 2015 |




COmpUter ViSiOn PrOblemS (no language for now)

Categorization Detection Segmentation Instance Segmentation

ne ¢ L

. -~
»

l ;‘Y‘.‘:c N
4] .
L a g
4 A \‘t} P

Horse1
Horse?

Horse (X, vy, w, h)

Multi-class: Horse
Horse (X, vy, w, h)

? hutfg N Person (X, vy, w, h) PersonT
OOtbIUs Person (X, vy, w, h) - Person?
Person Common Objects in Context

IMAGENET

Multi-label: Horse
Church
Toothbrush

Person




COmpUter ViSiOn PrOblemS (no language for now)

Detection

Horse (X, y, w, h)
Horse (X, y, w, h)
Person (X, vy, w, h)
Person (X, y, w, h)

Common Objects in Context




Datasets: Pascal VOC

20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining
table, dog, horse, motorbike, person, potted plant, sheep, train, 1V

» . o '
'
| e s VI ol

Images 10,103 9,637

2 | Objects 23,374 22 992 T

Real images downloaded from flickr, not filtered for “quality”

* slide from Andrew Zisserman



Datasets: COCO

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances
80 object categories

91 stuff categories

5 captions per image

CLLCCCCLK

250,000 people with keypoints



Object Detection

mean Average Precision (mAP)

80%

70%

60%

50%

40%

30%

20%

10%

0%

2006

PASCALVOC

Before deep convnets

2007 2008 2009 2010 2011 2012
year

Using deep convnets

2013

2014

2015 2016

* plot from Ross Girshick, 2015



Object Detection as Regression Problem

FFL W cen ﬁ CAT (X5 y, W !h)
i

Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,
Xy, w,

D D D

D)

D)

AANANANANAANANANANA

.
u
0000000
OO0 0000
Z=Z=zZ=2=Z2==

D)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog NO

Cat No

n_.l_ Ul ... —  COUCH NoO
.J Flowers NO

Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog NO

] Cat No

! _I_I_ .. —3 Couch No

il Il Flowers No
Background Yes

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction

Dog Yes
Cat No
n_.l_ Ul ... —  COUCH NoO
J Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Category Prediction
Dog Yes

] Cat No

! _I_I_ Ml .. —3 Couch No
il Il Flowers No
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Object Detection as Classification Problem

Problem: Need to apply CNN to many patches in each image

Category Prediction

Dog NO

Cat Yes
n_.l_ Ul ... —  COUCH NoO
.J Flowers NO
Background  No

Apply CNN to many different crops in the image and (classification) CNN
classifies each patch as object or background

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



A——.
| Alexe et al, TPAMI 207

Region PFODOS&‘S (older idea in vision) [ Uilkings et al, IJCV 20°

[ Cheng et al, CVPR 201
[ Zitnick and Dollar, ECCV 201

Find image regions that are likely contain objects (any object at all)

B~ B WN

- typically works by looking at histogram distributions, region aspect ratio, closed contours, coherent color

Relatively fast to run (Selective Search gives 1000 region proposals in a few seconds on a CPU)

Goal: Get “true” object regions to be in as few top K proposals as possible

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford




| Girshick et al, CVPR 2014 |

\
-

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



| Girshick et al, CVPR 2014 |

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



ConvN

ConvN
et

4

[ Girshick et al, CVPR 2014 |

Forward each region
through a CNN

£ g /" Warped image regions

Regions of Interest from

a proposal method (~2k)

* image from Ross Girshick



SVMs

ConvN

[ Girshick et al, CVPR 2014 |

SVMs Classify regions with SVM

Forward each region
ConvN through a CNN

et
4

4 g /" Warped image regions

Regions of Interest from
a proposal method (~2k)

Input Image

* image from Ross Girshick



R-CNN

Linear Regression for bounding box offsets

Bbox reg || SVMs
Bbox reg || SVMs |
Bbox reg SVMs
ConvN
ConvN
et /
ConvN ///

[ Girshick et al, CVPR 2014 |

Classify regions with SVM

Forward each region
through a CNN

£ I /" Warped image regions

Regions of Interest from
a proposal method (~2k)

* image from Ross Girshick



R-CNN: Training

| Girshick et al, CVPR 2014 |

Fine-tuning ImageNet CNN on object proposal patches

— > b50% Intersection-over-Union overlap with GT considered “object” others “background”

— batches of 128 (32 positives, 96 negatives)

Bbox reg || SVMs

Bbox reg || SVMs f
Bbox reg SVMs
f ConvN
ConvN et
et
ConvN !

* image from Ross Girshick



R-CNN:

SSUES

Ad-hoc training objectives

— Fine-tune network with softmax objective (log loss)

— Train post-hoc linear SVM (hinge |0ss)

— Train post-hoc bounding-box regression (least squares)
Training is slow

— 84 hours and takes a lot of disk space

INnference / Detection is slow

— 47 sec /image with VGG16 [ Simonyan et al, ICLR 2015 ]

| Girshick et al, CVPR 2014 |

Bbox reg || SVMs

Bbox reg

Bbox reg

SVMs

ConvN

* image from Ross Girshick



R-CNN vs. SPP

| He et al, ECCV 2014 ]

feature

feature

feature
feature

feature

feature

'\\5...

. o ' 3 ~M E—— —“'mage

/94'* im e
SRR e ﬂmage oo
—

R-CNN SPP-net
2000 nets on image regions 1 net on full image



Fast R-CNN

| Girshick et al, ICCV 2015 |

* image from Ross Girshick



Fast R-CNN

| Girshick et al, ICCV 2015 |

/ /”convS” feat
/ Forward wi

* image from Ross Girshick



Fast R-CNN

[ Girshick et al, ICCV 2015 |

/ % / “convs” feature map

Forward prop the whole image through CNN

ConvNet

l T &

* image from Ross Girshick



Fast R-CNN

[ Girshick et al, ICCV 2015 |

Regions of

Interest L T/ “convs” feature map
T

from the
proposal Forward prop the whole image through CNN

method

ConvNet

* image from Ross Girshick



Fast R-CNN
[ Girshick et al, ICCV 2015 |
Regions of /7 ,~ ,— RolPooling” layer
Interest 7@/ 7/ “convb” feature map
from the %
proposal Forward prop the whole image through CNN
method

ConvNet

Input Image

Girshick, “Fast R-C
Figure copyright R

* image from Ross Girshick



Fast R-CNN

Object
classification | “near+

softmax

’ FCs

N
5 ,— "Rol Pooling” layer

Log loss + Smooth L1 loss | Multi-task loss [ Girshick et al, ICCV 2015 ]

Bounding box regression

Regions of LT

Interest /Lt7' = /5/ “convh” feature map

from the / )

proposal Forward prop the whole image through CNN
method

ConvNet

* image from Ross Girshick



Fast R-CNN: Training

Log loss + Smooth L1 loss | Multi-task loss [ Girshick et al, ICCV 2015 ]
Object 4 1
classification | e inear | Bounding box regression
ﬁ FCslf
Regions of g \~g “Rol Pooling™ layer
Interest /_tbﬁ“COﬂvg’ feature map

from the / Y

proposal
method

Forward prop the whole image through CNN

ConvNet

* image from Ross Girshick



R-CNN vs. SPP vs. Fast R-CNN Girehiok ot ol OVPR 20141

[ Girshick et al, ICCV 2015 |
| He et al, ECCV 2014 |

e 3 Test time (seconds)
Tl’al n I ng tl me (HOU rS) B Including Region propos... [l Excluding Region Propo...

R-CNN R-CNN

SPP-Net

SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

Observation: Performance dominated by the region proposals at this point!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Faster R-CNN

Viake CNN do proposails!

Insert Region Proposal
Network (RPN) to predict

proposals from features

vl EV . /
Jointly train with 4 losses:

ﬁ Rol pooling

1. RPN classify object / not object Region Proposal Network 5

2. RPN regress box coordinates ﬁ

3. Final classification score (object TRARre e
classes) l

4. Final box coordinates

CNN
4 /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 P LS AR, e
Figure copyright 2015, Ross Girshick; reproduced with permission

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



LSDA: Large Scale Detection through Adaptation

Classifiers Detectorsar s
X
LASSIFY & * * DET /
' dog _/,"'/ Wdog o
: * 2 $h
WCLASSIFY N WDET \
\ apple - = -~ | appl e - -

* *
WCLASSIFY N WDET + "':- +
cat " puin - - -

~

WDETEC’T _ WC’LASIFY 4 5Wcat

cat cat

[ Hoffman et al, NIPS 2014 |



YOLO: You Only Look Once

| Redmon et al, CVPR 2016 |

Within each grid cell:
- Regress from each of the B

base boxes to a final box with

S numbers:

(dx, dy, dh, dw, confidence)
- Predict scores for each of C

classes (including

background as a class)

Input image Divide image into grid Output:
3XHXxXW 7x7 Ix7x(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B =3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



11th - 30th
Class Probabilities

/I p/
_lllllll o
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6th - 10th
Box #2

| Redmon et al, CVPR 2016 |
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e

YOLO ve

http://pureddie.com/yolo



Review of CNNs

Input Activation

Convolutional Layer Wix+b

> O

activation map

28 height
| )
e Pooling Layer

/ 11 2 4
28 width
32 width LU NN
6 depth 5 6 7 8 6 8
3 depth max pool with 2 x 2 filter
3 2 ] 0 and stride of 2 3 4

Effective Technigues for Training

— Regularization: L1, L2, data augmentation

32 height

— Transfer Learning: fine-tuning networks

Vision Applications of CNNs =

Church Pc-;'re.on 1
— Classification: AlexNet, VGG, GoogleLeNet, ResNet
IMJAAGE

Multi-label: Horse

— Segmentation: Fully convolutional CNNs
— Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO



Any CNN Could be Fully Convolutional
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224 x 224

1 x 1000



Any CNN Could be Fully Convolutional
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Review of CNNs

Input Activation

Convolutional Layer Wix+b

> O

activation map

28 height
| )
e Pooling Layer

/ 11 2 4
28 width
32 width LU NN
6 depth 5 6 7 8 6 8
3 depth max pool with 2 x 2 filter
3 2 ] 0 and stride of 2 3 4

Effective Technigues for Training

— Regularization: L1, L2, data augmentation

32 height

— Transfer Learning: fine-tuning networks

Vision Applications of CNNs =

Church Pc-;'re.on 1
— Classification: AlexNet, VGG, GoogleLeNet, ResNet
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Multi-label: Horse

— Segmentation: Fully convolutional CNNs
— Detection: R-CNN, Fast R-CNN, Faster R-CNN, YOLO



