
Lecture 18: Deep Reinforcement Learning

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Types of Learning

Supervised training 
— Learning from the teacher   
— Training data includes desired output 

Unsupervised training 
— Training data does not include desired output

Reinforcement learning 
— Learning to act under evaluative feedback (rewards)
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What is Reinforcement Learning

Agent-oriented learning — learning by 
interacting with an environment to achieve a goal 

— More realizing and ambitious than other kinds of machine 
learning 

Learning by trial and error, with only delayed 
evaluative feedback (reward) 

— The kind go machine learning most like natural learning 
— Learning that can tell for itself when it is right or wrong
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Example: Hajime Kimura’s RL Robot

Before After
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Challenges of RL

— Evaluative feedback (reward) 
— Sequentiality, delayed consequences 
— Need for trial and error, to explore as well as exploit 
— Non-stationarity 
— The fleeting nature of time and online data 

* slide from Rich Sutton



How does RL work?
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Robot Locomotion

Objective: Make the robot move forward 

State: Angle and position of the joints 
Action: Torques applied on joints 
Reward: 1 at each time step upright + 
forward movement
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Atari Games

Objective: Complete the game with the highest score 

State: Raw pixel inputs of the game state 
Action: Game controls e.g. Left, Right, Up, Down 
Reward: Score increase/decrease at each time step
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Go Game (AlphaGo)

Objective: Win the game! 

State: Position of all pieces 
Action: Where to put the next piece down 
Reward: 1 if win at the end of the game, 0 
otherwise
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Markov Decision Processes 
— Mathematical formulation of the RL problem 

Defined by:  
  : set of possible states 
  : set of possible actions 
  : distribution of reward given (state, action) pair 
  : transition probability i.e. distribution over next state given (state, action) pair 
  : discount factor
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Markov Decision Processes 
— Mathematical formulation of the RL problem 

— Life is trajectory:  

Defined by:  
  : set of possible states 
  : set of possible actions 
  : distribution of reward given (state, action) pair 
  : transition probability i.e. distribution over next state given (state, action) pair 
  : discount factor
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Markov Decision Processes 
— Mathematical formulation of the RL problem 

— Life is trajectory:  

— Markov property: Current state completely characterizes the state of the 
world 

Defined by:  
  : set of possible states 
  : set of possible actions 
  : distribution of reward given (state, action) pair 
  : transition probability i.e. distribution over next state given (state, action) pair 
  : discount factor
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Components of the RL Agent

Policy 
— How does the  agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  
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Policy

— The policy is how the agent acts 
— Formally, map from states to actions:

Deterministic policy:
Stochastic policy:
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The Optimal Policy

What is a good policy?
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The Optimal Policy

What is a good policy? 

Maximizes current reward? Sum of all future rewards? 

Discounted future rewards! 

Formally: 

with
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Components of the RL Agent

Policy 
— How does the agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Value Function

A value function is a prediction of future reward 

“State Value Function" or simply “Value Function” 
— How good is a state? 
— Am I screwed? Am I winning this game? 

“Action Value Function” or Q-function 
— How good is a state action-pair? 
— Should I do this now?
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Value Function and Q-value Function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, … 

— The value function (how good is the state) at state s, is the expected 
cumulative reward from state s (and following the policy thereafter): 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Value Function and Q-value Function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, … 

— The value function (how good is the state) at state s, is the expected 
cumulative reward from state s (and following the policy thereafter): 

— The Q-value function (how good is a state-action pair) at state s and action a, 
is the expected cumulative reward from taking action a in state s (and following 
the policy thereafter):
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Components of the RL Agent

Policy 
— How does the  agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  
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Model

Model predicts what the world will do next 
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Model

Model predicts what the world will do next 
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Components of the RL Agent

Policy 
— How does the  agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  

* slide from Dhruv Batra



Maze Example

Reward: -1 per time-step 
Actions: N, E, S, W 
States: Agent’s location
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Maze Example: Policy 

Arrows represent a policy           for 
each state

⇡(s)
s
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Maze Example: Value 

Numbers represent value            of 
each state s

v⇡(s)
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Maze Example: Model

Grid layout represents transition model

Numbers represent the immediate 
reward for each state (same for all 
states)
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Components of the RL Agent

Policy 
— How does the  agent behave? 

Value Function 
— How good is each state and/or action pair? 

Model 
— Agent’s representation of the environment  
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Approaches to RL: Taxonomy 

Value-based RL 
— Estimate the optimal action-value function 
— No policy (implicit) 

Policy-based RL  
— Search directly for the optima policy  
— No value function  

Model-based RL 
— Build a model of the world 
— Plan (e.g., by look-ahead) using model 

Q⇤(s, a)

⇡⇤

Model-free RL
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Approaches to RL: Taxonomy 

Value-based RL 
— Estimate the optimal action-value function 
— No policy (implicit) 

Policy-based RL  
— Search directly for the optima policy  
— No value function  

Model-based RL 
— Build a model of the world 
— Plan (e.g., by look-ahead) using model 

Q⇤(s, a)

⇡⇤

Actor-critic RL 
— Value function 
— Policy function

Model-free RL
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Deep RL

Value-based RL 
— Use neural nets to represent Q function  

Policy-based RL  
— Use neural nets to represent the policy 

Model-based RL 
— Use neural nets to represent and learn the model 
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Approaches to RL

Value-based RL 
— Estimate the optimal action-value function 
— No policy (implicit)

Q⇤(s, a)
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Optimal Value Function
Optimal Q-function is the maximum achievable value
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Optimal Value Function
Optimal Q-function is the maximum achievable value

Once we have it, we can act optimally

Optimal value maximizes over all future decisions

Formally, Q* satisfied Bellman Equations
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Solving for the Optimal Policy
Value iteration algorithm: Use Bellman equation as an iterative update 

Qi will converge to Q* as i -> infinity
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Solving for the Optimal Policy
Value iteration algorithm: Use Bellman equation as an iterative update 

Qi will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
game pixels, computationally infeasible to compute for entire state space!

What’s the problem with this?
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Solving for the Optimal Policy
Value iteration algorithm: Use Bellman equation as an iterative update 

Qi will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
game pixels, computationally infeasible to compute for entire state space!

What’s the problem with this?

Solution:  use a function approximator to estimate Q(s,a). E.g. a neural network! 
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Q-Networks
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score 

State: Raw pixel inputs of the game state 
Action: Game controls e.g. Left, Right, Up, Down 
Reward: Score increase/decrease at each time step

[ Mnih et al., 2013; Nature 2015 ]
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Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

[ Mnih et al., 2013; Nature 2015 ]
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Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

Input: state st
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Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

familiar conv 
and fc layers 
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Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, a1), 
Q(st, a2), Q(st, a3), Q(st,a4)
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Q-Network Architecture

Current state st: 84x84x4 stack of last 4 frames  
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

             : neural network  
with weights

Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, a1), 
Q(st, a2), Q(st, a3), Q(st,a4)
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[ Mnih et al., 2013; Nature 2015 ]

Number of actions between 4-18 
depending on Atari game

A single feedforward pass to compute 
Q-values for all actions from the current 
state => efficient!



Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation:  
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Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation:  

Loss function: 

where

Forward Pass:
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Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation:  

Loss function: 

where

Forward Pass:

Backward Pass: 
Gradient update (with respect to Q-function parameters θ): 
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Q-Network Learning
Remember: want to find a Q-function that satisfies the Bellman Equation:  

Loss function: 

where

Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy 𝝿*)

Forward Pass:

Backward Pass: 
Gradient update (with respect to Q-function parameters θ): 
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Training the Q-Network: Experience Replay
Learning from batches of consecutive samples is problematic: 

— Samples are correlated => inefficient learning 
— Current Q-network parameters determines next training samples (e.g. if maximizing 
action is to move left, training samples will be dominated by samples from left-hand size) 
=> can lead to bad feedback loops 

Address these problems using experience replay 
— Continually update a replay memory table of transitions (st, at, rt, st+1) as game 
(experience) episodes are played 
— Train Q-network on random minibatches of transitions from the replay memory, instead 
of consecutive samples 
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Experience Replay
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Example: Atari Playing



Deep RL

Value-based RL 
— Use neural nets to represent Q function  

Policy-based RL  
— Use neural nets to represent the policy 

Model-based RL 
— Use neural nets to represent and learn the model 
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Deep RL

Value-based RL 
— Use neural nets to represent Q function  

Policy-based RL  
— Use neural nets to represent the policy 

Model-based RL 
— Use neural nets to represent and learn the model 
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Policy Gradients
Formally, let’s define a class of parameterized policies: 

For each policy, define its value: 
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Policy Gradients
Formally, let’s define a class of parameterized policies: 

For each policy, define its value: 

We want to find the optimal policy 

How can we do this? 
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Policy Gradients
Formally, let’s define a class of parameterized policies: 

For each policy, define its value: 

We want to find the optimal policy 

Gradient ascent on policy parameters!

How can we do this? 
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REINFORCE algorithm
Expected reward:

Where r(𝜏) is the reward of a trajectory
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REINFORCE algorithm

Intractable! Expectation of gradient is 
problematic when p depends on θ 

Now let’s differentiate this: 

Expected reward:

Where r(𝜏) is the reward of a trajectory
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REINFORCE algorithm

Can estimate with Monte Carlo 
sampling

Now let’s differentiate this: 

However, we can use a nice trick: 

If we inject this back: 

Expected reward:

Where r(𝜏) is the reward of a trajectory
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Gradient estimator: 

Interpretation: 
- If r(𝜏) is high, push up the probabilities of the actions seen 
- If r(𝜏) is low, push down the probabilities of the actions seen 

Intuition
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Gradient estimator: 

Interpretation: 
- If r(𝜏) is high, push up the probabilities of the actions seen 
- If r(𝜏) is low, push down the probabilities of the actions seen 

Might seem simplistic to say that if a trajectory is good then all its actions 
were good. But in expectation, it averages out!

Intuition
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Intuition
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Gradient estimator: 

Interpretation: 
- If r(𝜏) is high, push up the probabilities of the actions seen 
- If r(𝜏) is low, push down the probabilities of the actions seen 

Might seem simplistic to say that if a trajectory is good then all its actions 
were good. But in expectation, it averages out!

Intuition
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However, this also suffers from high variance because credit 
assignment is really hard. Can we help the estimator?



REINFORCE in Action: Recurrent Attention Model (REM)
Objective: Image Classification 

Take a sequence of “glimpses” selectively focusing on 
regions of the image, to predict class 

— Inspiration from human perception and eye movements 
— Saves computational resources => scalability 
— Able to ignore clutter / irrelevant parts of image

glimpse

[ Mnih et al., 2014 ]
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State: Glimpses seen so far 
Action: (x,y) coordinates (center of glimpse) of where to look next in image 
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

REINFORCE in Action: Recurrent Attention Model (REM)
Objective: Image Classification 

Take a sequence of “glimpses” selectively focusing on 
regions of the image, to predict class 

— Inspiration from human perception and eye movements 
— Saves computational resources => scalability 
— Able to ignore clutter / irrelevant parts of image

glimpse

[ Mnih et al., 2014 ]
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State: Glimpses seen so far 
Action: (x,y) coordinates (center of glimpse) of where to look next in image 
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

REINFORCE in Action: Recurrent Attention Model (REM)
Objective: Image Classification 

Take a sequence of “glimpses” selectively focusing on 
regions of the image, to predict class 

— Inspiration from human perception and eye movements 
— Saves computational resources => scalability 
— Able to ignore clutter / irrelevant parts of image

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE 
Given state of glimpses seen so far, use RNN to model the state and output next action 

[ Mnih et al., 2014 ]
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NN

(x1, y1)

Input image
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NN

(x1, y1)

NN

(x2, y2)

Input image
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NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input image
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NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input image y=2
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[ Mnih et al., 2014 ]

REINFORCE in Action: Recurrent Attention Model (REM)

Has also been used in many other tasks including fine-grained image 
recognition, image captioning, and visual question-answering!



Summary

Policy gradients: very general but suffer from high variance so requires a 
lot of samples. Challenge: sample-efficiency 

Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration 

Guarantees: 
— Policy Gradients: Converges to a local minima of J(𝜃), often good enough! 
— Q-learning: Zero guarantees since you are approximating Bellman equation with a 
complicated function approximator 
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