THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 18: Deep Reinforcement Learning

lypes of Learning

Supervised training
— Learning from the teacher

— [raining data includes desired output

Unsupervised training
— TJraining data does not include desired output

Reinforcement learning
— Learning to act under evaluative feedback (rewards)

* slide from Dhruv Batra

What Is Reinforcement Learning

Agent-oriented learning — learning by
INnteracting with an environment to achieve a goal

— More realizing and ambitious than other kinds of machine
learning

Learning by trial and error, with only delayed
evaluative feedback (reward)

— The Kind go machine learning most like natural learning
— Learning that can tell for itselt when it is right or wrong

Computer Science

Neuroscience
Optima Reward
ontrol \// Systery
¢ v
- U\ " .
Pperations assical/Ope
esea ||E drditioning

Engineering

Psychology

* slide from David Silver

Example: Hajime Kimura’s RL Robot

Before After

* slide from Rich Sutton

Challenges of RL

— Evaluative feedback (rewarq)

— Sequentiality, delayed consequences

— Need for trial and error, to explore as well as exploit
— Non-stationarity

— The fleeting nature of time and online data

* slide from Rich Sutton

How does RL work"?

observation /(\; “ i ’; x 1,»““ P : //' action [At e ach Step t the 3 gent
I & K » Executes action a
» Receives observation oy

» Recelves scalar reward r;

» [he environment:

» Recelves action a;
» Emits observation o;41
» Emits scalar reward r;q

* slide from David Silver

Robot | ocomotion

| Objective: Make the robot move forward

- Actlon Torques applied on joints
Reward: 1 at each time step upright +

ﬂ— forward movement

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Go Game (AlphaGo)

P e i I R R
© = N W & U &y N 0O

= N W & U YN @

A BCDEFGH)] KLMNOPU QOQRST

%

PN
g
O
o
. +
re:
PN

(
2

B

\I/

A B CDEFGH)] KLMNUOPOQRST

P I R I R
© = N W & U & N 0 ©

= N W & U N @

Objective: Win the game!

State: Position of all pieces

Action: \Where to put the next piece down
Reward: 1 if win at the end of the game, O
otherwise

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Markov Decision Processes

— Mathematical formulation of the RL problem
Defined by:

S : set of possible states

A : set of possible actions

R . distribution of reward given (state, action) pair

P : transition probability i.e. distribution over next state given (state, action) pair
7Y : discount factor

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Markov Decision Processes

— Mathematical formulation of the RL problem
Defined by:

S : set of possible states

A : set of possible actions

R . distribution of reward given (state, action) pair

P : transition probability i.e. distribution over next state given (state, action) pair
7Y : discount factor

— Life is trajectory: ...S:, As, Rer1, Sev1, Ass1, Reao, Stao,. ..

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Markov Decision Processes

— Mathematical formulation of the RL problem
Defined by:

S : set of possible states

A : set of possible actions

R . distribution of reward given (state, action) pair

P : transition probability i.e. distribution over next state given (state, action) pair
7Y : discount factor

— Life is trajectory: ...S5:, As, Revr1, Sev1, Atr1, Reao, Seao, ...

— Markov property: Current state completely characterizes the state of the
worlo

p(r,s'|s,a) = Prob|Rt11 =1r,5t11 =5 | St =5,Ar = a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Components of the RL Agent

Policy

— How does the agent behave?

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Policy
— The policy Is how the agent acts 9
— Formally, map from states to actions: A > 2

B >

Deterministic policy: a = m(s)
Stochastic policy: w(als) = P[A; = a|S; = s}

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”

Maximizes current reward”? Sum of all future rewards??

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”
Maximizes current reward? Sum of all future rewards”?

Discounted future rewards!

* slide from Dhruv Batra

The Optimal Policy

What is a good policy”
Maximizes current reward? Sum of all future rewards”?

Discounted future rewards!

Formally: " = argm;gxIE [Z 'yt'rt|7r:|

t>0

wWith 8o ~ P(So), Ay ~ W('\St),3t+1 ~ p(-\st,at)

* slide from Dhruv Batra

Components of the RL Agent

V Policy

— How does the agent behave”

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Value Function

A value function Is a prediction of future rewarad

“State Value Function” or simply “Value Function”
— How good is a state?
— Am | screwed”? Am | winning this game?

“Action Value Function” or Q-function
— How good is a state action-pair?
— Should | do this now?

* slide from Dhruv Batra

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) sg, ag, ro, S1, a1, 1, ...

— The value function (how good is the state) at state s, is the expected
cumulative reward from state s (and following the policy thereafter):

Vi(s)=E [Zv‘nls() = Sﬂf}

t>0

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) sg, ag, ro, S1, a1, 1, ...

— The value function (how good is the state) at state s, is the expected
cumulative reward from state s (and following the policy thereafter):

Vi(s)=E [Zv‘nls() = Sﬂf}

— The Q-value function (how good is a state-action pair) at state s and action a,
s the expected cumulative reward from taking action a in state s (and following
the policy thereafter);

t>0

Q" (s,a) =E |:Z 'yt'rt|so = 8,09 = Q, w}

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Components of the RL Agent

V Policy

— How does the agent behave?

\/ Value Function

— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Model

Model predicts what the world will do next

observation action

Oy a;

reward ry

* glide from David Silver

Model

Model predicts what the world will do next

Oy

_.‘{ R
- N b :
. 9 N | s o o - _:‘ r
g \ » ’.,') 5 -~
N ' | o ~ 3 \
—~ - N)
g / { - A —
'- \-.».___:-‘ :-'—-:' ...’;{.’ "f’
o __.’ iy
reward I ry

* glide from David Silver

Components of the RL Agent

V Policy

— How does the agent behave?

\/ Value Function

— How good is each state and/or action pair?

\/ Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Maze =xample

Start

Reward: -1 per time-step
Actions: N, E, S, W
States: Agent’s location

Goal

* slide from David Silver

Maze =xample: Policy

Start * ¢

i Arrows represent a policy 7'('(8) for
< each state S

Goal

* slide from David Silver

Maze =xample:

Start

-16

Value

11

14 | 13 | -12
15
16 | -17

18 | -19
-24 -20
23 | -22 | -21

-12

-22

-10

Goal

Numbers represent value Vi (S) of

each state S

* slide from David Silver

Maze Example: Model

Grid layout represents transition model

Start | -1 -1 -1 -1
1 -1 1 | |
Numbers represent the immediate
! reward for each state (same for all
1| - states)
-1 | -1 | Goal

* slide from David Silver

Components of the RL Agent

Policy

— How does the agent behave?

Value Function
— How good is each state and/or action pair?

Model

— Agent’s representation of the environment

* slide from Dhruv Batra

Approaches to RL: lTaxonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function Q*(s, a)

— No policy (implicit)

Policy-based RL

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.g., by look-ahead) using model

* slide from Dhruv Batra

Approaches to RL: [axonomy

Model-free RL

Value-based RL

— Estimate the optimal action-value function Q*(s, a)

— No policy (implicit) Actor-critic BRL
— Value function
Policy-based RL — Policy function

— Search directly for the optima policy 7*
— No value function

Model-based RL

— Builld a model of the world

— Plan (e.qg., by look-ahead) using model

* slide from Dhruv Batra

Deep RL

Value-based RL

— Use neural nets to represent Q function Q(s, a; 6

/ \

Q(s,a;0%) =~ Q" (s, a)

/ \ / \

Policy-based RL

— Use neural nets to represent the policy 7o

Model-based RL

— Use neural nets to represent and learn the model

* slide from Dhruv Batra

Approaches to RL

Value-based RL

— Estimate the optimal action-value function Q* (s, a)

— No policy (implicit)

* slide from Dhruv Batra

Optimal Value Function

Optimal Q-function is the maximum achievable value
R*(s,a) = max Q"(s,a) = Q"’*(s, a)

* glide from David Silver

Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™(s,a) = Q™ (s, a)
Once we have Iit, we can act optimally

m(s) = argmax Q”(s, a)
=)

* glide from David Silver

Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™(s,a) = Q™ (s, a)
Once we have Iit, we can act optimally

m(s) = argmax Q(s, a)
ad

Optimal value maximizes over all future decisions

2
Q*(s,a) = rp1 + v Max rpio + - Max repz + ...
dt+1 dt42

= lt41 + 7 T3i< Q" (St+1,ar+1)
t+

* glide from David Silver

Optimal Value Function

Optimal Q-function is the maximum achievable value
Q*(s,a) = max Q™(s,a) = Q™ (s, a)
Once we have Iit, we can act optimally

m(s) = argmax Q(s, a)
d

Optimal value maximizes over all future decisions

2
R*(s,a) = rep1 + 7y max reeo + 7" mMax regz + ...

dt+1 dt42

= lt41 + 7 Tai< Q" (St+1,ar+1)
t+

Formally, Q" satisfied Bellman Equations

Q*(s,a) =Ey |r+~ max R*(s',a") | s.a

* glide from David Silver

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi-l-l(saa’) =L T—|—’)’IIIE}.XQ7;(SI,CL,)|S,G,

Q; will converge to Q* as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi-l-l(saa’) =E T_I_’Yma,'XQi(Slaa',)'Saa'

Q; will converge to Q* as i -> infinity

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi-l-l(saa’) =E ?“-|—’}’II18/.XQ7;(8,,CL,)|S,G,
i a _

Q; will converge to Q* as i -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qQ.
game pixels, computationally infeasible to compute for entire state space!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi-l-l(saa’) =E ?“-|—’}’II1£}XQ7;(8,,G,I)IS,G,
i a _

Q; will converge to Q* as | -> infinity

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qQ.
game pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Networks

Q(s,a,w) = Q*(s, a)

Q(s,a,w) Q(s,ay,w) - Qs,a,,w)

T

* glide from David Silver

Case StUdy P‘aylng Atari Games | Mnih et al., 2013; Nature 2015]

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture [Mnih et al., 2013; Nature 2015

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)
FC-256

1] —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture [Mnih et al., 2013; Nature 2015

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)
FC-256

M N -

_”_I__ <— |nput: state s;

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture [Mnih et al., 2013; Nature 2015

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)
FC-256

<«— familiar conv
and fc layers

1] —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«<— [ast FC layer has 4-d

FC-256

output (if 4 actions),

JJJ-

corresponding to Q(st, a1),
Q(st, az), Q(st, as), Q(st,a4)

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«<— [ast FC layer has 4-d

FC-256

output (if 4 actions),

a §F =3 _— 8}

corresponding to Q(st, a1),
Q(st, az), Q(st, as), Q(st,a4)

Number of actions between 4-18

depending on Atari game

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Architecture

Q(s,a;0): neural network
with weights 6

FC-4 (Q-values)

| Mnih et al., 2013; Nature 2015 |

<«<— [ast FC layer has 4-d

output (if 4 actions),

FC-256
A single feedforward pass to compute e
Q-values for all actions from the current i T
state => efficient! I I -
=E =k

corresponding to Q(st, a1),
Q(st, az), Q(st, as), Q(st,a4)

Number of actions between 4-18

depending on Atari game

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = Elr + ymaxQ*(s',a’) | s,a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = 43[r+7mng*(s’,a’) s, al

Forward Pass:

Loss function: Li(ei) = It [(yz — Q(S, a, ‘973)2}

~

where y; = E[r + ymax Q*(s',a’) | s,a
a

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = Elr + ymaxQ*(s',a’) | s,a

Forward Pass:

Loss function: Li(ei) = It [(yz — Q(S, a, ‘973)2}

~

where y; = E[r + ymax Q*(s',a’) | s,a
a

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

Vo,Li(0;) = E |r + ymax Q(s',a;6:_1) — Q(5,;0)) Vo, Q(s, a; 0;)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q" (s,a) = Elr + ymaxQ*(s',a’) | s,a
Forward Pass:

| R . 9 teratively try to make the Q-value
Loss function: Li(e’i) = I [(yz o Q(Sv a, ‘973) } close to the target value (y;) it
) . should have, if Q-function
. — K - X
where Y; = A[T 8 mz}XQ (S , () | S, corresponds to optimal Q* (and
a optimal policy 1)

Backward Pass:

Gradient update (with respect to Q-function parameters 0):

Vo.Li(0;) =E o+ ymax Q(s',a’;0;—1) — Q(s,a;6;)) Vg, Q(5, a; 9@-)-

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training the Q-Network: Experience Replay

Learning from batches of consecutive samples is problematic.

— Samples are correlated => inefficient learning

— Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand size)
=> can lead to bad feedback loops

Address these problems using experience replay
— Continually update a replay memory table of transitions (s, ay, fi, Sti1) @S game
(experience) episodes are played
— Train Q-network on random minibatches of transitions from the replay memory, instead
of consecutive samples

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Experience Replay

To remove correlations, build data-set from agent's own experience

51,41, 12,52
52,42, 13,53 — S, a4, r‘.S/

s3, as, 4, Sa

Sty dt, l't+1,St+1 —2 | St,adt, lt4+1, St+1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Atari Playing

Starting out - 10 minutes of training

The algorithm tries to hit the hall hack, hut
itis yet too clumsy to manage.

Deep RL

Value-based RL

— Use neural nets to represent Q function Q(s, a; 0,

Q(s,a;0%) =~ Q" (s, a)

* slide from Dhruv Batra

Policy-based RL

— Use neural nets to represent the policy 7o

* slide from Dhruv Batra

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

J(O) =E nytrt\mg

>0

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

JO) =E |) ~'re|m

>0

We want to find the optimal policy 6* = arg max J(0)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

JO) =E |) ~'re|m

>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

J(O) =E Z'yt'rtkrg

We want to find the optimal policy 68 = arg max J(0)

How can we do this?

Gradient ascent on policy parameters!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE algorithm

EXpected reward:

J(0) = Ernp(rs0) [7(T)]
= /'r('r)p('r;H)d'r

Where r(7) is the reward of a trajectory 7 = (g, @g, g, S1, - - -)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE algorithm

EXpected reward:

J(0) = L mop(T30) (7))
= /r(*r)p(*r;@)dfr
Where r(1) is the reward of a trajectory 7 = (sg, ag, 7o, S1, - - -)

Now let's differentiate this: v,.J(0) = / r(17)Vep(T;0)dT

Intractable! Expectation of gradient is

oroblematic when p depends on 6

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE algorithm

EXpected reward:

J(0) = L mop(T30) (7))
— /'r('r)p('r;G)d'r
Where r(1) is the reward of a trajectory 7 = (sg, ag, 7o, S1, - - -)

Now let's differentiate this: v,.J(0) = / r(17)Vep(T;0)dT

However, we can use a nice rck: v p(r;) = p(r; 0) Wé’(g)@) = p(7;0) Vg logp(T;6)
p(T;
f we inject this back;
VoI(6) = [(r(r)Vologp(r;0)) p(r;) |E——vE—

sampling

= Ernp(r:0) r(7)Vglogp(T;0))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Intuition

Gradient estimator:
VoJ(0) = Z r(7)Vglog mg(a|st)

t>0

Interpretation:
- If r(7) Is high, push up the probabilities of the actions seen
- If r(7) 1s low, push down the probabilities of the actions seen

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intuition

Gradient estimator:
VoJ(0) = Z r(7)Vglog mg(a|st)

t>0

Interpretation:
- If r(7) Is high, push up the probabilities of the actions seen
- If r(7) 1s low, push down the probabilities of the actions seen

Might seem simplistic to say that it a trajectory Is good then all its actions
were good. But In expectation, it averages out!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intuition

DOWN DOWN UP

® 0@ \WIN
° = e LOSE
° e ——o LOSE
® * .0 WIN

* slide from Dhruv Batra

Intuition

Gradient estimator:
VeJ(0) =~ ZT(T)VQ log mg(at|st)

t>0

Interpretation:
- If r(7) Is high, push up the probabilities of the actions seen
- If r(7) 1s low, push down the probabilities of the actions seen

Might seem simplistic to say that it a trajectory Is good then all its actions
were good. But In expectation, it averages out!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 2'-

regions of the iImage, to predict class
man perception and eye movements

— Inspiration from
— Saves computa

hu
10

nal resources => scala

— Able to ignore ¢

ut

er / irrelevant parts of

Ollity
image

glimpse

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 2'-

regions of the image, to predict class
— Inspiration from human perception and eye movements
— Saves computational resources => scalability
— Able to ignore clutter / irrelevant parts of image

glimpse

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep If iImage correctly classified, O otherwise

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on 2"

regions of the image, to predict class
— Inspiration from human perception and eye movements
— Saves computational resources => scalability
— Able to ignore clutter / irrelevant parts of image

glimpse

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep If iImage correctly classified, O otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

Input image

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2)

Input image

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2) (X3, Va)

@

Input image

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

(X1, Y1) (X2, Y2) (X3, Y3) (X4, Ya) (X5, Ys)

©—> Softmax
!

Input image f
Qil * 4 e

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

REINFORCE in Action: Recurrent Attention Model (REM)

3 -
> Q-

Has also been used in many other tasks including fine-grained image
recognition, iImage captioning, and visual question-answering!

| Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Summary

Policy gradients: very general but suffer from high variance so requires a
lot of samples. Challenge: sample-efficiency

Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

Guarantees:
— Policy Gradients: Converges to a local minima of J(8), often good enough!
— Q-learning: Zero guarantees since you are approximating Bellman equation with a

complicated function approximator

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

