THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 2: Introduction to Deep Learning

Course Logistics

- Update on course registrations — 43 students registered (out of 40)
- Those who want to audit ...

- Piazza registrations (all announcements and HW solutions will be there)
- Assignment 1 is out (due date Monday, Jan 14 @ 11:59pm)

- Microsoft Azure credits and tutorial

- TA office hours will be posted by tonight (there will be one this week and next)

Introduction to Deep Learning

There Is a lot packed into today’s lecture (excerpts from a few lectures of CS231n)

CS231n: Convolutional Neural Networks for Visual Recognition %

Spring 2017

TT 1=

E

5

NEEEEEESEE

a | ""'.

g

:

c

[ATFEEECTTTEE
EEBUEECEEE

;
&
&
»

if you want more details, check out CS231n lectures on-line

Covering: foundations and most important aspects of supervised DNNSs

Not-covering: neuroscience background of deep learning, optimization
(CPSC 340 & CPSC 540), and not a lot of theoretical underpinning

‘Dfsnep - PIXAR

®?§NEP .PIXAR

| inear regression (review)

Set

production
COSts

Inputs (features)

promotional genre of box office
COStS the movie first week
X gl) X ?El) X il)
X 52) X ?EZ) X iZ)
X 53) X §3) " iB)

total book
sales

o
@

P

Outputs

total revenue total revenue

USA international
y 1(1) y 2(1)
y 1(2) y 2(2)
y 1(3) y 2(3)

*slide adopted from V. Ordonex

| inear regression (review)

Inputs (features) Outputs

oroduction promotional genre of box office total book total revenue total revenue

COsts Costs the movie first week sales USA international

xil) X 51) X §1) N 51) x§1) y1(1) y 2(1)

x§2) X gz) N §2) X iZ) xéz) yl(z) y 2(2)

S I R R B S

X §4) X 54) X §4) X 24) X §4)

x§5) X 55) X §5) X iS) xéS)

*slide adopted from V. Ordonex

| inear regression (review)

Inputs (features) Outputs

production promotional genre of box office total book | | total revenue total revenue

costs costs ~ themovie firstweek sales USA international

xil) x§1) x§1) xf) xél) y1(1) y2(1)

x§z) xgz) x§2) xf‘) xéz) 3’1(2) yz(z)

G R R

x§4) y 54) y §4) y 24) x§4)

MO O MO () MO ;= ngfb‘ b,

*slide adopted from V. Ordonex

| inear regression (review)

Yj = ngz% + 0;

each output is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

*slide adopted from V. Ordonex

| inear regression (review)

Yj = Z wj;ix; + b;

each output Is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

Inputs (features) Outputs

Key to accurate prediction is

. . X1 " X3 X4 X5 32 Vs
Igarnlng para.met.ers .tO minimize MO R @ Lol e Lo
discrepancy with historical data D L e e e e e

Dtrain — {(X(d)ay(d))}

*slide adopted from V. Ordonex

| inear regression (review)

Yj = Z wj;ix; + b;

each output is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

‘lDtrainl
Key to accurate prediction is ,C(W, b) — Z l(}A’(d) 7 y(d))

learning parameters to minimize —
discrepancy with historical data d=1

(%@ (@ .
Dtrazn {(Y)} -\Rf*7 .t)>l< — a,rg mlﬂ £(W7 b)

*slide adopted from V. Ordonex

| inear regression (review)

Yj = Z wj;ix; + b;

each output is a linear combination of inputs plus bias, easier to write in matrix form:

v=W'x+Db

|l)train‘
Key to accurate prediction is E(W, b) — Z H)Af(d) o y(d)| ‘2

learning parameters to minimize
discrepancy with historical data d=1

(%@ (@ .
Dtrazn {(Y)} -\Rf*7 .t)>l< — a,rg mlﬂ £(W7 b)

*slide adopted from V. Ordonex

| inear regression (review) — Learning /w Least Squares

Solution:

| Dtrain|
LW,b)= » | ‘WTX(d) +b— y(d)‘ |2
d=1 |

W*, b* = argmin L(W, b)

|Dtrain|

PEE) S | W -y

0 0 —1

LW, b) 0 &t e
c‘?wjz- :8wﬂ HWX _l_b_y H =0

d=1

after some operations —— W~

(X' X)) 'X'Y

*slide adopted from V. Ordonex

One-layer Neural Network

Input Layer

Output Layer

Activation
Function

Linear Activation

One-layer Neural Network

Input Layer

Activation
Function

One-layer Neural Network

Input Layer

MVulti-layer Neural Network

Input Layer

L1

//

=
DO

/17
4

‘.
\
X

\‘fi\
N\

=
ot

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next ...

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next ...

Question: What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

* slide from Marc’Aurelio Renzato

Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next ...

Question: What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping
2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

MVulti-layer Neural Network

Input Layer

Why"/

L]
2nd Hidden Layer

1st Hidden Layer

¥

‘v
P

=
N

\J

Output Layer

W, (Wpo (Wpix +bp1) +bps) + b, =

Linear Activation

Recall: a(x) — & => entire neural network is linear, which is not expressive

One-layer Neural Network

Input Layer

Output Layer

Activation
Function

Linear Activation

One-layer Neural Network

Input Layer

1

a(x) = sigmoid(x)

14 e®
Output Layer

A
Activation

Function

Sigmoid Activation

Light Theory: Neural Network as Universal Approximator

Neural network can arbitrarily approximate any continuous function for every
value of possible inputs

R f(z)

> T

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Neural network can arbitrarily approximate any continuous function for every
value of possible inputs

R f(z)

> T

The guarantee is that by using enough hidden neurons we can always find a
neural network whose output g(x) satisfies |g(z) — f(x)| < € for an arbitrarily
small €

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

Let’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Lets start with a simple network: one hidden layer with two hidden neurons
and a single output layer with one neuron (with sigmoid activations)

Let’s look at output of this (hidden) neuron as a function
of parameters (weight, bias)

1 N Output from top hidden neuron

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function.

. /‘\ Output from top hidden neuron
Location of the step? b =-40
b : |
s = w = 1007~
w |) /’/
£ / (0 >

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

By dialing up the weight (e.g. w = 999) we can actually create a “step” function

't Is easier to work with sums of step functions, so we can assume that every
neuron outputs a step function

. /‘\ Output from top hidden neuron
Location of the step? s = 0.40
b .
S — ///7 N
w -~
£ / (0 >

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is 0)

5 /‘\ Weighted output from hidden layer
8, = O 40

14

/ <

T
\ 0.60
w, = 1.2
A4
*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is 0)

A\ Weighted output from hidden layer

-
7
o~
o
o

1

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

The output neuron is a weighted combination of step functions (assuming
bias for that layer is 0)

> AN Weighted output from hidden layer

\/.=~

/
\

-

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

A Weighted output from hidden layer

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.htmi

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

3 A Weighted output from hidden layer

S h=-1.3 2 Riemann sum approximation

_ N
'\0 2 | ; : 5
> h=-16 v

N Average deviation: 0.39
\ 0.6) Success!

Reset

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

i t Riemann sum approximation
7

Light Theory: Neural Network as Universal Approximator

Conditions needed for proof to hold: Activation function needs to be well

defined
xlgrgo a(x) = A
A+#B

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to Infinity. [Hornik et al., 1989]

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to Infinity. [Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth
with a hidden layer of size d + 1 neurons, where d is the dimension of the input

space, can approximate any continuous function.
[Lu et al., NIPS 2017]

Light Theory: Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the
width goes to Infinity. [Hornik et al., 1989]

Universal Approximation Theorem (revised): A network of infinite depth
with a hidden layer of size d + 1 neurons, where d is the dimension of the input

space, can approximate any continuous function.
[Lu et al., NIPS 2017]

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

[Lin and Jegelka, NIPS 2018 |

One-layer Neural Network

Input Layer

1

a(x) = sigmoid(x)

14 e®
Output Layer

A
Activation

Function

Sigmoid Activation

Learning Parameters of One-layer Neural Network

‘Dt’r‘ain| 2
L(W,b) = Z (Singid (WTX(d) + b) — y(d)>
d=1

W*, b* = argmin L(W, b)

Solution:
OL(W,b) 0 'Dti:m'(. 1 (WT <d>+b) <d>)2
Ow;; 0w d:1 >ISHHO! a Y
OL(W,b) 0 DZ"(3 (WT <d>+b) <d>)2_0
Ow; — B 2. S121Mol X y —
. OL(W, b)
Problem: No closed form solution 5., =
71

*slide adopted from V. Ordonex

Gradient Descent (review)

|Dirain , 1. Start from random value of -
t L(W,b) = Z (sigmoid (WTx(d) + b) — y(d))

d=1
For £ = 0 to max number of iterations

2. Compute gradient of the loss with
respect to previous (initial) parameters:

3. Re-estimate the parameters

A - is the learning rate

*slide adopted from V. Ordonex

Stochastic Gradient Descent (review)

|Dt'r‘ain|

OL(W,b) 0 , , 2
ow, — ow sz::l (SlngId (WTx(d) + b) _ y(d)>

Problem: For large datasets computing sum Is expensive

Solution: Compute approximate gradient with mini-batches of
much smaller size (as little as 1-example sometimes)

Problem: How do we compute the actual gradient”

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location

We can approximate the gradient numerically, using:

0f(x) _ . flx+hl) — f(x)
8:132- -~ h—0 h

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Numerical Differentiation

1; - Vector of all zeros, except for one 1 in i-th location
1;, - Matrix of all zeros, except for one 1 in (i,j)-th location

We can approximate the gradient numerically, using:

OL(W.b) . L(W+hly,b)— L(W,b) OL(W,b) . L(W,b+hl;)— L(W,b)
Owi; ho h Ob; ho h

Even better, we can use central differencing:

OL(W,b) . L(W + hl;;,b) — L(W + hl;;,b) OL(W,b) . L(W,b+hl;)—L(W,b+ hl;)
Owi; h—0 2h 0b; ARG 2h

However, both of theses suffer from rounding errors and are Nnot good enough
for learning (they are very good tools for checking the correctness of
implementation though, e.g., use h = 0.000001).

Symbolic Differentiation y = f(21,22) = In(a1) + 2122 - sin(zs)
Input function iIs represented as computational graph (@ symbolic tree)
O™ S\
= (O xw@w (00)—

Implements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule
U@ +o@) _df@) | dole) AU@)-0@) _df@) o de@) dfl) _ dffet) g
dx de = dz dx dx dx dx dx dx

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Symbolic Differentiation y = f(21,22) = In(a1) + 2122 - sin(zs)
Input function iIs represented as computational graph (@ symbolic tree)
O™ S\
= (O xw@w (00)—

Implements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule

d(f(z) +g(x)) df(x) dg(z) d(f(z) g(z)) df(=) dg(z) d(f(g(z))) _df(g(z)) dg(=)

dx B dez = dz dx B dx g(x) + J(@) dx dx B dx dx

Problem: For complex functions, expressions can be exponentially large; also

difficult to deal with piece-wise functions (creates many symbolic cases)
*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) ¥ = /te2)=nle) e, = sinz)

Intuition: Interleave symbolic differentiation and simplification

Key ldea: apply symbolic differentiation at the elementary operation level,
evaluate and keep intermediate results

Success of deep learning owes A LOT to success of AutoDiff algorithms
(also to advances In parallel architectures, and large datasets, ...)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/truea) =) +ae, = sinz)

Each node is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from
topological sort.

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/truea) =) +ae, = sinz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

/
$2—>@Dm> >—' Y Computational graph is governed by these equations

Vo = X1
Each node is an input, intermediate, or output variable U1 = 42

Vg — lﬂ(vo)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. va = sinfvr)

U5 = U2 + U3
Vg — Uy — U4y
Y = Vs

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

Automatic Differentiation (AutoDiff) v=/truea) =)+ ae, = sinz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

/@ -
@_'@W (1) £(2,5)

Vo = &1
Each node is an input, intermediate, or output variable vl — 4

Uy — lﬂ(vo)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(v;)

Us = V2 + U3
Vg = Us — Uy

Y = Ve

Automatic Differentiation (AutoDiff) v=/truea) =)+ ae, = sinz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

/@ -
@_'@W (1) f(2.5)

Vo = &1 2
Each node is an input, intermediate, or output variable vl — 4

Uy — lﬂ(vo)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(v;)

Us = V2 + U3
Vg = Us — Uy

Y = Ve

Automatic Differentiation (AutoDiff) v=/truea) =)+ ae, = sinz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

/@ -
@_'@W (1) f(2.5)

Vo = &1
Each node is an input, intermediate, or output variable U1 = &3 5
Uy — lﬂ(vo)
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. vy = sin(v;)

Us = V2 + U3
Vg = Us — Uy

Y = Ve

Automatic Differentiation (AutoDiff) v=/truea) =)+ ae, = sinz)

Lets see how we can evaluate a function using
computational graph (DNN inferences)

Forward Evaluation Irace:

/@ —
5”2—’@%’ ’—’y £(2,5)

Vg — L1
Fach node is an input, intermediate, or output variable U1 = X2 O

v2 = In(vp) In(2) = 0.693
Computational graph (a DAG) with variable ordering from V3 = Vg - U1

topological sort. va = sin(vy)

Us = V2 + U3
Vg = Us — Uy

Y = Vs

Automatic Differentiation (AutoDiff) v=/truea) =) +ae, = sinz)

—ORO—f
2 @ Sin ‘ ‘ s

Each node is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from
topological sort.

Forward Evaluation Irace:

Lets see how we can evaluate a function using
computational graph (DNN inferences)

f(2,5)
Vo = L1
V1 = T2 O
v2 = In(vo) n(2) = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = V2 + U3
Vg = Us — Uy

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.652

Automatic Differentiation (AutoDiff) v=/truea) =) +ae, = sinz)

—ORO—f
2 @ Sin ‘ ‘ s

Each node is an input, intermediate, or output variable

Computational graph (a DAG) with variable ordering from
topological sort.

Forward Evaluation Irace:

Lets see how we can evaluate a function using
computational graph (DNN inferences)

f(2,5)
Vo = L1
V1 = T2 O
v2 = In(vo) n(2) = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = V2 + U3
Vg = Us — Uy

Y = Vs

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.652

AutoDiff - Forward Mode

f(2,5)
Vo = T1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959

Us = U2 + U3
Vg — Uy — U4y

Y = Ve

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.662

y = f(x1,22) =In(x1) + x129 — sin(x2)

Lets see how we can evaluate a derivative using
computational graph (DNN learning)

af(371, 51?2)

aaj]— (331:2,332:5)

We will do this with forward mode first, by
introducing a derivative of each variable node
with respect to the input variable.

AutoDiff - Forward Mode

OO
L2 @ sin @ " y

Forward Evaluation Irace:

f(2,5)
Vo = X1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

y:::f(xlva)

Forward Derivative

race.

= In(x

af(ajlv CEQ)

35131

1) + 122 — sin(z2)

(a:l :2,382 :5)

O
85131

AutoDiff - Forward Mode

OO
L2 @ sin @ " y

Forward Evaluation Irace:

f(2,5)
Vo = X1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

y:::f(xlva)

Forward Derivative

race.

= In(x

af(ajlv CEQ)

(3’5131

1) + 122 — sin(z2)

(a:l :2,382 :5)

0vg
oz,
0V
ox1

AutoDiff - Forward Mode

OO
L2 @ sin @ " y

Forward Evaluation Irace:

f(2,5)
Vo = X1
V1 = I9 ®
vo = In(vp) In(2) = 0.693
ml 2x5=10
vy = sin(vy) sin(5) = 0.959
Vs = V2 + U3 0.693 + 10 = 10.693
V6 = Us — U4 10.693 + 0.959 = 11.652
Y = Ve 11.652

y = f(z1,22) = In(zx

1) + 122 — sin(z2)

Forward Derivative Trace: Of(x1,x2)
axl (x1:2,$2:5)
(%0
5)5131 |
Ovq 0
351?1
0vs B 1 Ovg 1/2*1 =0.5
Jry vy 0xq
Chain Rule

AutoDiff - Forward Mode

(D= @
Sin

Forward Evaluation Irace:

B Pa

~(1)—v

f(2,5)
Vo = X1
V1 = T2 5
v2 = In(vp) n(2) = 0.693
V3 = Vg * V1 2x5=10
vs = sin(v1) sin(5) = 0.959

U5 = VU2 + VU3
Vg — Uy — U4y

Y = Ve

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.662

y = f(z1,22) = In(z1) + 2172 — Sin(72)
Forward Derivative Irace: Of (21, o)
axl (a:1:2,ac2:5)

(%0
35131 1
8”01
6513‘1 0
Ova _ 1 0w 1/2%1 = 0.5
O0xr1 vg 01
%—%vﬂf o 1"5+2°0=5
33’}1 N 8331 : 0 (9:1:1 " B

Product Rule

y = f(z1,22) = In(x

1) + 122 — sin(z2)

AutoDiff - Forward Mode

- ‘ Forward Derivative Irace: Of (21, 22)
\ axl (x1:2,x2:5)
\ (%0
o 1
— ox
(D) @ -(v6)—v |
SN, vy
351?1 g
Forward Evaluation Irace:
2”2 _ 1 gUO 1/2%1 =05
i U XL
f(2.5) L won
W _ 00\ 44y - OU1 1*5 + 20 = 5
— = — U1 + Uy —— 5+ 2*0 =
vo = I dr, Oxp O Om
U1 = T2 O 0vy Ovq (0,) . -
— = ——cc0S8(v; " COs(d) =
ve = In(vp) n(2) = 0.693 Or; Oz ©)
V3 = Vg - V1 2x5=10 OvUs Ova Ovus
o - _ — | 05 +-5=565
vy = sin(vy) sin(5) = 0.959 Ory Ox1 O0x
vs = Vg + 3 0.693 + 10 = 10.693 Ovg _ Ovs Ouy e o_es
Ug = U5 — 4 10.693 + 0.959 = 11.652 Jry Ory Oy
Y = Ug 8y 8?)6
= 11.652 = .
65 Y, 5.5

AutoDiff - Forward Mode

We now have:

6f($1, 562)

8561 (561:2,5132:5)

Still need:

af($1, $2)

ax2 (5131:2,562:5)

= 9.9

y = f(z1,22) = In(z1) + 2172 — Sin(72)

Forward Derivative Irace:

(9f(£E1, CEQ)
0, (21=2,22=5)

0vg
8—331 1
0V
8—a31 0
dvz _ 1 v 1/2*1 =05
O0xr1 vg 01
Oovs Ovg 0vy
a—xl:a—xl°?}1—|-v()°a—$1 15 +2"°0=5
0vy Ovq
6’—:1:1 — 6’—x1608(v1) 0 *cos(d) =0
dvs Ova | Ovs
@—331_5’371 | O 0.5+5=5.5
0vg Ovs Ouy
(9—5131:(7561 O 55-0=05.5
oy 0V
a 0.5

6331_8—561

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x) : R"™ — R"

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x) : R"™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1) Why?

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Forward Mode

Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m is the number of inputs

y = f(x) : R"™ — R"

Problem: DNN typically has large number of inputs:

image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

Automatic differentiation in reverse mode computes all gradients in 72 backwards
passes (so for most DNNs in a single back pass — back propagation)

*slide adopted from T. Chen, H. Shen, A. Krishnamurthy CSE 599G1 lecture at UWashington

AutoDiff - Reverse Mode

OO
\ (@ @—
L2 @ sin @ " y

Forward Evaluation Irace:

Traverse the original graph in the reverse
£(2,5) topological order and for each node in the

’ original graph introduce an adjoint node, which
Vo = T1 2 computes derivative of the output with respect
to the local node (using Chain rule);

V1 = T2 5

v2 = In(vp) n(2) = 0.693

V3 = Up * U1 2x5=10

vy = sin(vy) sin(5) = 0.959 b = Y _ Z Ovr, 0y _ Z Oy, o
U5 = V2 + V3 0.693 + 10 = 10.693 Ov; cepad Ov; Quy, SEpa) Ov;

Ve = Us — U4 10.693 + 0.959 = 11.652

Y = Vs 11.652 “local” derivative

AutoDiff - Reverse Mode

OO
L2 @ sin @ " y

Forward Evaluation Irace:

f(2,5)
Vo = X1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Yy = Ve 11.652

xl_‘\ @\

Backwards Derivative Irace;

@—

AutoDiff - Reverse Mode

OO
L2 @ sin @ " y

Forward Evaluation Irace:

f(2,5)
Vo = X1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

Backwards Derivative Irace;

@\

(@)—»

1x1 =1

AutoDiff - Reverse Mode

OO
L2 @ sin @ " y

Forward Evaluation Irace:

f(2,5)
Vo = X1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

@\

(@)—»

Backwards Derivative Irace;

. 8?}6 __

UGa—m—%
_ @Uﬁ_ _

068—1}5_ U6
0y

1x-1 = -1

1x1 =1

AutoDiff - Reverse Mode

"—OLE @
(D5 @ @

Forward Evaluation Irace:

f(2,5)
Vo = I
V1 = I9 5
v2 = In(vo) n() = 0.693
V3 = Vg * V1 2x5=10
vg = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Yy = Ve 11.652

Backwards Derivative Irace;

@\

(@)—»

1x1 =1

1x-1 = -1

1x1 =1

AutoDiff - Reverse Mode

"—OLE @
(D5 @ @

Forward Evaluation Irace:

f(2,5)
Vo = I
V1 = I9 5
v2 = In(vo) n() = 0.693
V3 = Vg * V1 2x5=10
vg = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Yy = Ve 11.652

o —— < Vg)« — Y

Backwards Derivative Irace;

?72—?75(%2_?75 (1)

_ _ (%5 _

U3:’U58—USZU5 (1)
OV ~

V4 = Vg (%i — Vg - (_1)

5s = 56 2% — 5 - 1

5 68U5 6

Oy

1x1 =1

1x1 =1

1x-1 = -1

1x1 =1

AutoDiff - Reverse Mode

. ’ \ @
(D) @ (1) —

Forward Evaluation Irace:

f(2,5)
Vo = I1
V1 = I9 5
vo = In(vp) In(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(vy) sin(5) = 0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Yy = Ve 11.652

—y - U4 —— = V3V + V4COS(V
U1 035’1}1 714(%1 300 4 (1)
Ov _
U2—058v5_v5°(1)
2
0vs _
U3—1}5av :U5°(1)
3
_ Ov _
V4 = Vg (%i — Vg - (_1)
_ _806__
U5—U68—U5—U6 1
_ 0y

c
S
|

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 =1

AutoDiff - Reverse Mode

ch ‘ \ @
S g O i

Forward Evaluation Irace:

f(2,5)
Vo = &1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

B A @\

$2<—@/ ‘<—y

3 3 5’1}3 3 01}2 3 LB 1
Vo = U - U — —
0 3 Hvo 2 Hve U3U1 T U2 ™
Ov Ov
V1 = U3 avj | @48—2}? = V3V + ?74608(?}1)
Ov
?_]2 — @581)5 — Uy - (1)
2
_ _ (%5 _
U3 — ’0587 — Vs (1)
3
_ _ Ovg _
Vg = vGa—vZ = vg - (—1)
_ _ Ovg _
Uy — 068_2}5: U6 1
_ oy
Vg — —

5.5

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 =1

AutoDiff - Reverse Mode

ch ‘ \ @
S g O i

Forward Evaluation Irace:

f(2,5)
Vo = &1
V1 = T2 O
v2 = In(vo) n() = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = 0.959
Us = U2 T U3 0.693 + 10 = 10.693
Vg = U5 — U4 10.693 + 0.959 = 11.652
Y= Ve 11.652

O @\

$2<—@/ ‘<—y

3 3 5’1}3 3 01}2 3 LB 1
Vo = U - U — —
0 3 Hvo 2 Hve U3U1 T U2 ™
Ov Ov
V1 = U3 avj | @48—2}? = V3V + ?74608(?}1)
Ov
?_]2 — @581)5 — Uy - (1)
2
_ _ (%5 _
U3 — ’0587 — Vs (1)
3
_ _ Ovg _
Vg = vGa—vZ = vg - (—1)
_ _ Ovg _
Uy — 068_2}5: U6 1
_ oy
Vg — —

9.5

1.716

1x1 =1

1x1 =1

1x-1 = -1

1x1 =1

Automatic Differentiation (AUJ[ODlﬁ) y = f(r1,22) = In(x1) + 1120 — 5i0(22)

AutoDiff can be done at various granularities

Elementary function granularity: Complex function granularity:

Backpropagation Practical Issues

Input Layer Easier to deal with in vector form

L]
2nd Hidden Layer

1st Hidden Layer

¥

&
P

L

N

C
V.

NN

=
ot

Backpropagation Practical Issues
y = f(W,b,x) = sigmoid(W - x + b)

X —————

|
OO OO0

Backpropagation Practical Issues Tocal” Jacobians

(matrix of partial derivatives, e.g. size |x| X |y|)

y = f(W,b,x) = sigmoid(W - x + b) "backprop” Gradient

X ——

O0x Ox Oy

Jacobian of Sigmoid layer

Element-wise sigmoid layer:

What is the dimension of Jacobian®?’

What does it look like?

If we are working with a mini batch of 100 inputs-output pairs, technically Jacobian is a matrix 204,800 x 204,800

Backpropagation: Common questions

Question: Does BackProp only work for certain layers?

Answer: No, for any differentiable functions

Question: What is computational cost of BackProp?

Answer: On average about twice the forward pass

Question: Is BackProp a dual of forward propagation®

Answer: Yes

FProp BackProp
Sum Copy
\ I.- - o
|
— I
Copy Sum
&=
i—) €--()+
‘ Y

* Adopted from slides by Marc’Aurelio Ranzato

Activation Function: Sigmoid

Input Layer

1

a(x) = sigmoid(x)

14 e®
Output Layer

Activation
Function

Sigmoid Activation

Computational Graph: 1-layer network

Yi
X; \ |
W -x+b sigmoid(o @ MSE;,s @

L

Activation Function: Sigmoid

Input Layer

1

a(x) = sigmoid(x)

14 e®
Output Layer

Activation
Function

Sigmoid Activation

Activation Function: Sigmoid

B 1
14 e*

a(x) = sigmoid(x)

Pros:
- Squishes everything in the range [0,1]
- Can be interpreted as “probability”
- Has well defined gradient everywhere

Cons:
- Saturated neurons “kill” the gradients
- Non-zero centered Sigmoid Activation
- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Sigmoid

1

a = sigmoid(x)

T T 1tew : : 1
el i |———— a(z) = sigmoid(z) = T
Gate ——————
0L 0 sigmoid(z) 0L oL
oxr 8%\ oa oa
0
Cons: ~10 0 10
- Saturated neurons “Kkill” the gradients)
- Non-zero centered Sigmoid Activation

- Could be expensive to compute

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: [annh

a(x) = tanh(z) = 2 - sigmoid(2x) — 1

2
a(x) = tanh(x) = e 1

Pros:
- Squishes everything in the range [-1,1] 1
- Centered around zero
- Has well defined gradient everywhere

10

Cons:

- Saturated neurons “kill” the gradients
Tanh Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Rectified Linear Unit (ReLLU)

a(x) = maz(0,x)

o) — {1 if 2 >0
Pros: 0 itx<O
- Does not saturate (for x > 0) 10
- Computationally very efficient
- Gonverges faster in practice (e.g. 6 times faster)
Ccons: ~10 10

— Not zero centered
RelLU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Activation Function: Rectified Linear Unit (ReLLU)

a(x) = maz(0,x)

, 1 itz>0
a(x) = .
0 iftx<O

10

Question: What do RelU layers accomplish?

Answer: Locally linear tiling, function is locally linear

~10 10

RelU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Recall:

Conditions needed to prove NN is a universal approximator: Activation
function needs to be well defined

xlgrgo a(x) = A
A#B

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Recall:

Conditions needed to prove NN is a universal approximator: Activation
function needs to be well defined

xlgrgo a(x) = A
A#B

Fun Exercise: Iry to prove that network with RelU is still a universal
approximator (not too difficult if you think albout it visually)

*slide adopted from http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Activation Function: Leaky / Parametrized RelLU

Leaky: alpha is fixed to a small value (e.g., 0.01) {x if 2 > 0

ar 1fax<O

Parametrized: alpha is optimized as part of the 0.
network (BackProp through)

Pros:
- Does not saturate
- Computationally very efficient
- Converges faster in practice (e.g. 6x)

=y 10

Leaky / Parametrized RelLU Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Computational Graph: 1-layer with PRelLU

Wox b @M@DMSE_M,@

-

Activation Functions: Review

a(x) = max(0, x)

1
a(x) = sigmoid(x) =
(v) = sigmoid(r) = ——— o

(x) {:13 it x >0
o | ~10 10 S) = :
~10 o 10 a(z) = tanh(z) = 1 +26_2w 1 — ar itx<O0
e
Sigmoid | 107

=y 10

Tanh Leaky / Parametrized ReLU

