Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 18: Deep Reinforcement Learning
Types of **Learning**

Supervised training
- Learning from the teacher
- Training data includes desired output

Unsupervised training
- Training data does not include desired output

Reinforcement learning
- Learning to act under evaluative feedback (rewards)

* slide from Dhruv Batra
What is Reinforcement Learning

Agent-oriented learning — learning by interacting with an environment to achieve a goal
 - More realizing and ambitious than other kinds of machine learning

Learning **by trial and error**, with only delayed evaluative feedback (reward)
 - The kind go machine learning most like natural learning
 - Learning that can tell for itself when it is right or wrong
Example: Hajime Kimura’s RL Robot

Before

After

* slide from Rich Sutton
Challenges of RL

- Evaluative feedback (reward)
- Sequentiality, delayed consequences
- Need for trial and error, to explore as well as exploit
- Non-stationarity
- The fleeting nature of time and online data

* slide from Rich Sutton
How does **RL** work?

- At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t

- The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}

* slide from David Silver
Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright + forward movement

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Go Game (AlphaGo)

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Markov Decision Processes

— Mathematical *formulation* of the RL problem

Defined by:

- S: set of possible states
- A: set of possible actions
- R: distribution of reward given (state, action) pair
- P: transition probability i.e. distribution over next state given (state, action) pair
- γ: discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Markov Decision Processes

— Mathematical **formulation** of the RL problem

Defined by:

- \mathcal{S}: set of possible states
- \mathcal{A}: set of possible actions
- \mathcal{R}: distribution of reward given (state, action) pair
- \mathcal{P}: transition probability i.e. distribution over next state given (state, action) pair
- γ: discount factor

— Life is **trajectory**: $\ldots S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2}, \ldots$
Markov Decision Processes

— Mathematical **formulation** of the RL problem

Defined by:

- S: set of possible states
- A: set of possible actions
- R: distribution of reward given (state, action) pair
- P: transition probability i.e. distribution over next state given (state, action) pair
- γ: discount factor

— Life is **trajectory**: $\ldots S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2}, \ldots$

— **Markov property**: Current state completely characterizes the state of the world

$$p(r, s'|s, a) = \text{Prob} \left[R_{t+1} = r, S_{t+1} = s' \middle| S_t = s, A_t = a \right]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Components of the RL Agent

Policy
 — How does the agent behave?

Value Function
 — How good is each state and/or action pair?

Model
 — Agent’s representation of the environment
Policy

- The policy is how the agent acts
- Formally, map from states to actions:

 Deterministic policy: \(a = \pi(s) \)

 Stochastic policy: \(\pi(a|s) = \mathbb{P}[A_t = a|S_t = s] \)

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

* slide from Dhruv Batra*
The **Optimal** Policy

What is a good policy?

* slide from Dhruv Batra
The **Optimal** Policy

What is a good policy?

Maximizes current reward? Sum of all future rewards?

* slide from Dhruv Batra
The **Optimal** Policy

What is a good policy?

Maximizes current reward? Sum of all future rewards?

Discounted future rewards!

* slide from Dhruv Batra
The **Optimal** Policy

What is a good policy?

Maximizes current reward? Sum of all future rewards?

Discounted future rewards!

Formally: $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi \right]$

with $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$

* slide from Dhruv Batra
Components of the RL Agent

✓ Policy
 – How does the agent behave?

Value Function
 – How good is each state and/or action pair?

Model
 – Agent’s representation of the environment
A value function is a prediction of future reward

“State Value Function” or simply “Value Function”
- How good is a state?
- Am I screwed? Am I winning this game?

“Action Value Function” or Q-function
- How good is a state action-pair?
- Should I do this now?
Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

— The value function (how good is the state) at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) \(s_0, a_0, r_0, s_1, a_1, r_1, \ldots \)

— The **value function** (how good is the state) at state \(s \), is the expected cumulative reward from state \(s \) (and following the policy thereafter):

\[
V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, \pi \right]
\]

— The **Q-value function** (how good is a state-action pair) at state \(s \) and action \(a \), is the expected cumulative reward from taking action \(a \) in state \(s \) (and following the policy thereafter):

\[
Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]
\]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Components of the RL Agent

✓ **Policy**
 - How does the agent behave?

✓ **Value Function**
 - How good is each state and/or action pair?

Model
 - Agent’s representation of the environment

slide from Dhruv Batra
Model predicts what the world will do next

* slide from David Silver
Model

Model predicts what the world will do next

* slide from David Silver
Components of the RL Agent

☑️ Policy
 - How does the agent behave?

☑️ Value Function
 - How good is each state and/or action pair?

☑️ Model
 - Agent’s representation of the environment

* slide from Dhruv Batra
Maze Example

Reward: -1 per time-step
Actions: N, E, S, W
States: Agent’s location

* slide from David Silver
Maze Example: Policy

Arrows represent a policy $\pi(s)$ for each state s.

* slide from David Silver
Maze Example: Value

Numbers represent value $v_\pi(s)$ of each state s
Maze Example: Model

- Grid layout represents transition model.
- Numbers represent the immediate reward for each state (same for all states).

* slide from David Silver
Components of the RL Agent

Policy
- How does the agent behave?

Value Function
- How good is each state and/or action pair?

Model
- Agent’s representation of the environment

* slide from Dhruv Batra
Approaches to RL: Taxonomy

<table>
<thead>
<tr>
<th>Model-free RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value-based RL</td>
</tr>
<tr>
<td>- Estimate the optimal action-value function $Q^*(s,a)$</td>
</tr>
<tr>
<td>- No policy (implicit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy-based RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Search directly for the optimal policy π^*</td>
</tr>
<tr>
<td>- No value function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model-based RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Build a model of the world</td>
</tr>
<tr>
<td>- Plan (e.g., by look-ahead) using model</td>
</tr>
</tbody>
</table>

* slide from Dhruv Batra
Approaches to RL: Taxonomy

Model-free RL

Value-based RL
- Estimate the optimal action-value function $Q^*(s,a)$
- No policy (implicit)

Policy-based RL
- Search directly for the optimal policy π^*
- No value function

Actor-critic RL
- Value function
- Policy function

Model-based RL
- Build a model of the world
- Plan (e.g., by look-ahead) using model

* slide from Dhruv Batra
Deep RL

Value-based RL
- Use neural nets to represent Q function
 \[Q(s, a; \theta) \]
 \[Q(s, a; \theta^*) \approx Q^*(s, a) \]

Policy-based RL
- Use neural nets to represent the policy
 \[\pi_\theta \]
 \[\pi_\theta^* \approx \pi^* \]

Model-based RL
- Use neural nets to represent and learn the model

* slide from Dhruv Batra
Approaches to RL

Value-based RL
- Estimate the optimal action-value function $Q^*(s, a)$
- No policy (implicit)
Optimal Value Function

Optimal Q-function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]
Optimal Value Function

Optimal Q-function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a)$$

Once we have it, we can act optimally

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

* slide from David Silver
Optimal Value Function

Optimal Q-function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

Once we have it, we can act optimally

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

Optimal value maximizes over all future decisions

\[Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \ldots \]
\[= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]
Optimal Value Function

Optimal Q-function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

Once we have it, we can act optimally

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

Optimal value maximizes over all future decisions

\[
Q^*(s, a) = r_{t+1} + \gamma \max_a r_{t+2} + \gamma^2 \max_a r_{t+3} + \ldots \\
= r_{t+1} + \gamma \max_a Q^*(s_{t+1}, a_{t+1})
\]

Formally, \(Q^* \) satisfied Bellman Equations

\[
Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]
\]

* slide from David Silver
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') | s, a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \rightarrow \infty \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') | s, a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to \infty \)

* What’s the problem with this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') \mid s, a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to \infty \)

What’s the problem with this?

Not scalable. Must compute \(Q(s,a) \) for every state-action pair. If state is e.g. game pixels, computationally infeasible to compute for entire state space!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') | s, a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to \infty \)

What’s the problem with this?

Not scalable. Must compute \(Q(s, a) \) for every state-action pair. If state is e.g. game pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate \(Q(s, a) \). E.g. a neural network!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Networks

\[Q(s, a, w) \approx Q^*(s, a) \]
Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Architecture

$Q(s, a; \theta)$: neural network with weights θ

Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

\(Q(s, a; \theta) \): neural network with weights \(\theta \)

Input: state \(s_t \)

Current state \(s_t \): 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

$Q(s, a; \theta)$: neural network with weights θ

Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

\(Q(s, a; \theta) \): neural network with weights \(\theta \)

Current state \(s_t \): 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d output (if 4 actions), corresponding to \(Q(s_t, a_1) \), \(Q(s_t, a_2) \), \(Q(s_t, a_3) \), \(Q(s_t, a_4) \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

\[Q(s, a; \theta) : \text{neural network with weights } \theta \]

Current state \(s_t \): 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d output (if 4 actions), corresponding to \(Q(s_t, a_1), Q(s_t, a_2), Q(s_t, a_3), Q(s_t, a_4) \)

Number of actions between 4-18 depending on Atari game

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

$Q(s, a; \theta)$: neural network with weights θ

- Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)
- Last FC layer has 4-d output (if 4 actions), corresponding to $Q(s_t, a_1)$, $Q(s_t, a_2)$, $Q(s_t, a_3)$, $Q(s_t, a_4)$
- Number of actions between 4-18 depending on Atari game

A single feedforward pass to compute Q-values for all actions from the current state => efficient!
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') | s, a]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

\[Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a] \]

Forward Pass:

Loss function: \[L_i(\theta_i) = \mathbb{E} \left[(y_i - Q(s, a; \theta_i))^2 \right] \]

where \[y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a] \]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

\[
Q^*(s, a) = E[r + \gamma \max_{a'} Q^*(s', a') | s, a]
\]

Forward Pass:

Loss function: \(L_i(\theta_i) = E \left[(y_i - Q(s, a; \theta_i))^2 \right] \)

where \(y_i = E[r + \gamma \max_{a'} Q^*(s', a') | s, a] \)

Backward Pass:

Gradient update (with respect to Q-function parameters \(\theta \)):

\[
\nabla_{\theta_i} L_i(\theta_i) = E \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right] \nabla_{\theta_i} Q(s, a; \theta_i)
\]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

\[Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') | s, a] \]

Forward Pass:

Loss function:
\[L_i(\theta_i) = \mathbb{E} \left[(y_i - Q(s, a; \theta_i))^2 \right] \]

where
\[y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') | s, a] \]

Backward Pass:

Gradient update (with respect to Q-function parameters \(\theta \)):
\[\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right] \nabla_{\theta_i} Q(s, a; \theta_i) \]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Training the Q-Network: Experience Replay

Learning from **batches of consecutive samples is problematic:**
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size)
 => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions \((s_t, a_t, r_t, s_{t+1})\) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Experience Replay

To remove correlations, build data-set from agent’s own experience

\[
\begin{array}{c}
\text{s}_1, a_1, r_2, s_2 \\
\text{s}_2, a_2, r_3, s_3 \\
\text{s}_3, a_3, r_4, s_4 \\
\vdots \\
\text{s}_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\rightarrow \text{s}, a, r, s' \\
\text{s}_t, a_t, r_{t+1}, s_{t+1} \rightarrow \text{s}_t, a_t, r_{t+1}, s_{t+1}
\]
Example: Atari Playing

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.
Deep RL

Value-based RL
- Use neural nets to represent Q function
 \[Q(s, a; \theta) \]
 \[Q(s, a; \theta^*) \approx Q^*(s, a) \]

Policy-based RL
- Use neural nets to represent the policy
 \[\pi_\theta \]
 \[\pi_\theta^* \approx \pi^* \]

Model-based RL
- Use neural nets to represent and learn the model

* slide from Dhruv Batra
Deep RL

Value-based RL
- Use neural nets to represent Q function \(Q(s, a; \theta) \)
 \[Q(s, a; \theta^*) \approx Q^*(s, a) \]

Policy-based RL
- Use neural nets to represent the policy \(\pi_\theta \)
 \[\pi_\theta^* \approx \pi^* \]

Model-based RL
- Use neural nets to represent and learn the model
Formally, let’s define a class of parameterized policies:

For each policy, define its value:

\[J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right] \]
Formally, let’s define a class of parameterized policies:

For each policy, define its value:

\[
J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]
\]

We want to find the optimal policy \(\theta^* = \arg \max_{\theta} J(\theta) \)
Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

$$J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]$$

We want to find the optimal policy $\theta^* = \text{arg max}_\theta J(\theta)$

How can we do this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

$$J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]$$

We want to find the optimal policy $\theta^* = \arg \max_{\theta} J(\theta)$

How can we do this?

Gradient ascent on policy parameters!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE algorithm

Expected reward:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int_{\tau} r(\tau) p(\tau; \theta) d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE algorithm

Expected reward:

\[J(\theta) = E_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int_{\tau} r(\tau)p(\tau; \theta)d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)

Now let’s differentiate this:

\[\nabla_\theta J(\theta) = \int_{\tau} r(\tau)\nabla_\theta p(\tau; \theta)d\tau \]

* Intractable! Expectation of gradient is problematic when \(p \) depends on \(\theta \)
REINFORCE algorithm

Expected reward:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int r(\tau)p(\tau; \theta) \, d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)

Now let’s differentiate this:

\[\nabla_\theta J(\theta) = \int r(\tau) \nabla_\theta p(\tau; \theta) \, d\tau \]

However, we can use a nice trick:

\[\nabla_\theta p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_\theta p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_\theta \log p(\tau; \theta) \]

If we inject this back:

\[\nabla_\theta J(\theta) = \int (r(\tau) \nabla_\theta \log p(\tau; \theta)) p(\tau; \theta) \, d\tau \]
\[= \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau) \nabla_\theta \log p(\tau; \theta)] \]

Can estimate with Monte Carlo sampling

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Intuition

Gradient estimator:

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

Interpretation:
- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Intuition

Gradient estimator:
\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

Interpretation:
- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Intuition

Gradient estimator:

$$\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t | s_t)$$

Interpretation:
- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2014]
Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a **non-differentiable operation** => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

[Mnih *et al.*, 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

- Input image
- (x_1, y_1)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**

[Mnih et al., 2014]
REINFORCE in Action: **Recurrent Attention Model (REM)**

![Diagram of Recurrent Attention Model](image)

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

(slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford)
REINFORCE in Action: **Recurrence Attention Model (REM)**

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Summary

Policy gradients: very general but suffer from high variance so requires a lot of samples. **Challenge**: sample-efficiency

Q-learning: does not always work but when it works, usually more sample-efficient. **Challenge**: exploration

Guarantees:
— Policy Gradients: Converges to a local minima of $J(\theta)$, often good enough!
— Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford