

THE UNIVERSITY OF BRITISH COLUMBIA

Topics in AI (CPSC 532S): **Multimodal Learning with Vision, Language and Sound**

Lecture 17: Generative Models Cont. (VAE, GANs)

Course Logistics

— Great set of projects!

- Modes of "sub-optimality" at this stage:
 (1) not enough thought into wha
 (2) motivation for architectures
 What am I expecting for the project?
- Feedback (still working on this)

- Proposal and presentation submission (Canvas on Friday)

Paper presentations and list

(1) not enough thought into what alterations to base-model should be tested

PixelCNNs define tractable density function, optimize likelihood of training data:

ni=1

 $p(x) = \prod p(x_i | x_1, ..., x_{i-1})$

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

VAEs define intractable density function with latent variables z (that we need to marginalize):

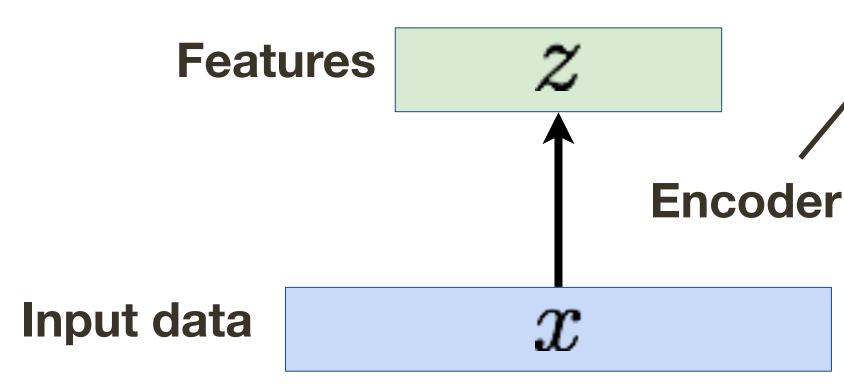
$$p_{\theta}(x) = \int f$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

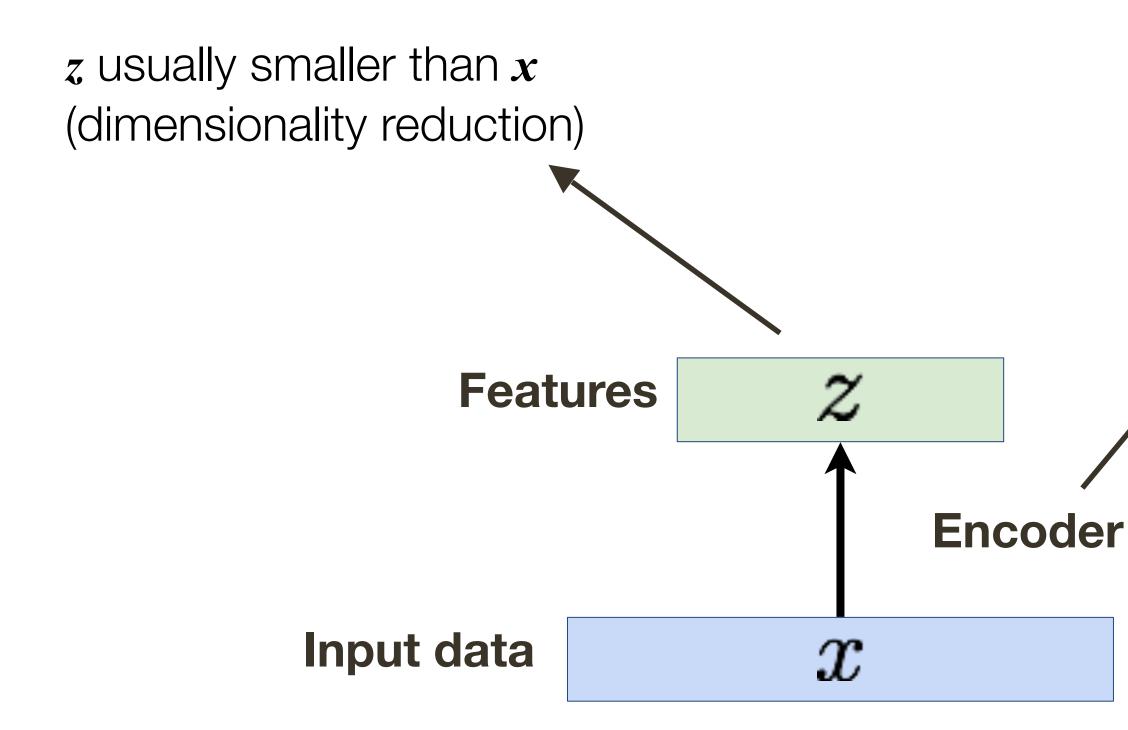
$p_{\theta}(z)p_{\theta}(x|z)dz$

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data



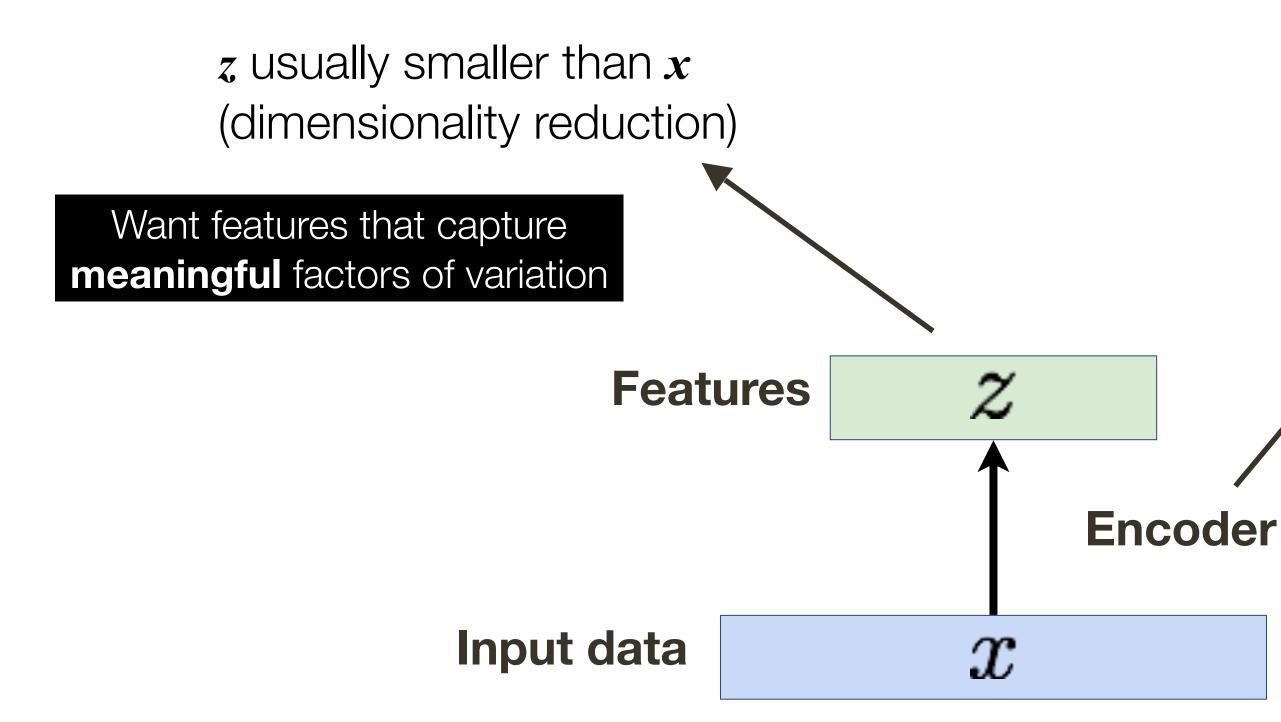
Originally: Linear + nonlinearity (sigmoid) Later: Deep, fully-connected Later: ReLU CNN

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data



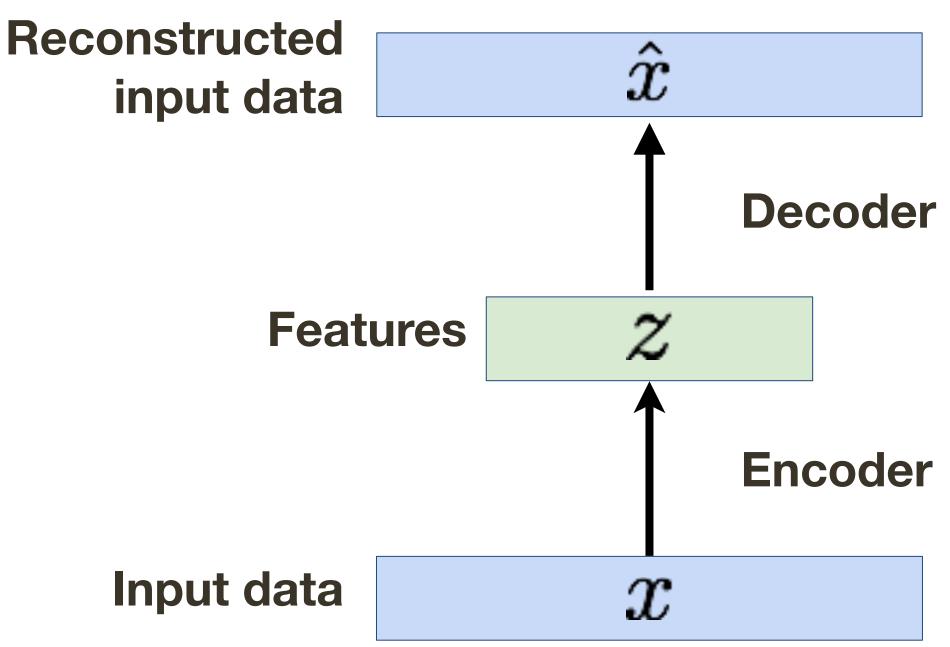
Originally: Linear + nonlinearity (sigmoid) Later: Deep, fully-connected Later: ReLU CNN

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

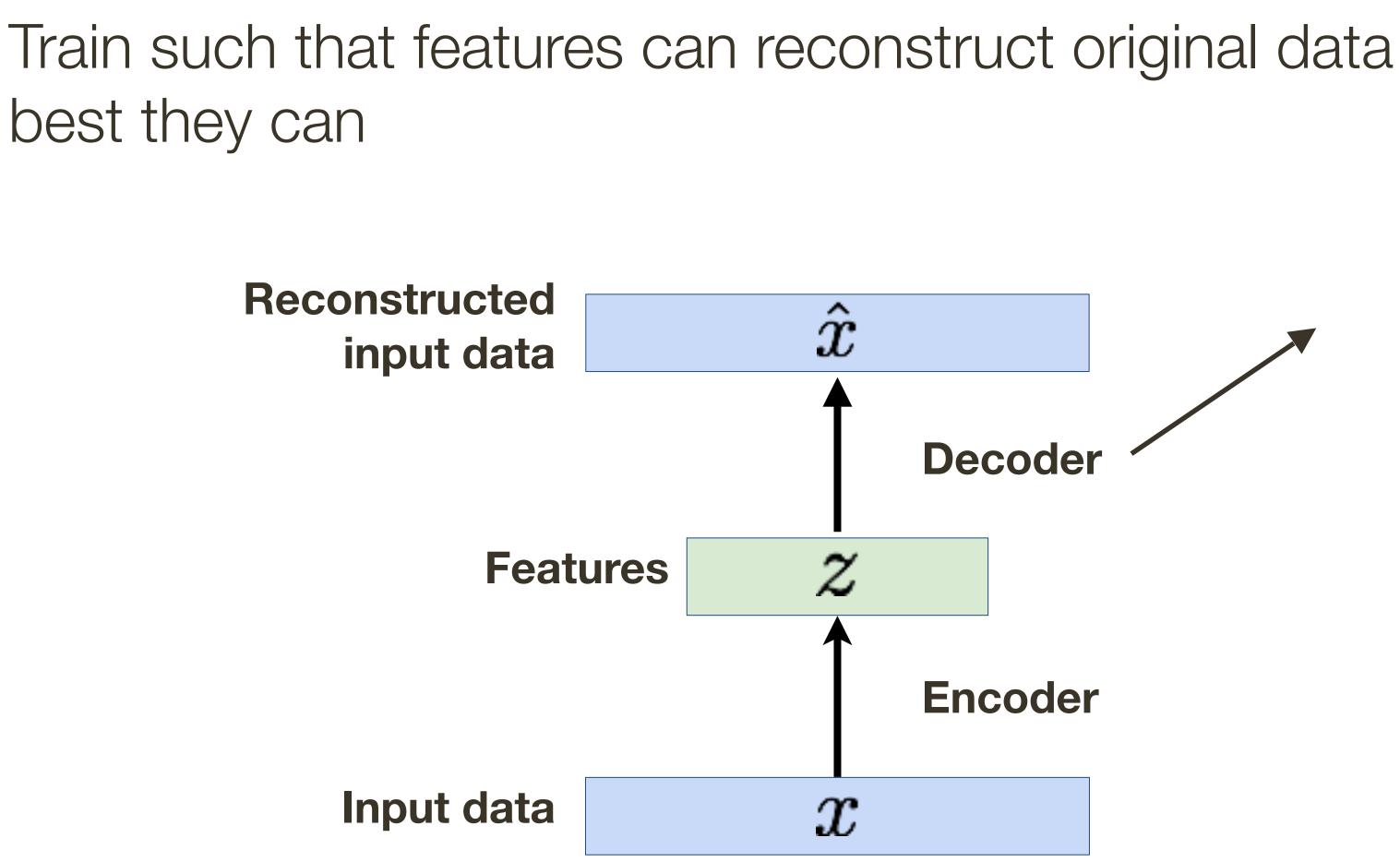


Originally: Linear + nonlinearity (sigmoid) Later: Deep, fully-connected Later: ReLU CNN

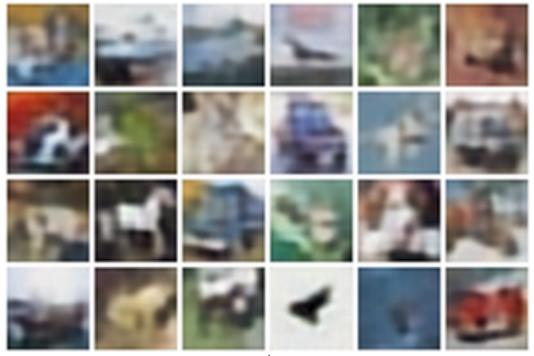
Train such that features can reconstruct original data best they can



best they can

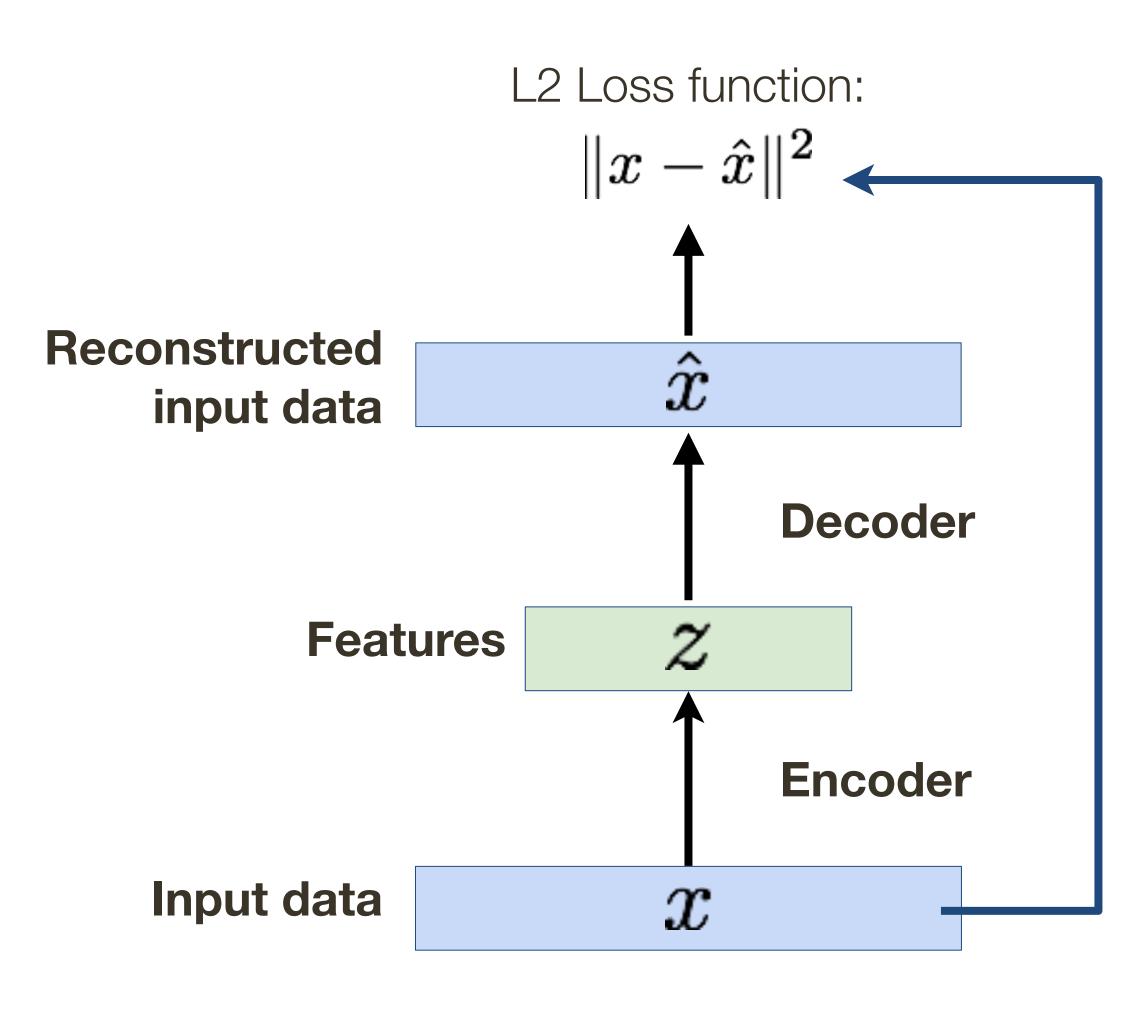


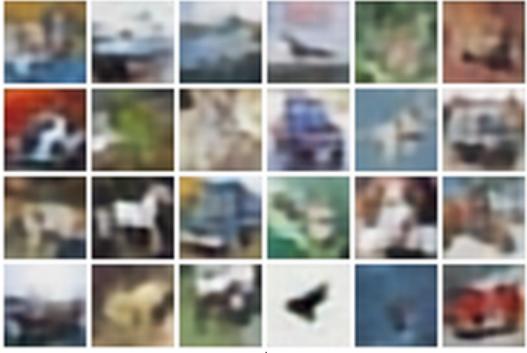
Reconstructed data



Encoder: 4-layer conv Decoder: 4-layer upconv

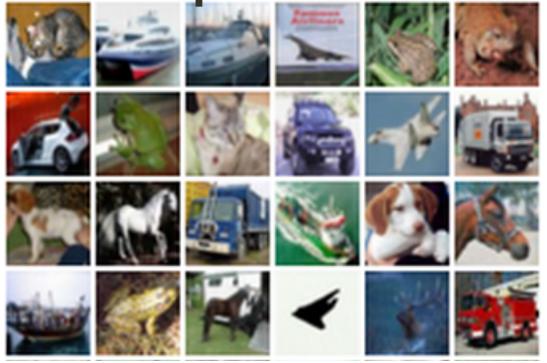
Input data

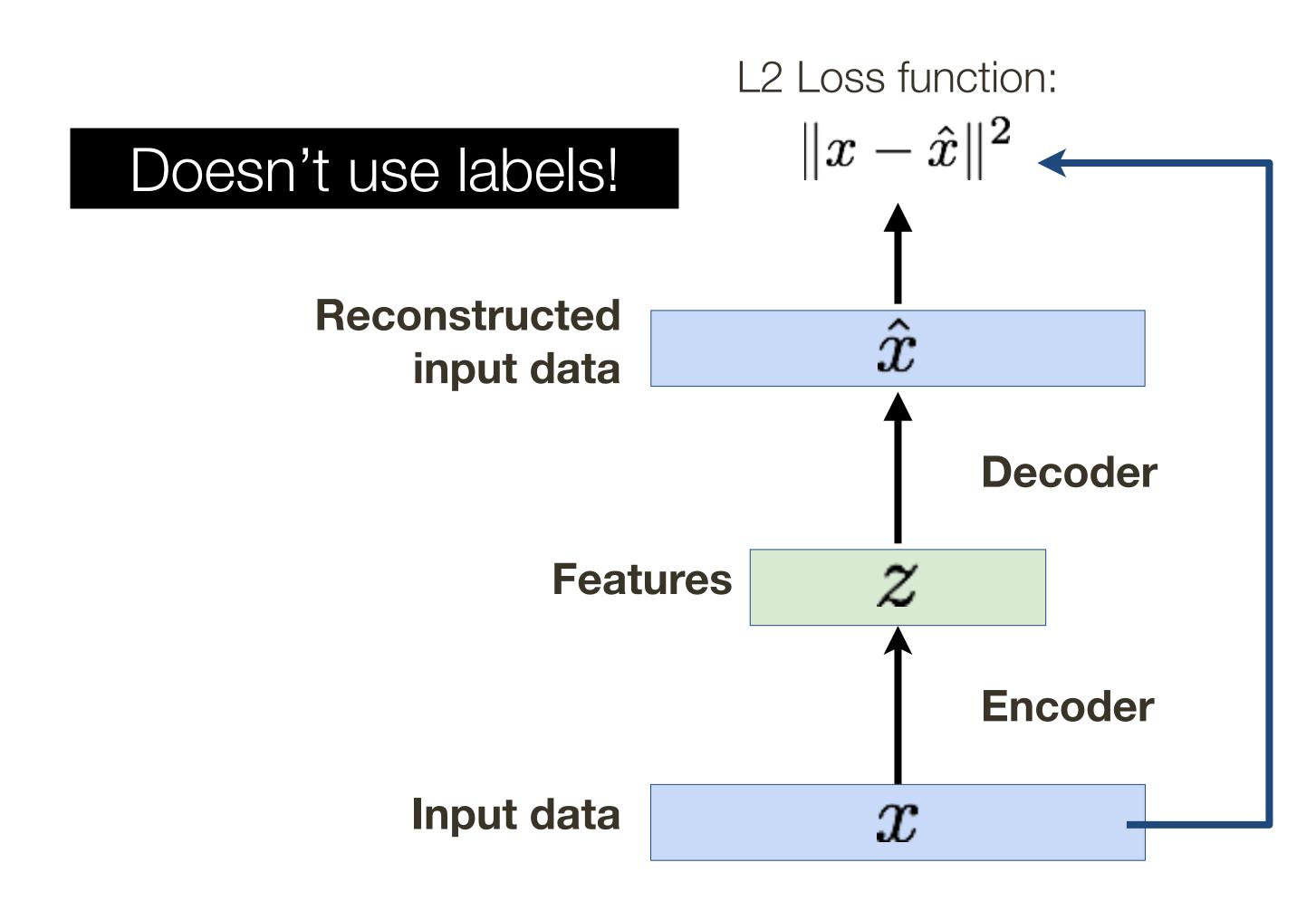


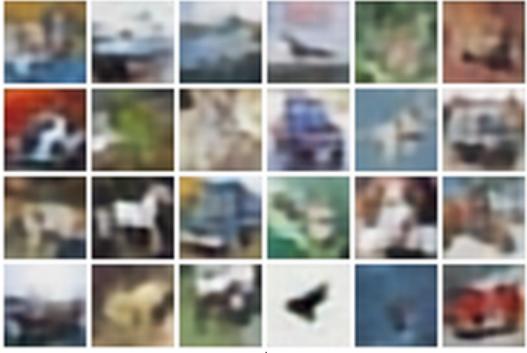


Encoder: 4-layer conv Decoder: 4-layer upconv

Input data

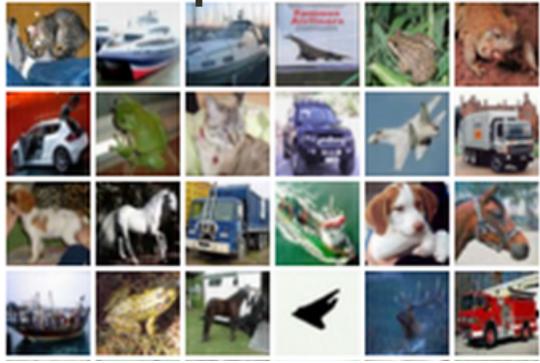


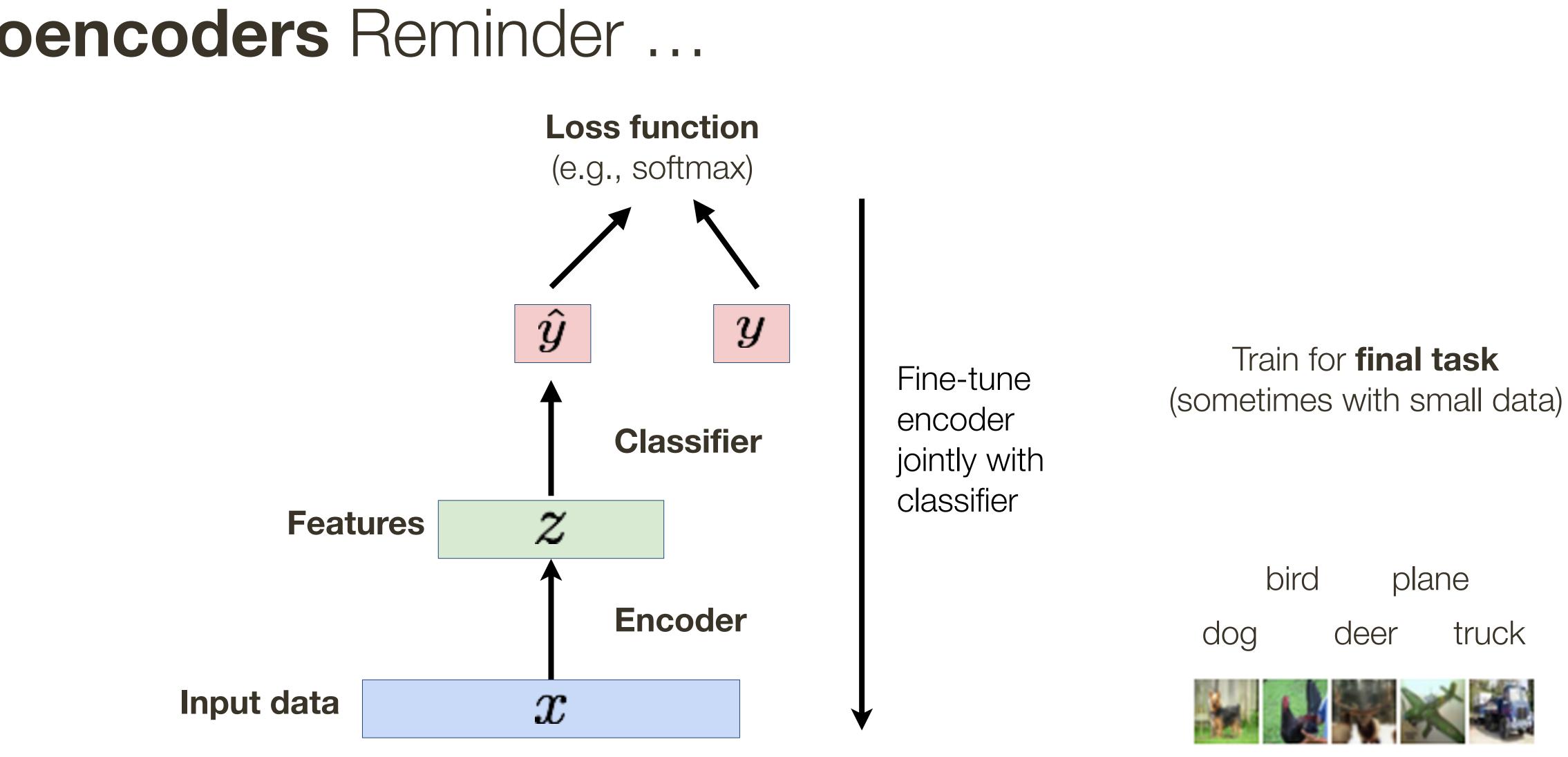




Encoder: 4-layer conv Decoder: 4-layer upconv

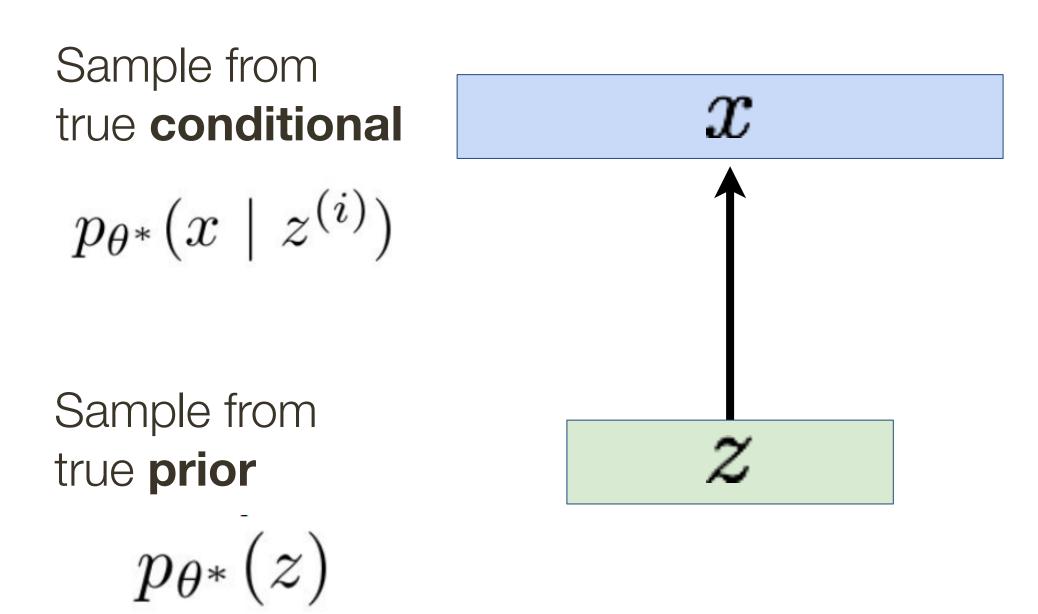
Input data





Probabilistic spin on autoencoder - will let us sample from the model to generate Assume training data is generated from underlying unobserved (latent)

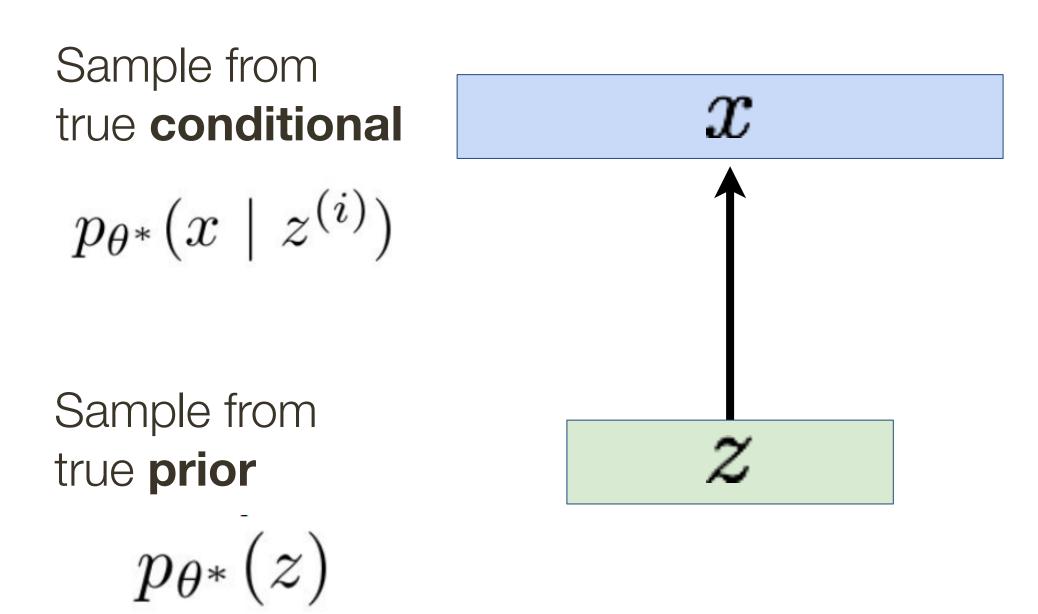
representation z



[Kingma and Welling, 2014]

Probabilistic spin on autoencoder - will let us sample from the model to generate Assume training data is generated from underlying unobserved (latent)

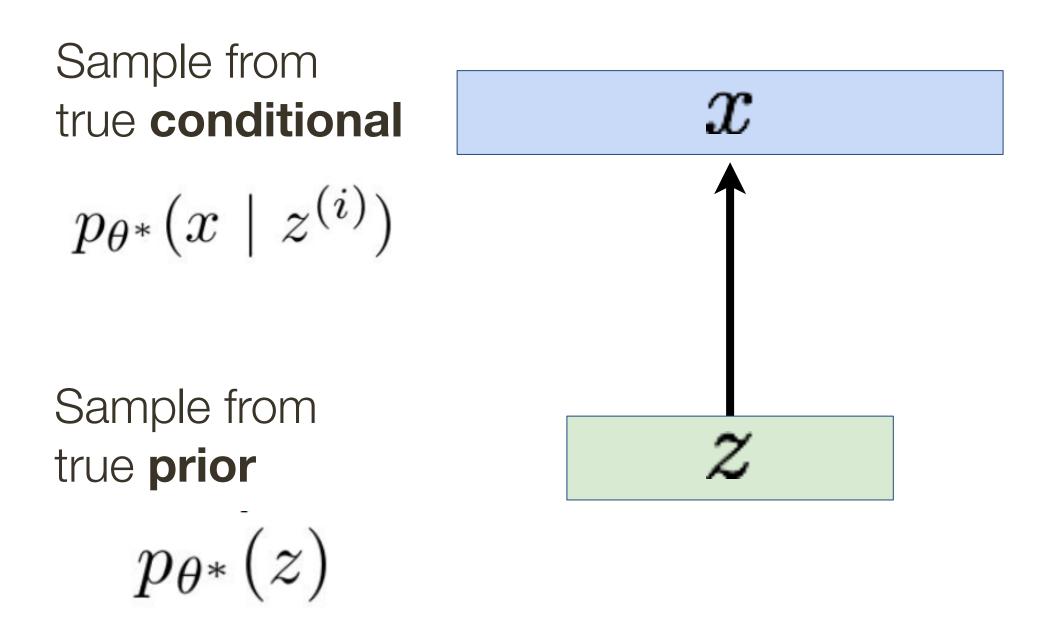
representation z



[Kingma and Welling, 2014]

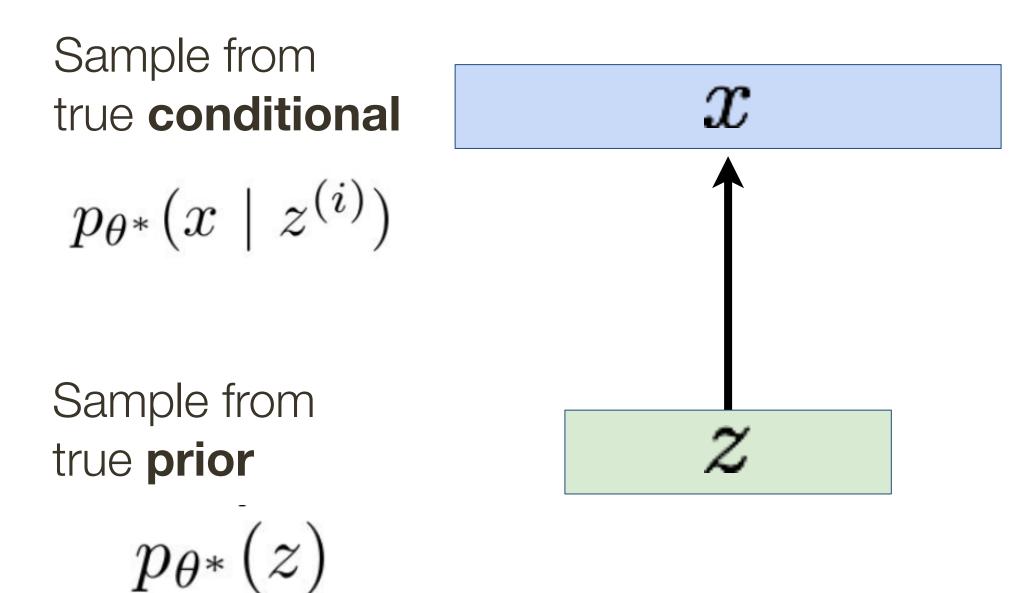
Intuition: *x* is an image, *z* is latent factors used to generate x (e.g., attributes, orientation, etc.)

We want to estimate the true parameters θ^* of this generative model



[Kingma and Welling, 2014]

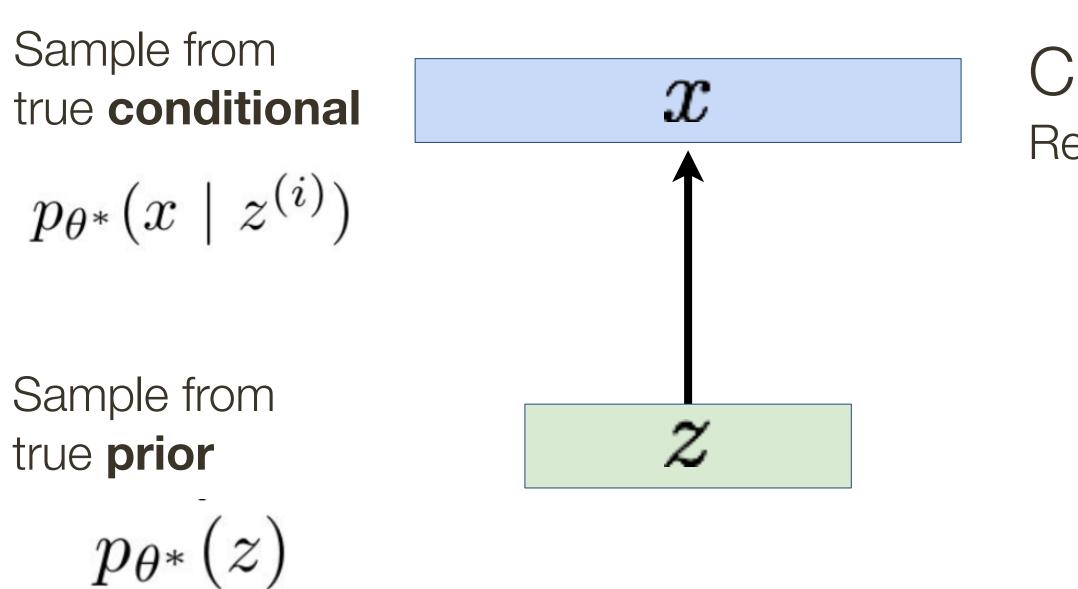
We want to estimate the true parameters θ^* of this generative model



[Kingma and Welling, 2014]

How do we **represent** this model?

We want to estimate the true parameters θ^* of this generative model

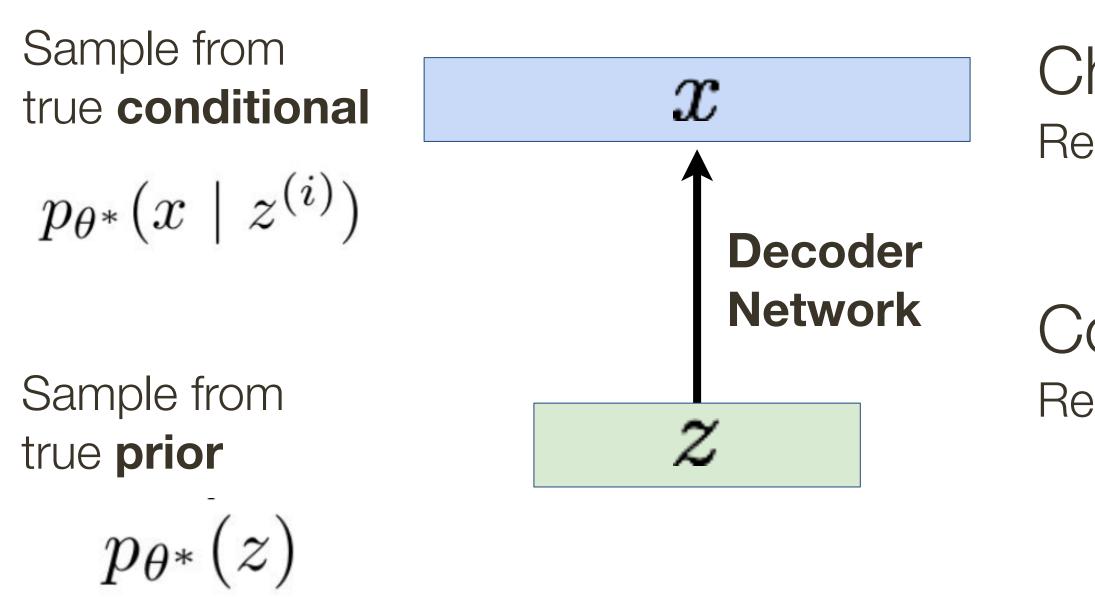


[Kingma and Welling, 2014]

How do we **represent** this model?

Choose prior p(z) to be simple, e.g., Gaussian Reasonable for latent attributes, e.g., pose, amount of smile

We want to estimate the true parameters θ^* of this generative model



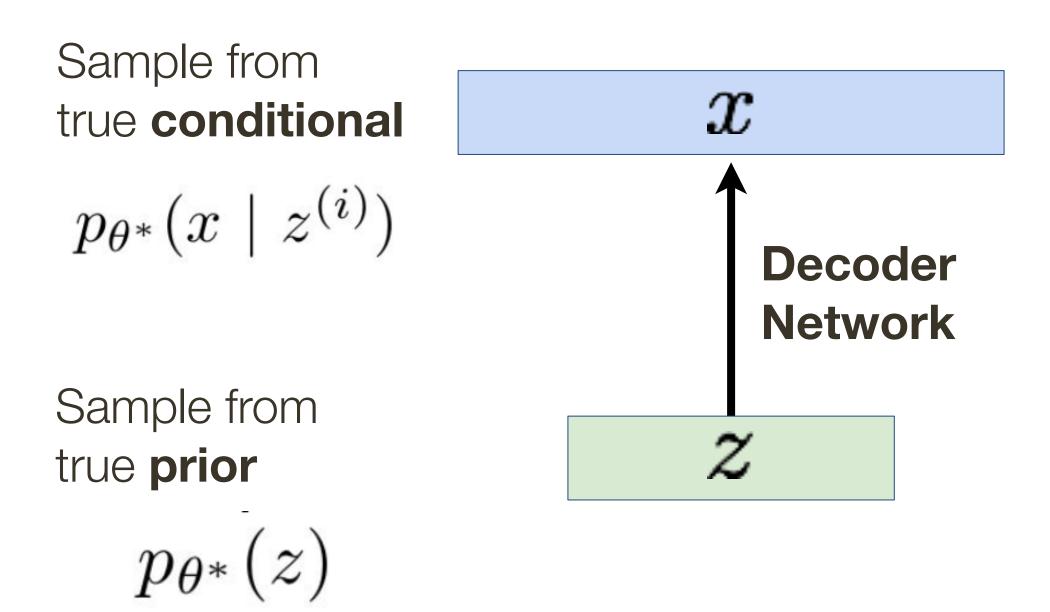
[Kingma and Welling, 2014]

How do we **represent** this model?

Choose prior p(z) to be simple, e.g., Gaussian Reasonable for latent attributes, e.g., pose, amount of smile

Conditional $p(\mathbf{x}|\mathbf{z})$ is complex (generates image) Represent with Neural Network

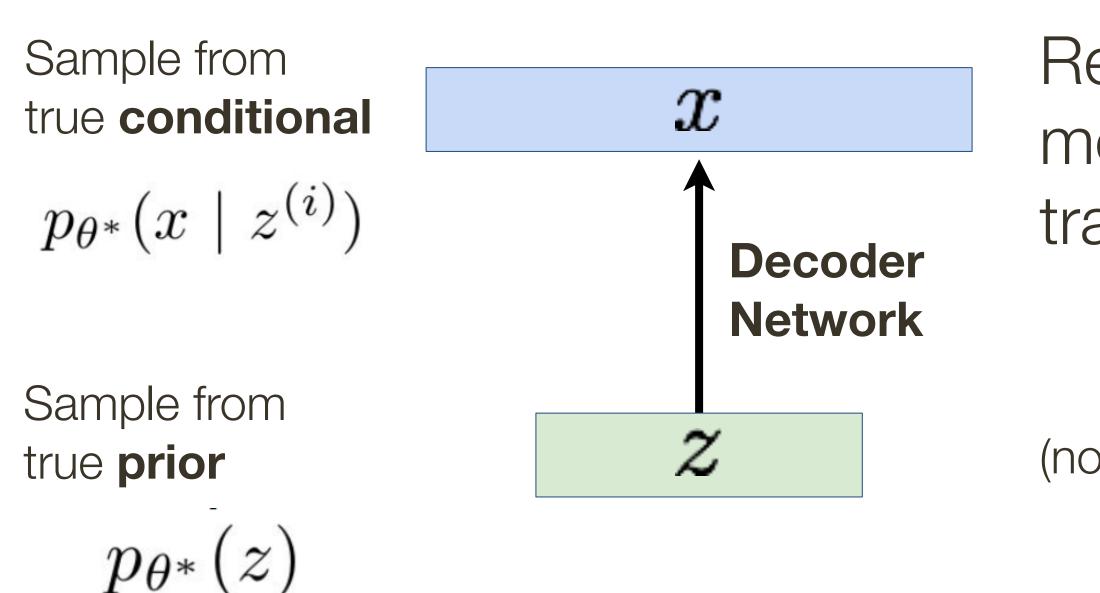
We want to estimate the true parameters θ^* of this generative model



[Kingma and Welling, 2014]

How do we **train** this model?

We want to estimate the true parameters θ^* of this generative model



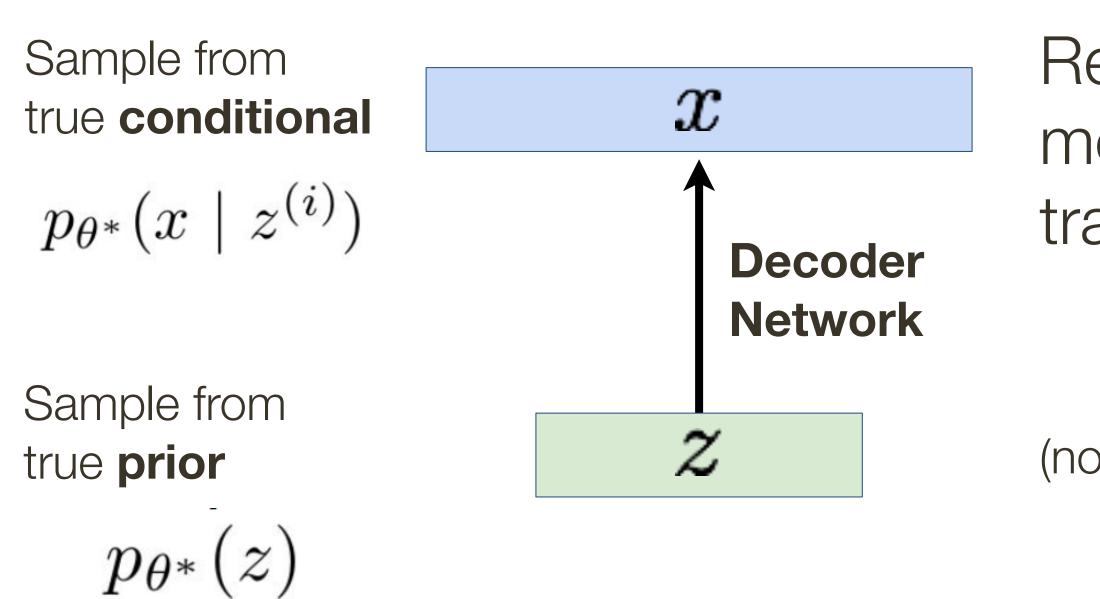
[Kingma and Welling, 2014]

How do we **train** this model?

Remember the strategy from earlier — learn model parameters to maximize likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

(now with latent z that we need to marginalize)

We want to estimate the true parameters θ^* of this generative model



[Kingma and Welling, 2014]

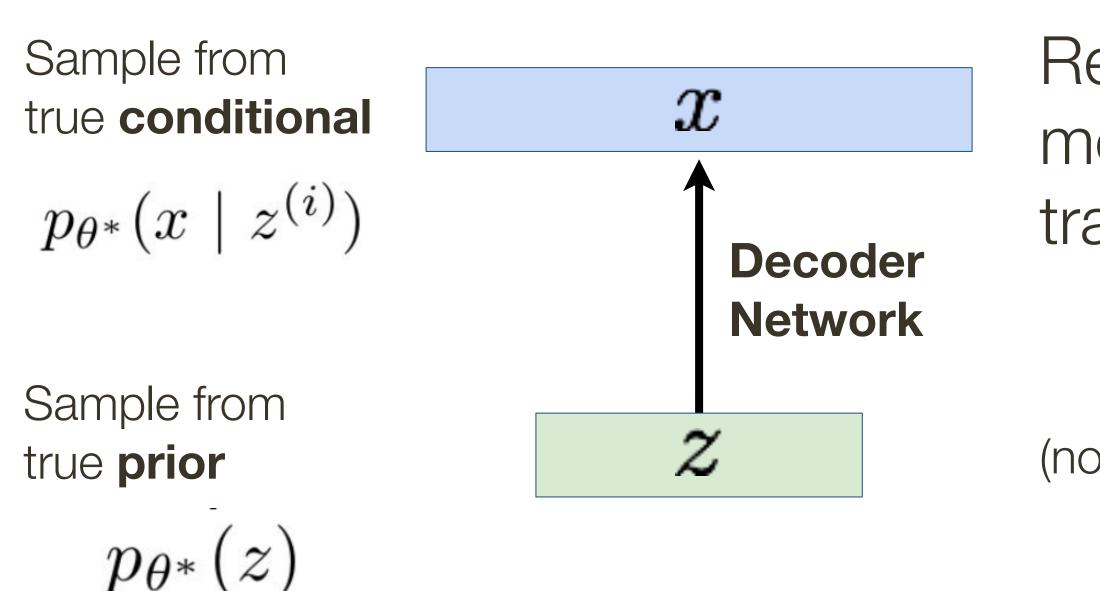
How do we **train** this model?

Remember the strategy from earlier — learn model parameters to maximize likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

(now with latent z that we need to marginalize)

What is the problem with this?

We want to estimate the true parameters θ^* of this generative model



[Kingma and Welling, 2014]

How do we **train** this model?

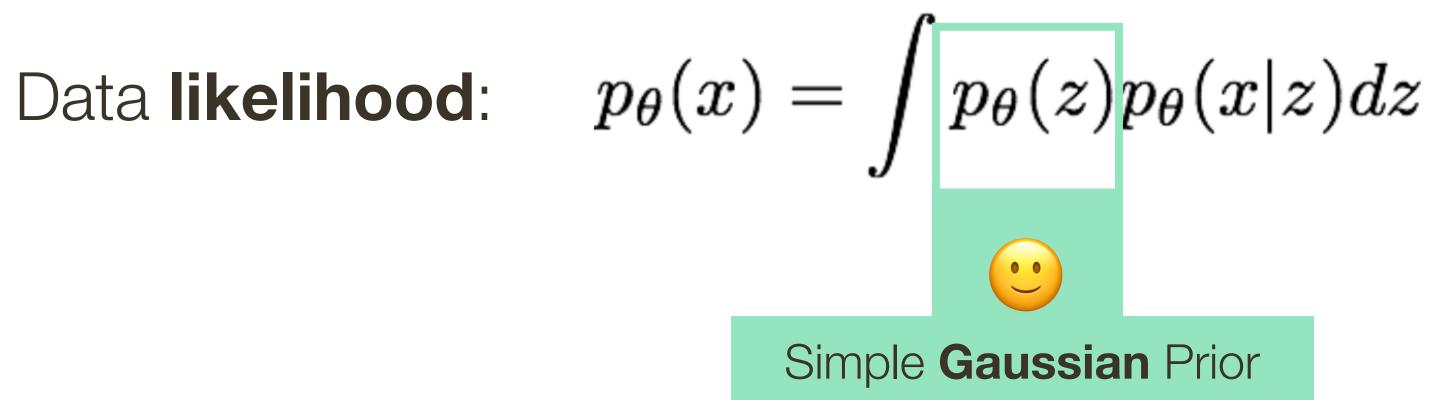
Remember the strategy from earlier — learn model parameters to maximize likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

(now with latent z that we need to marginalize)

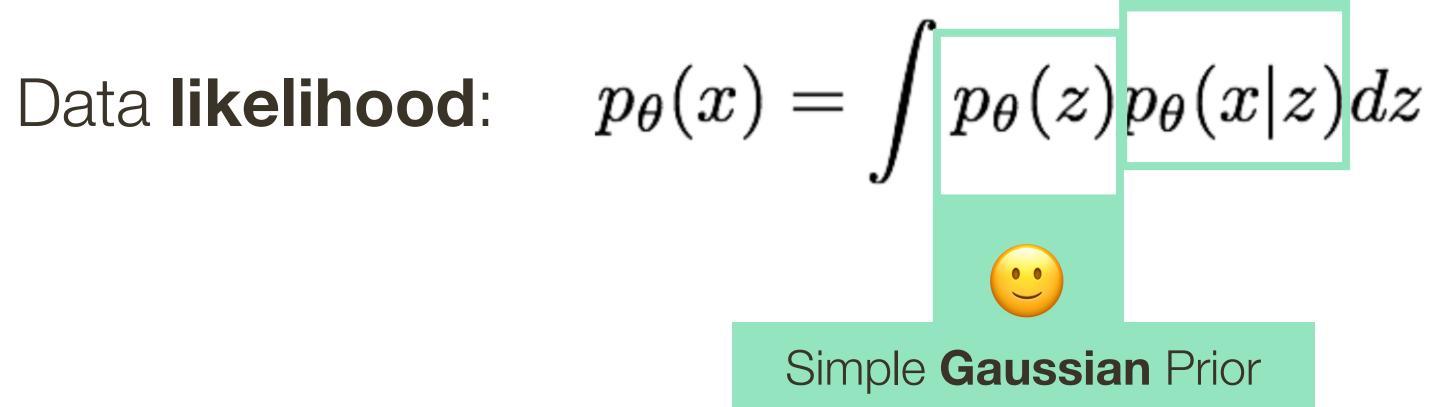
Intractable !

Data likelihood: $p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$

[Kingma and Welling, 2014]



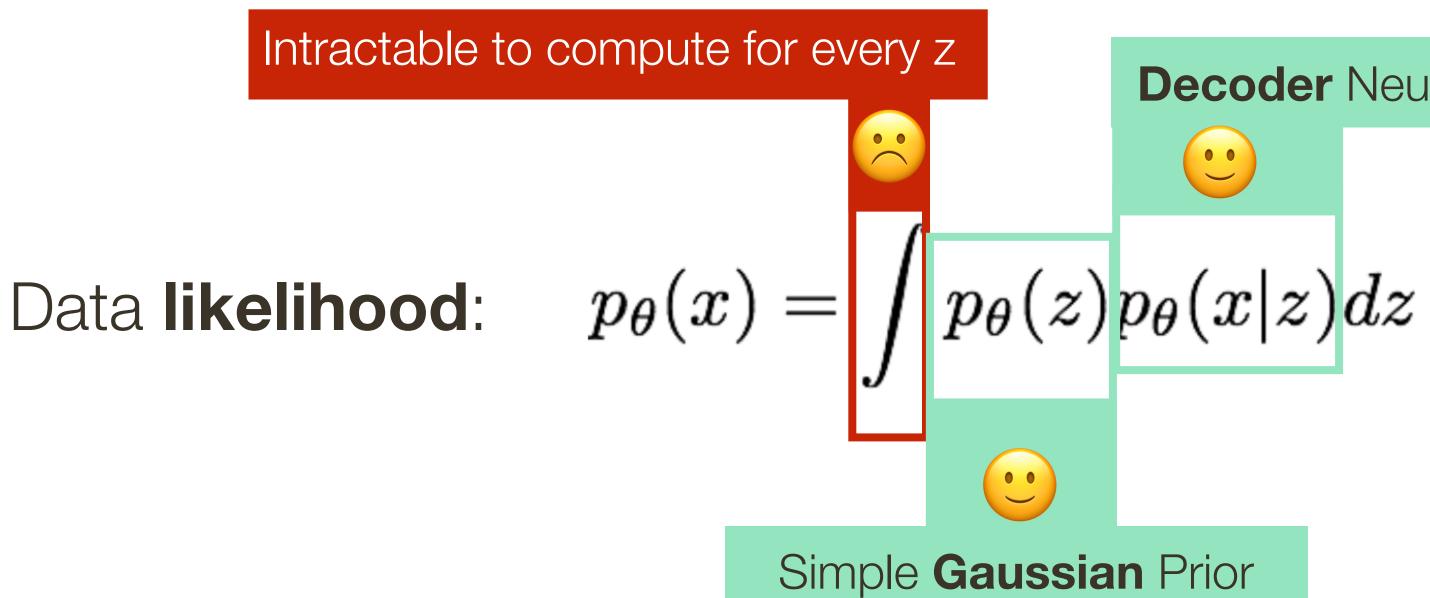
[Kingma and Welling, 2014]



[Kingma and Welling, 2014]

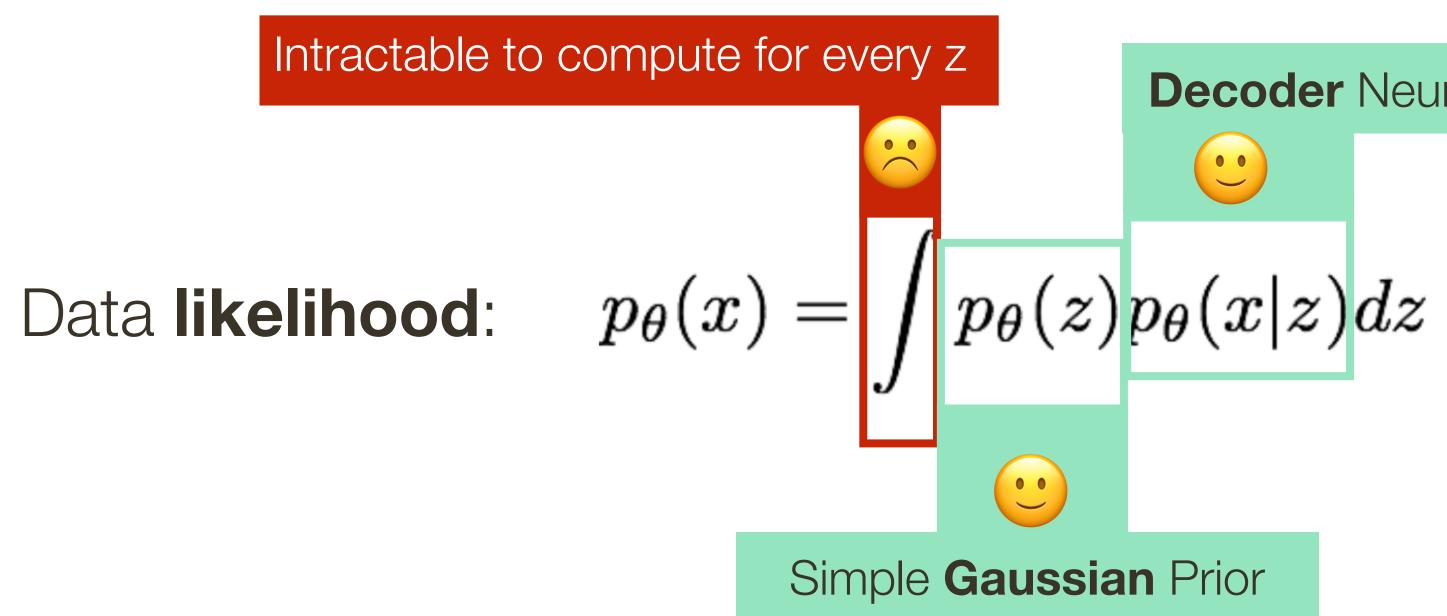
Decoder Neural Network

• •



[Kingma and Welling, 2014]

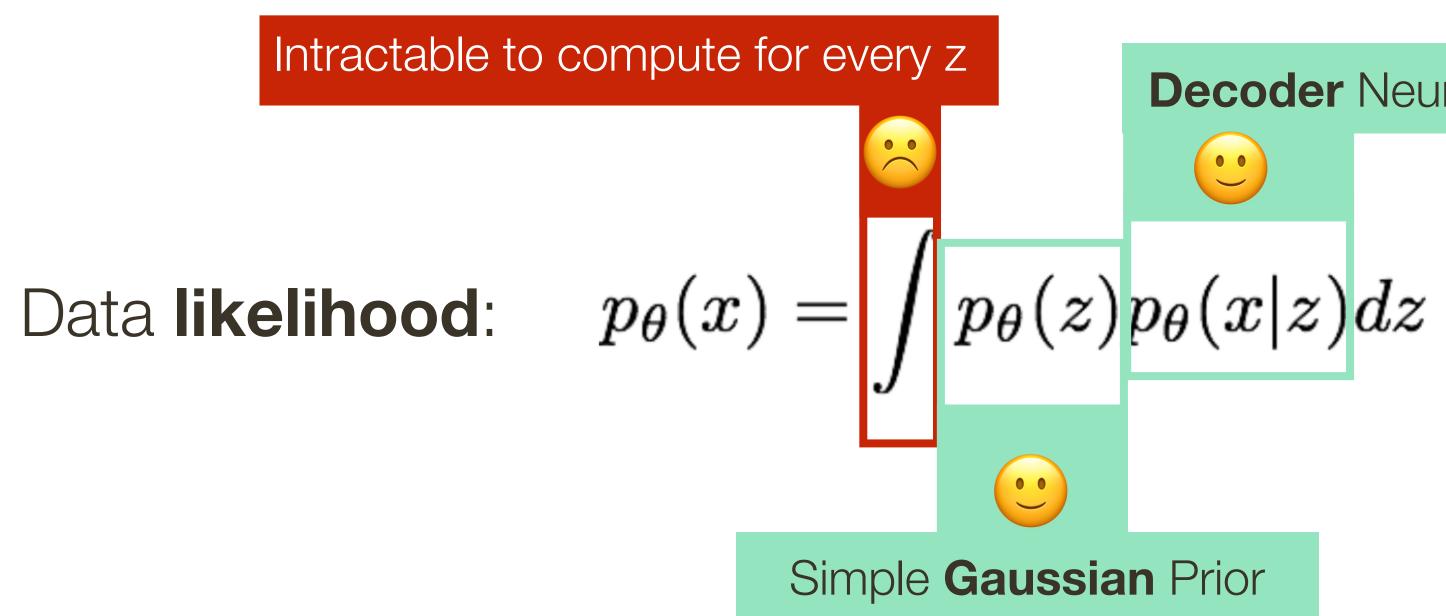
Decoder Neural Network



Posterior density is also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$

[Kingma and Welling, 2014]

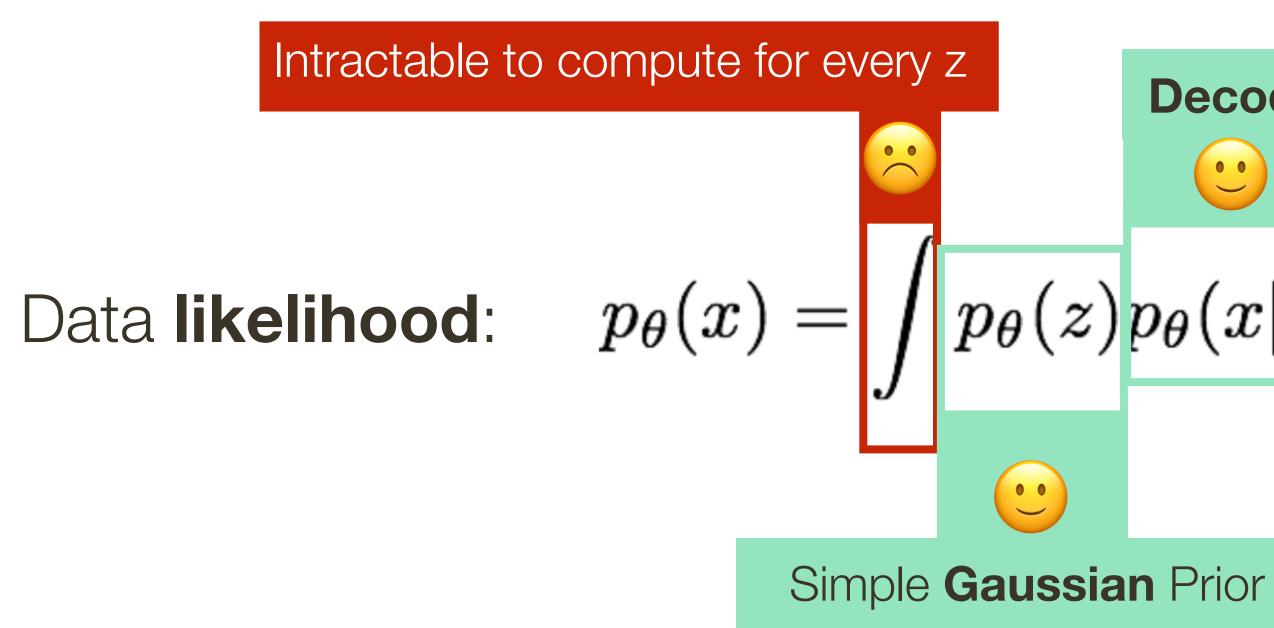
Decoder Neural Network



[Kingma and Welling, 2014]

Decoder Neural Network

Posterior density is also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$



Posterior density is also intractable: p

Solution: In addition to decoder network modeling $p_{\theta}(x|z)$, define additional encoder network $q_{\Phi}(z|x)$ that approximates $p_{\theta}(z|x)$ - Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

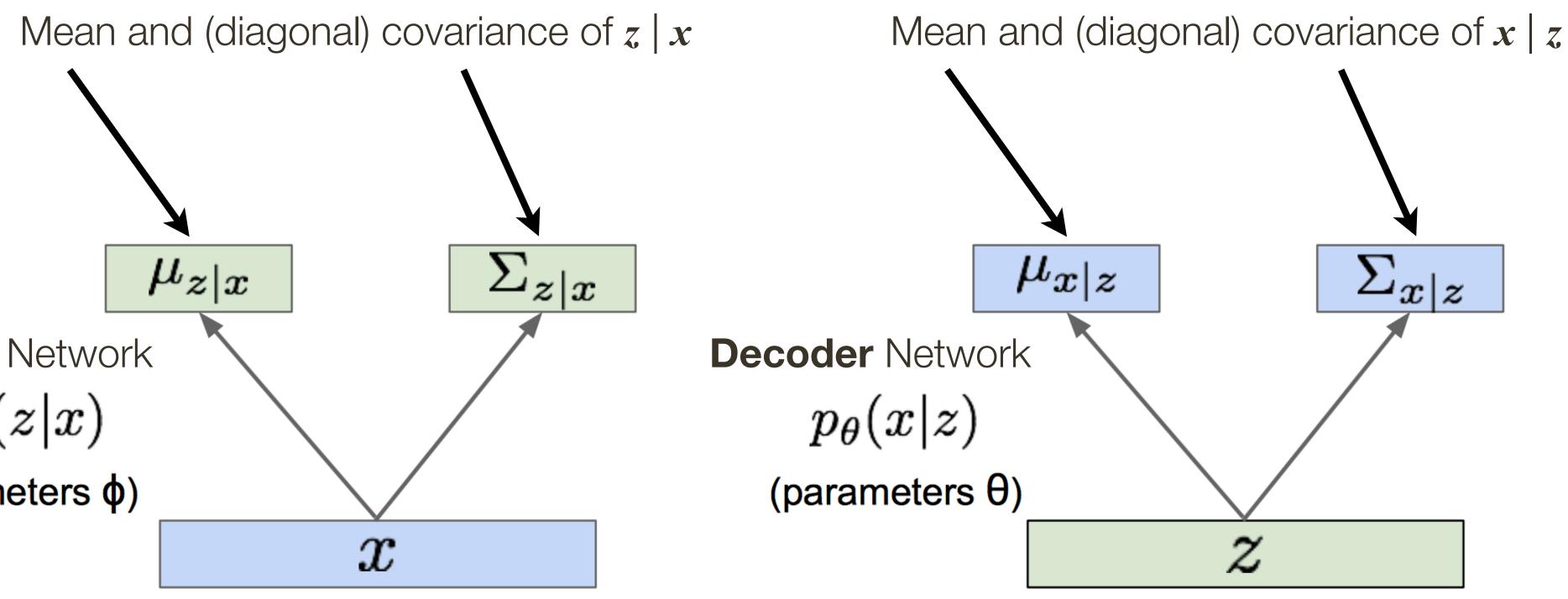
[Kingma and Welling, 2014]

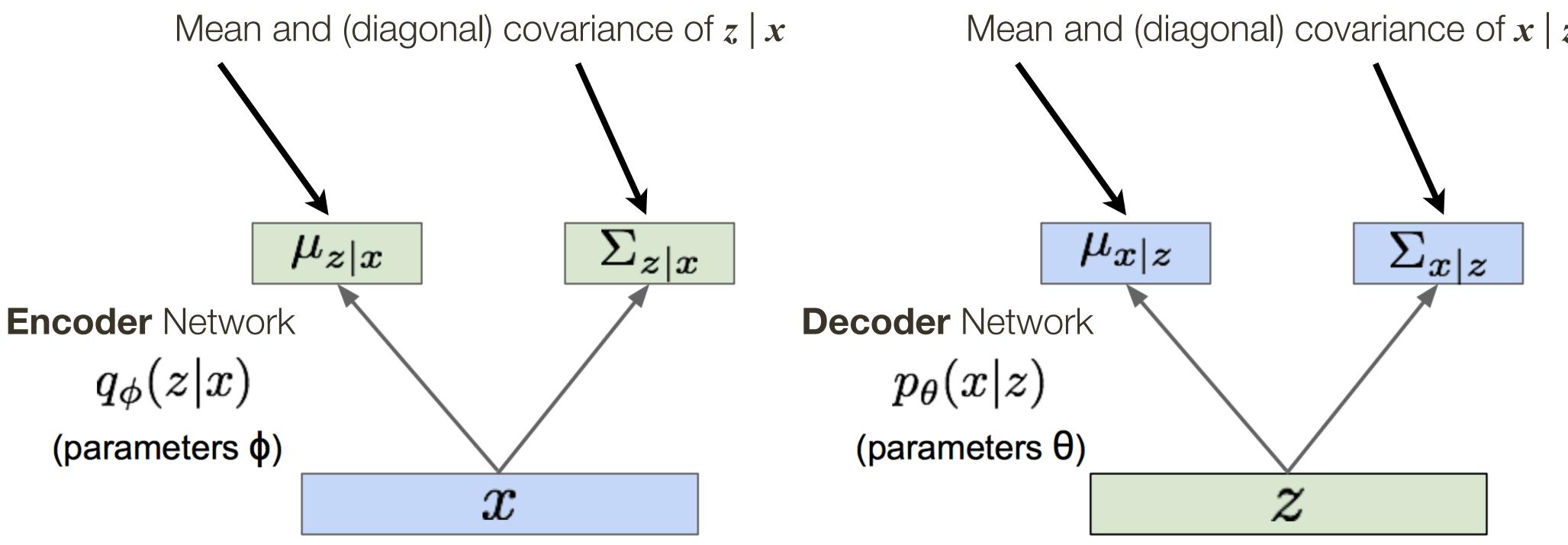
Decoder Neural Network

$$p_{ heta}(x|z)dz$$

$$p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$$

networks are probabilistic (they model distributions)

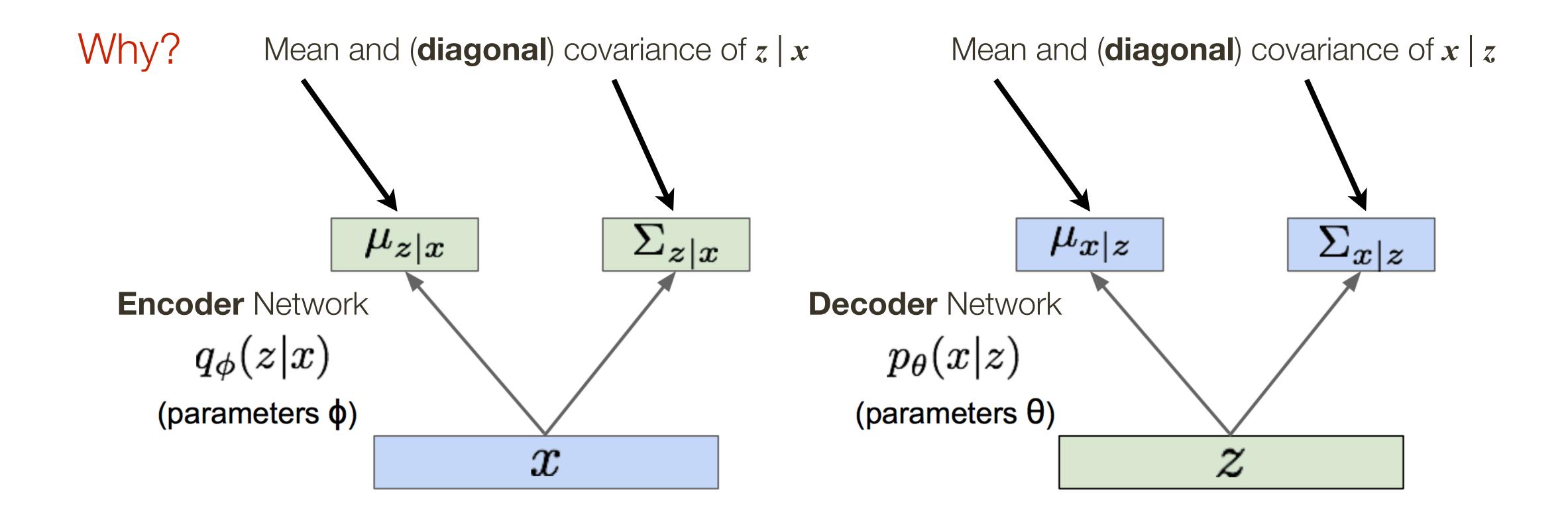




[Kingma and Welling, 2014]

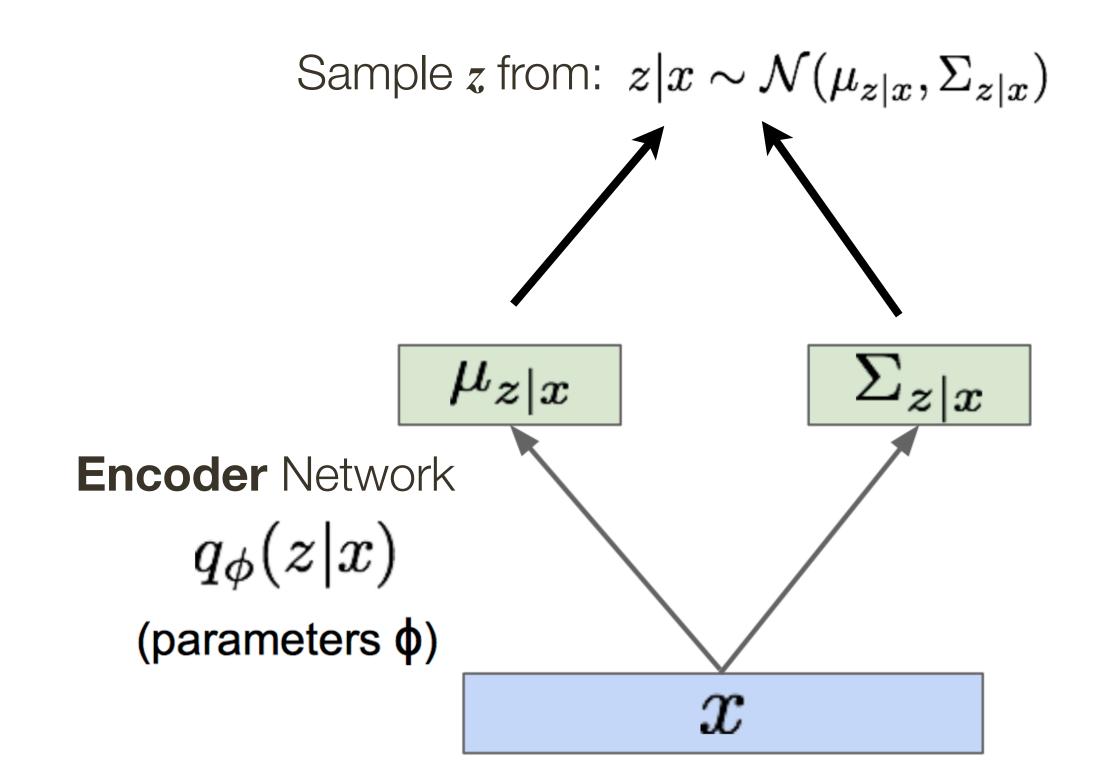
Since we are modeling probabilistic generation of data, encoder and decoder

Since we are modeling probabilistic generation of data, encoder and decoder networks are probabilistic (they model distributions)

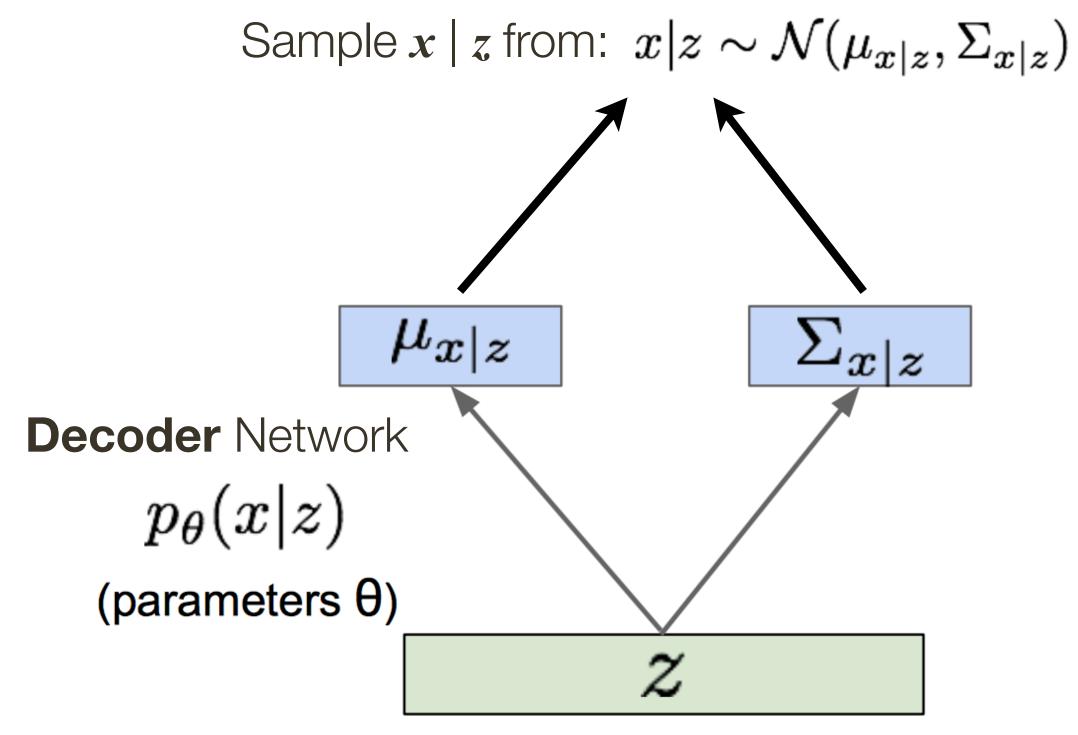


[Kingma and Welling, 2014]

Since we are modeling probabilistic generation of data, encoder and decoder networks are probabilistic (they model distributions)



[Kingma and Welling, 2014]



Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta})$$

Taking expectation with respect to z (using encoder network) will come in handy later

[Kingma and Welling, 2014]

 $(x^{(i)})$ Does not depend on z)

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta})$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (Ba)$$

[Kingma and Welling, 2014]

 $(x^{(i)})$ Does not depend on z)

ayes' Rule)

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta})$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Ba)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)}\right]$$

[Kingma and Welling, 2014]

 $(x^{(i)})$ Does not depend on z)

ayes' Rule)

 $\left| \frac{r^{(i)}}{r^{(i)}} \right|$ (Multiply by constant)

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood: $(x^{(i)})$ Does not depend on z)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) = \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Bay)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] = \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log$$

[Kingma and Welling, 2014]

yes' Rule)

 $\left| \frac{c^{(i)}}{c^{(i)}} \right|$ (Multiply by constant) $\frac{\phi(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)}$

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood: $(x^{(i)})$ Does not depend on z)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) = \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Bay)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}}{q_{\phi}(z \mid x^{(i)})}\right] = \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}))$$

Expectation with respect to z (using encoder network) leads to nice KL terms

[Kingma and Welling, 2014]

yes' Rule)

 $\left[\frac{i^{(i)}}{i^{(i)}}\right]$ (Multiply by constant) $\frac{\phi(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \qquad \text{(Logarithms)}$ $|x^{(i)}|| p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))|$

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood: $(x^{(i)})$ Does not depend on z)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(z))$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})}\right] \quad (Ba)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right]$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} - D_{KL}(q_{\phi}(z \mid x^{(i)}))\right]$$

Decoder network gives $p_A(x|z)$, can compute estimate of this term through sampling. (Sampling differentiable through **reparam. trick**, see paper.)

[Kingma and Welling, 2014]

yes' Rule)

 $\left| \frac{r^{(i)}}{r^{(i)}} \right|$ (Multiply by constant) $\frac{\phi(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)}$ $|x^{(i)}|| p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))|$ p_A(z x) intractable (saw earlier), can't This KL term (between Gaussians) for encoder and z prior) has nice compute this KL term :(closed-form solution! But we know KL divergence always ≥ 0 .

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z \mid x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)})) \\ \end{split}$$

Tractable lower bound which we can take gradient of and optimize! ($p\theta(x|z)$ differentiable, KL term differentiable) [Kingma and Welling, 2014]

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

Variational lower bound ("**ELBO**")

[Kingma and Welling, 2014]

$$\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^N \mathcal{L}(x^{(i)}, \theta, \phi)$$

Derivation of lower bound of the data likelihood

Now equipped with **encoder** and **decoder** networks, let's see (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$\begin{array}{c|c} \textbf{Reconstruct}\\ \textbf{Input Data} & \textbf{Make approximate posterior}\\ close to the prior\\ = \underbrace{\textbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))\\ t_{\lambda}(x^{(i)}, \theta, \phi) & \textbf{Training: Maximize lower bound on the prior}\\ \log p_{\theta}(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi) & \textbf{Training: Maximize lower bound on the prior}\\ \end{array}$$

Variational lower bound ("**ELBO**")

[Kingma and Welling, 2014]

 \mathbf{O}

$$\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^N \mathcal{L}(x^{(i)}, \theta, \phi)$$

Putting it all together:

maximizing the likelihood lower bound

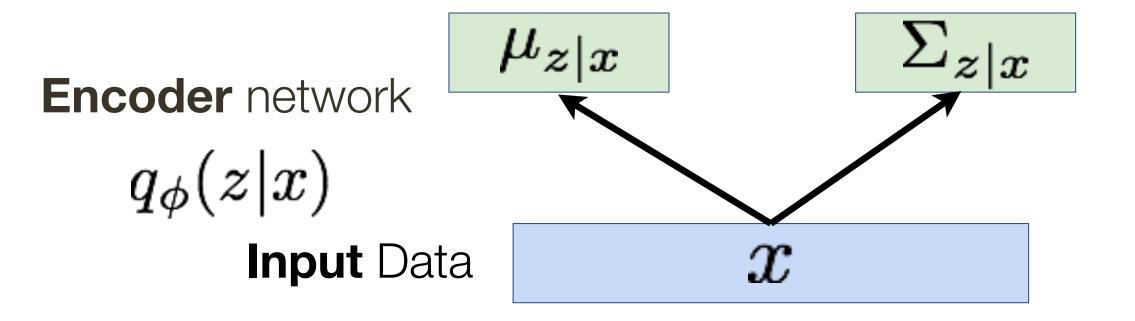
$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Lets look at **computing the bound** (forward pass) for a given mini batch of input data

Putting it all together:

maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

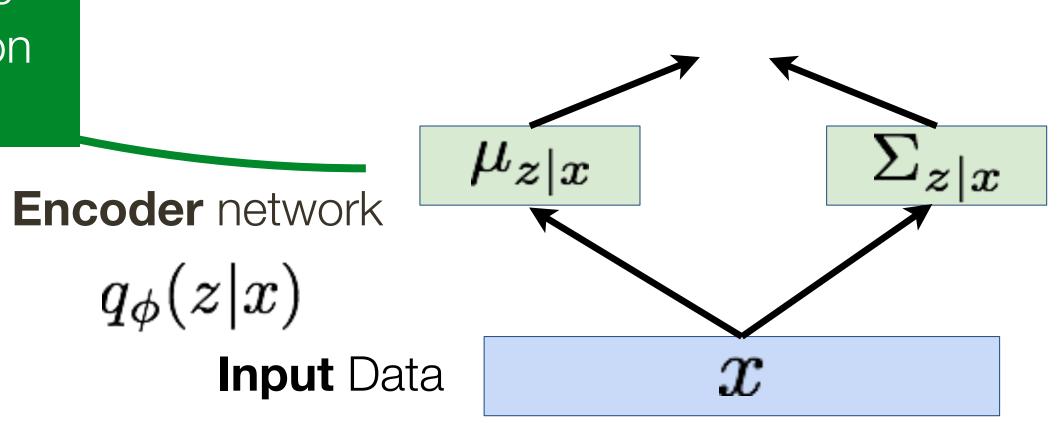


Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

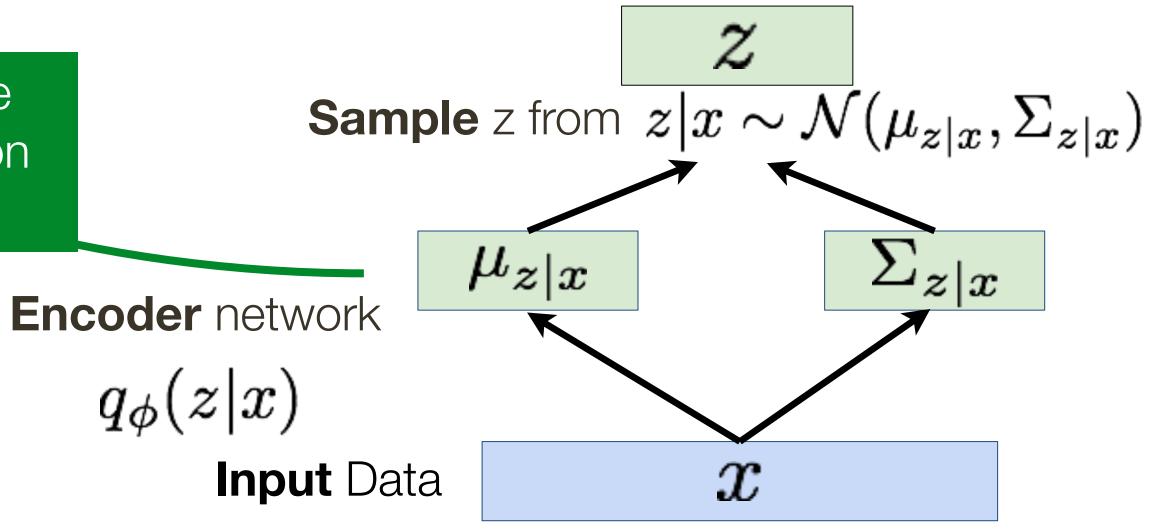


Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior

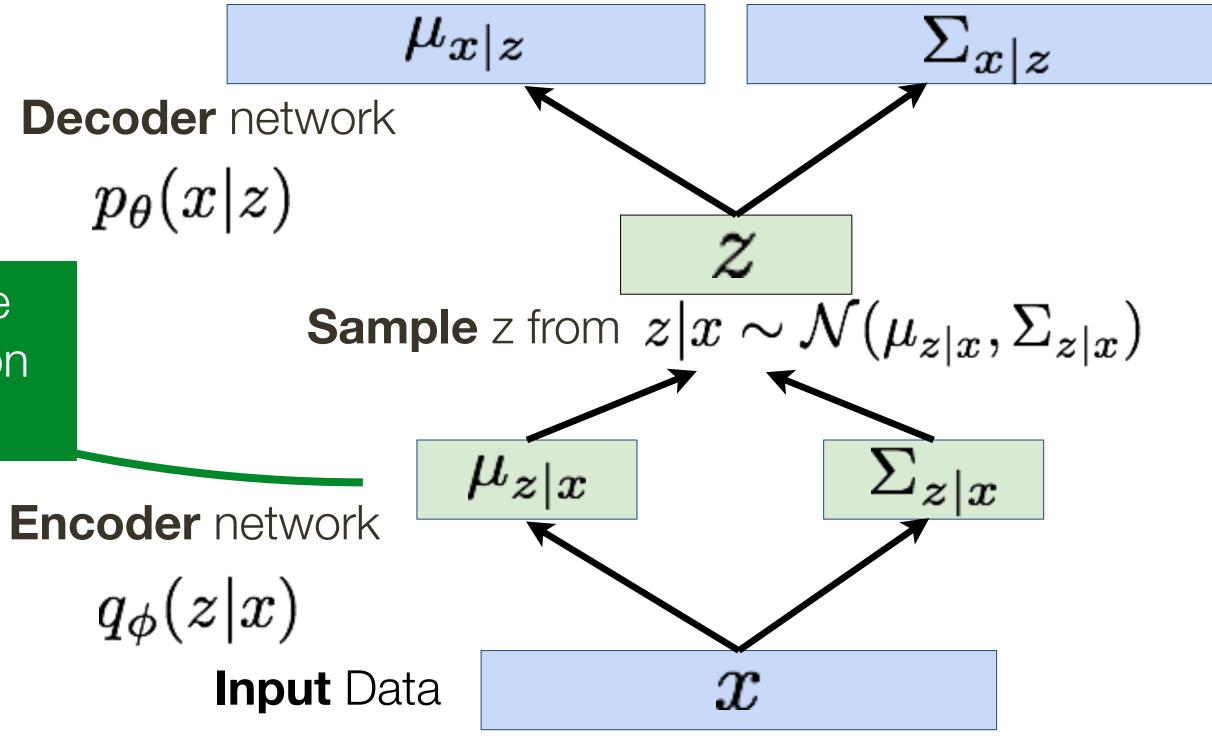


Putting it all together:

maximizing the likelihood lower bound

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
Make approximate posterior distribution close to prior



Putting it all together:

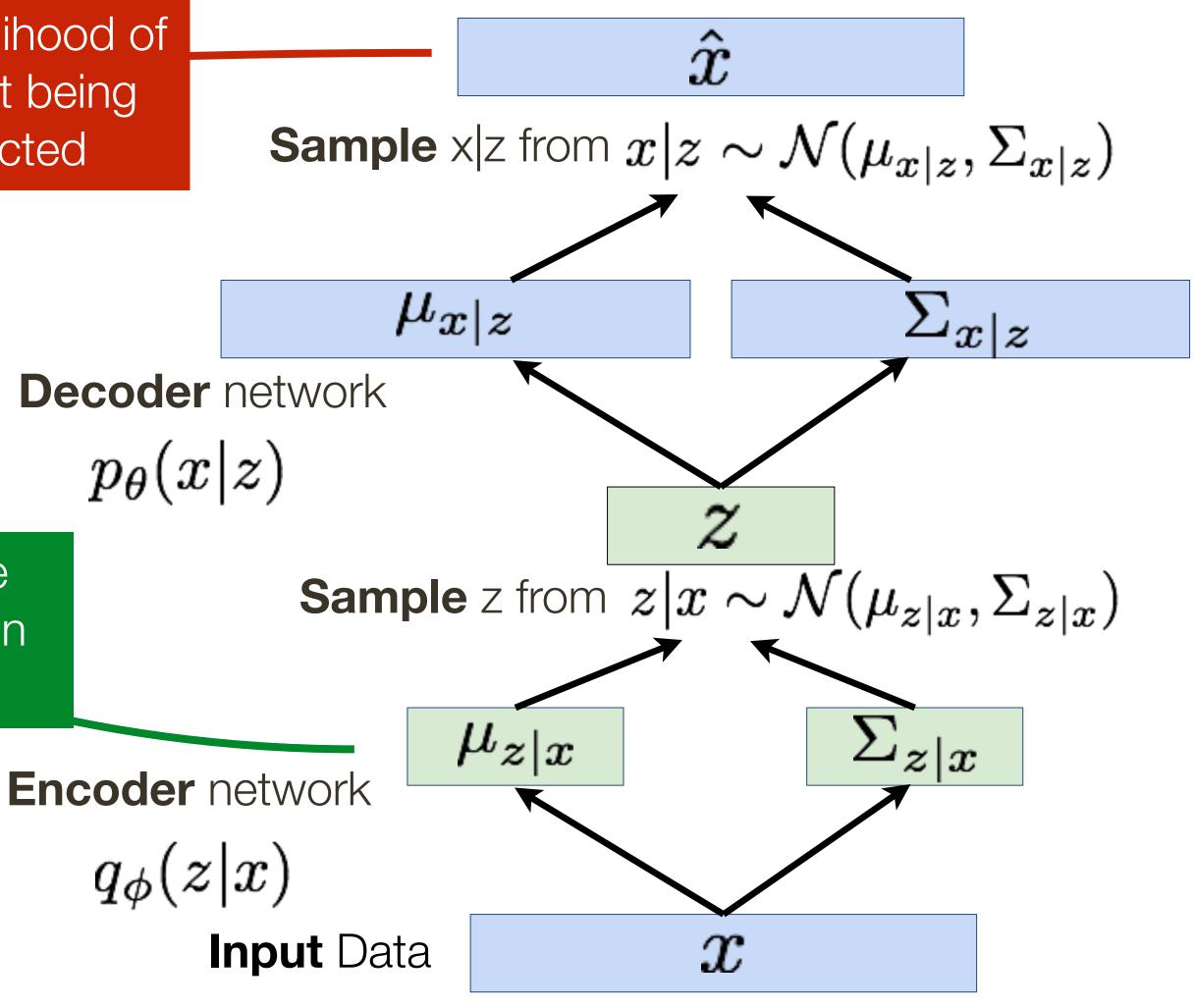
maximizing the likelihood lower bound

Maximize likelihood of original input being reconstructed

$$\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

 $\mathcal{L}(x^{(i)}, \theta, \phi)$

Make approximate posterior distribution close to prior



Putting it all together:

maximizing the likelihood lower bound

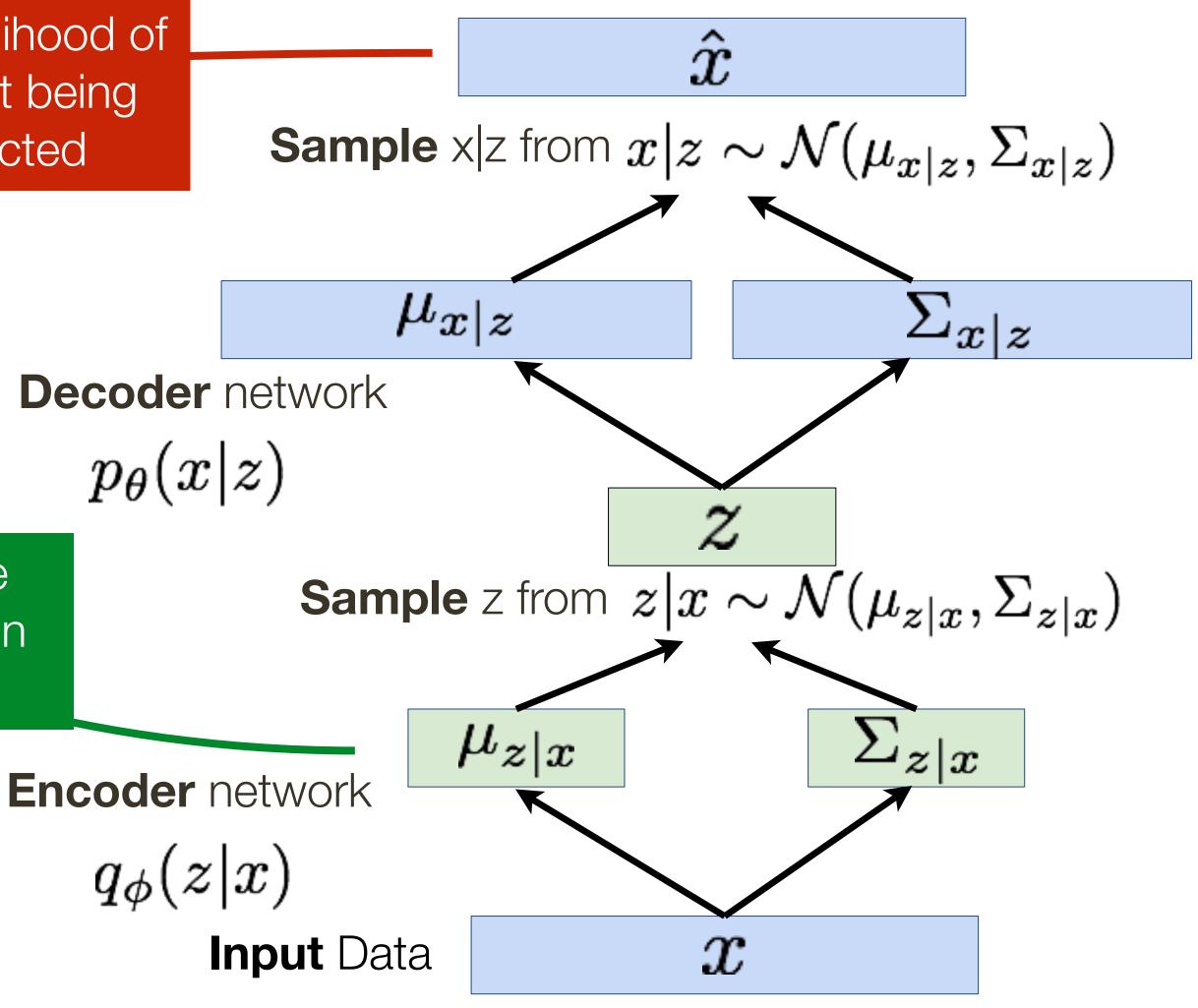
Maximize likelihood of original input being reconstructed

$$\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

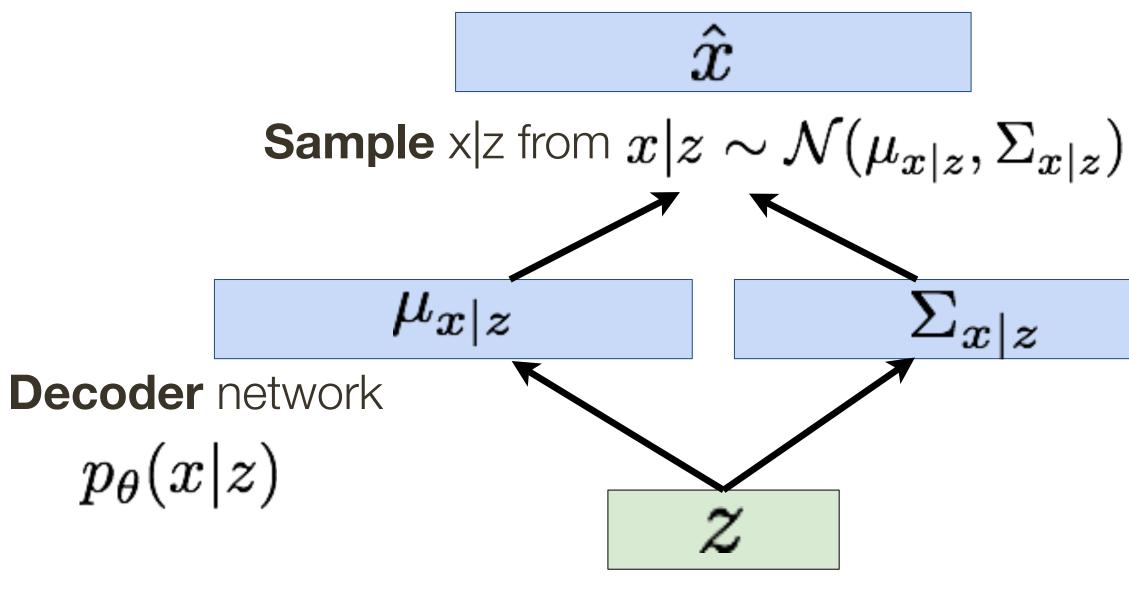
 $\mathcal{L}(x^{(i)}, \theta, \phi)$

Make approximate posterior distribution close to prior

For every minibatch of input data: compute this forward pass, and then backprop!

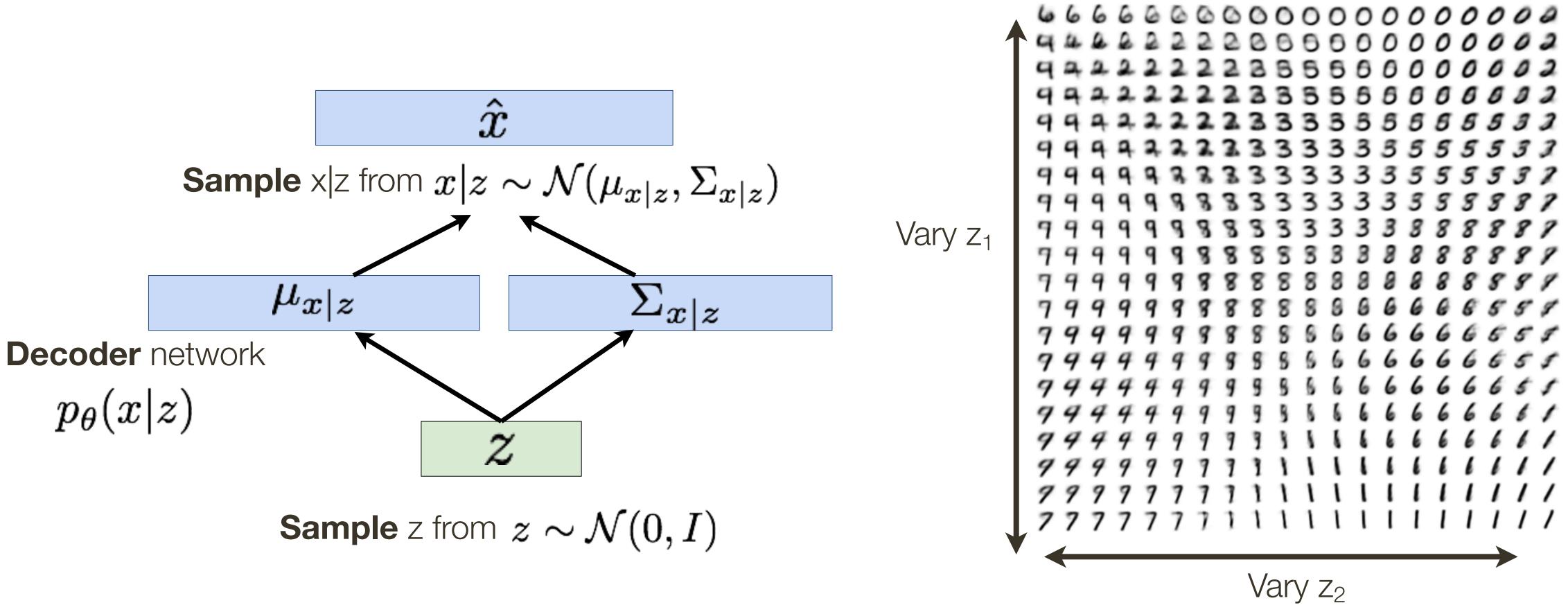


Use decoder network and sample z from **prior**



Sample z from $z \sim \mathcal{N}(0, I)$

Use decoder network and sample z from **prior**

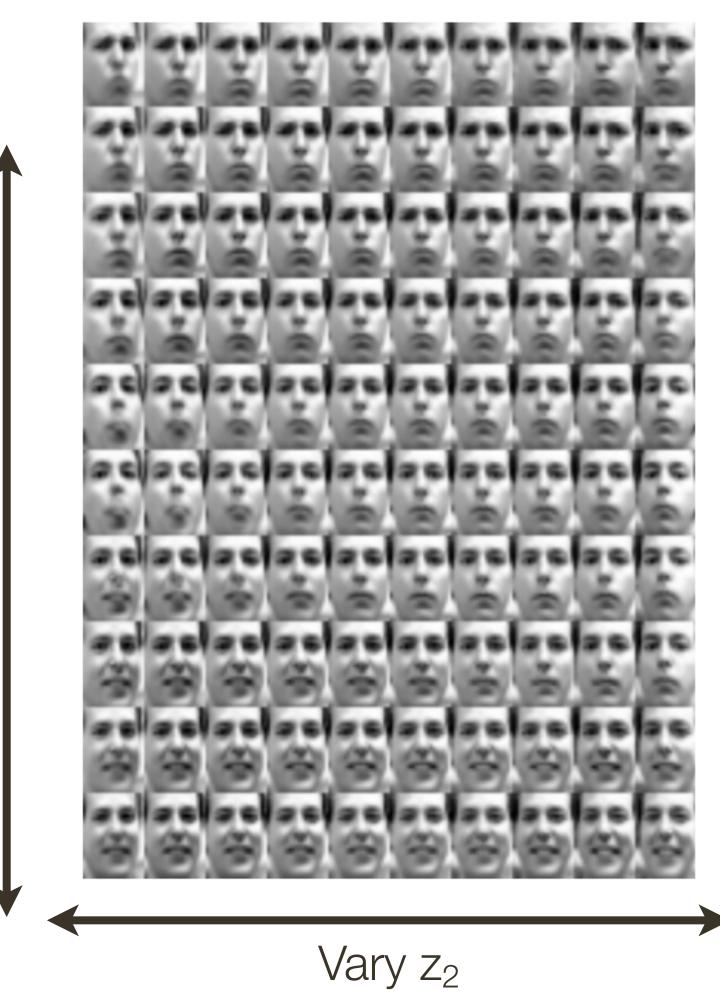


Data manifold for 2-d z

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Data manifold for 2-d z



Vary z_1

(degree of smile)

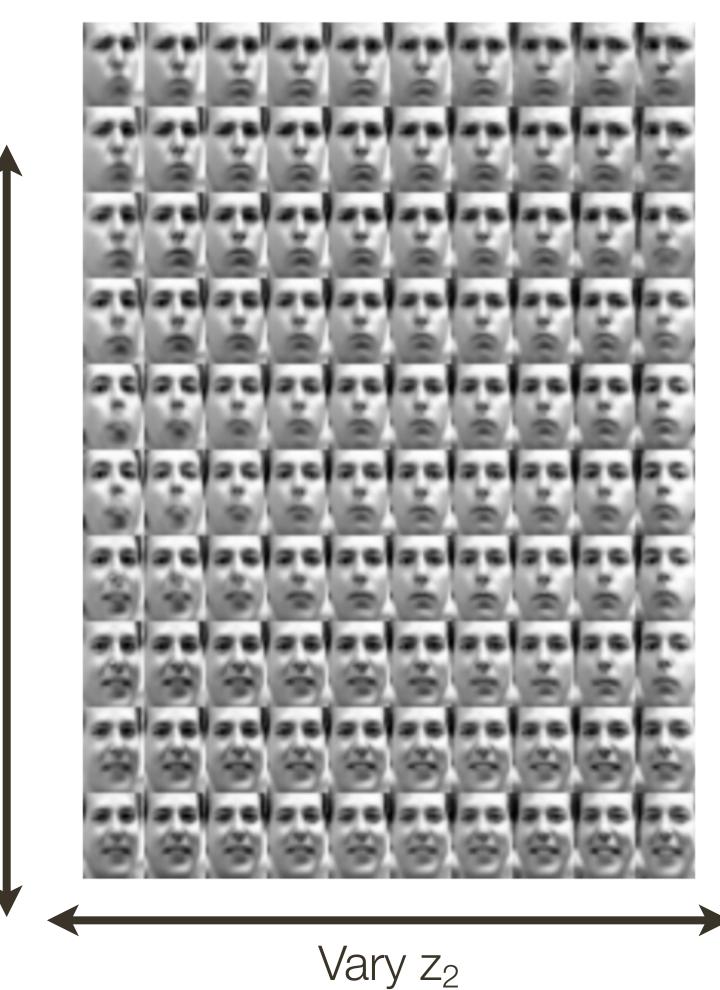
(head pose)

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Also good feature representation that can be computed using $q_{\phi}(z|x)!$

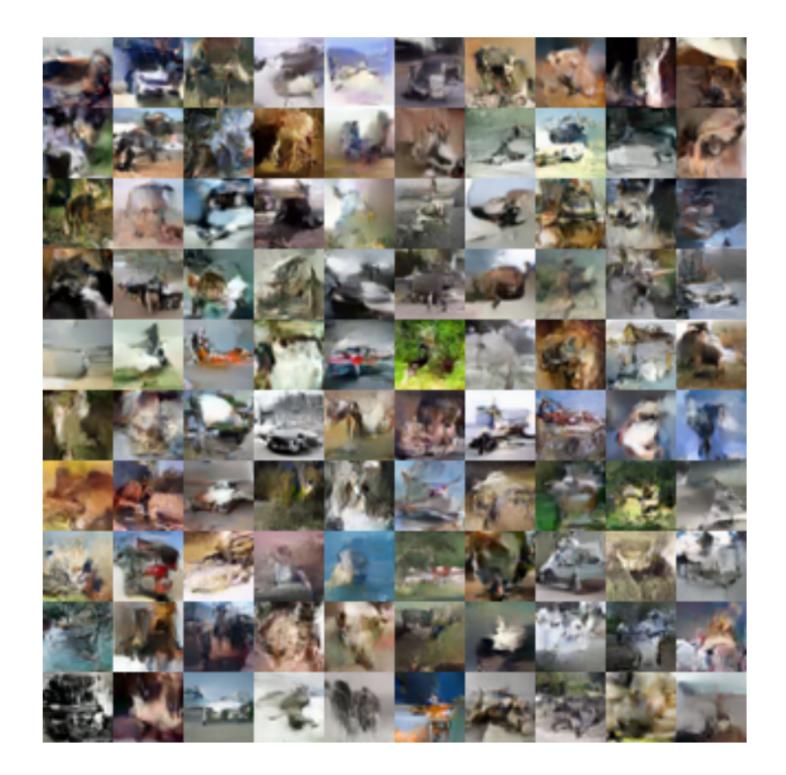
Data manifold for 2-d z



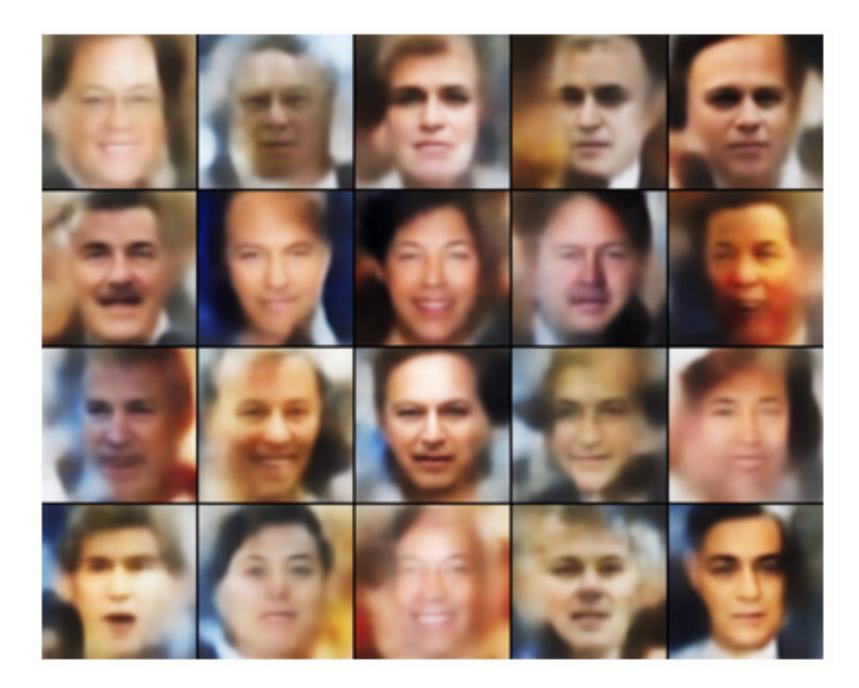
Vary z_1

(degree of smile)

(head pose)



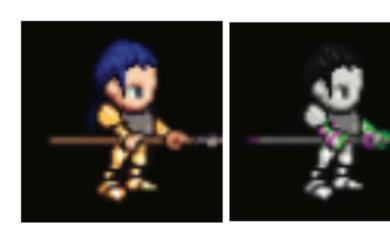
32x32 CIFAR-10

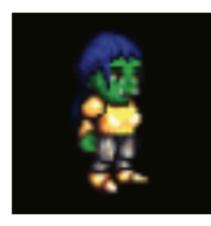


Labeled Faces in the Wild

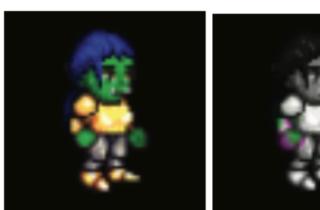
Conditional VAEs





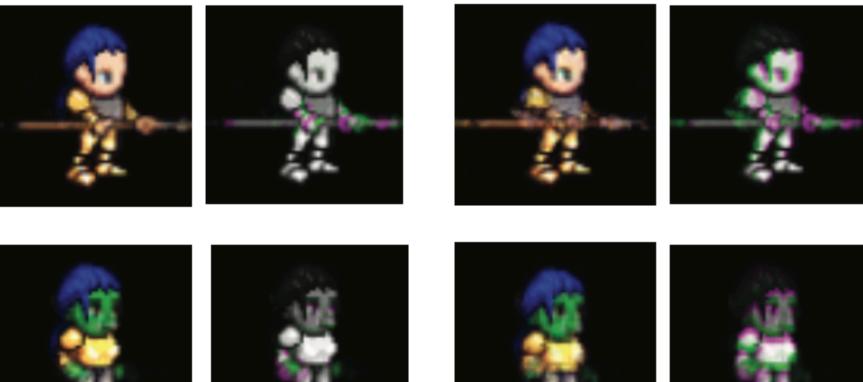


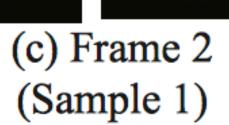
(a) Frame 1

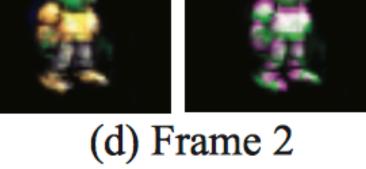


(b) Frame 2 (ground truth)

[Xue et al., 2016]

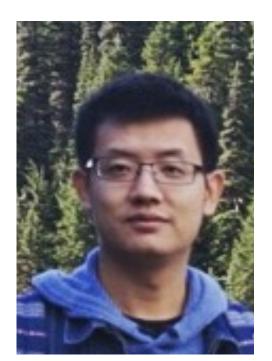




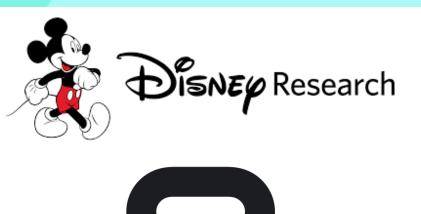


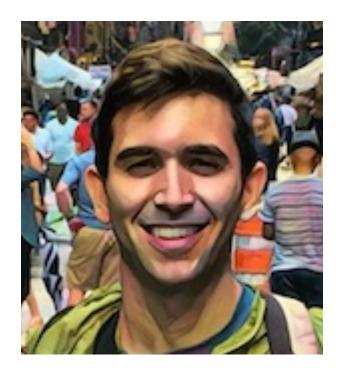
(d) Frame 2 (Sample 2)

Probabilistic Video Generation using Holistic Attribute Control



Andreas Lehrmann Jiawei (Eric) He



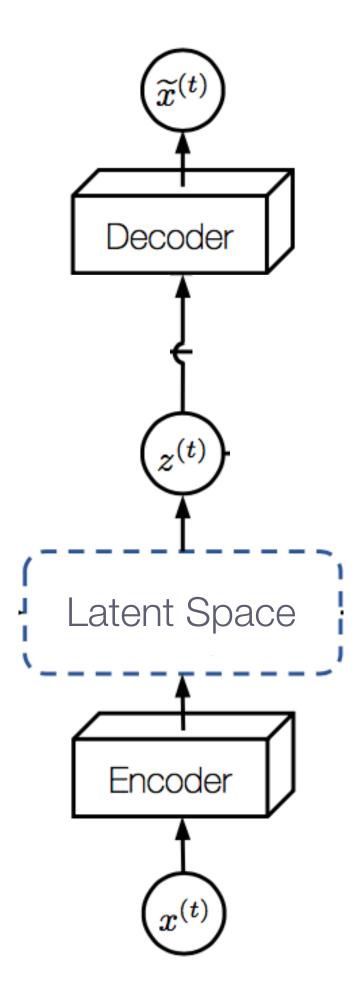


Joe Marino

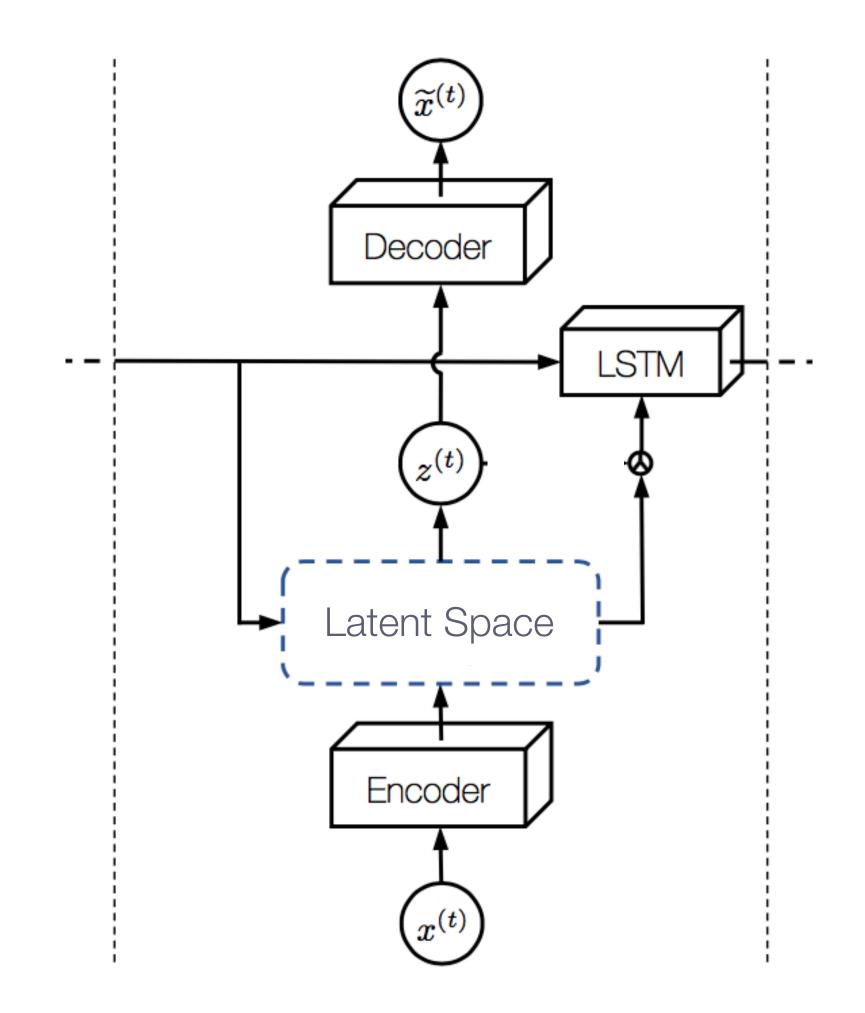
Greg Mori

Leonid Sigal

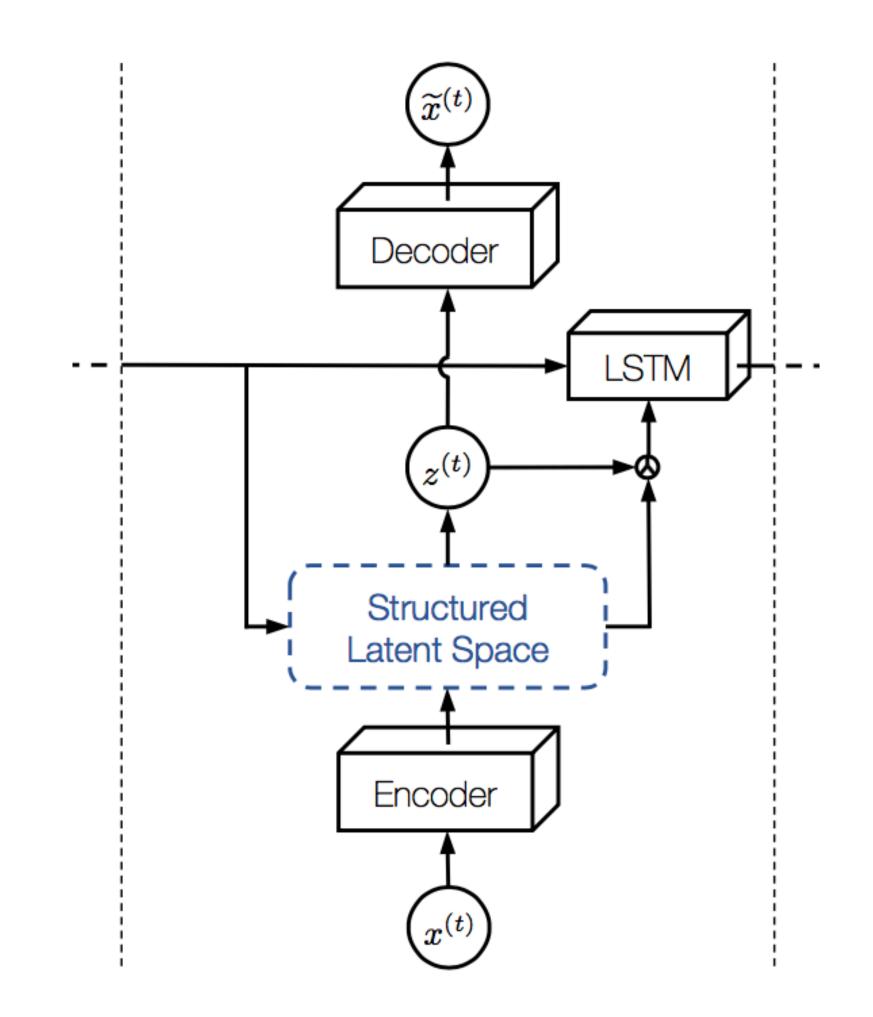
Variational Autoencoder (VAE)

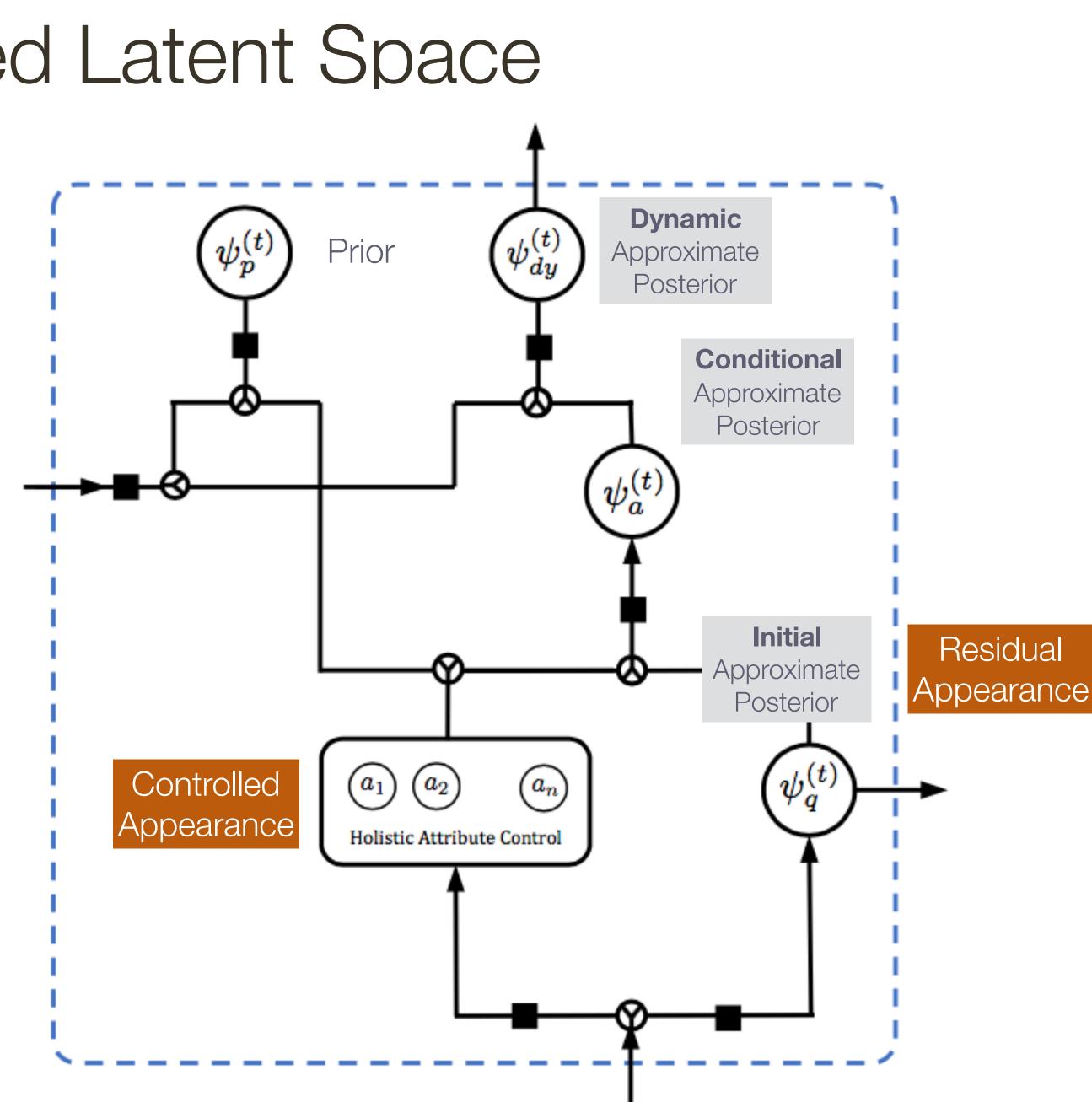


Variational Autoencoder (VAE) + LSTM

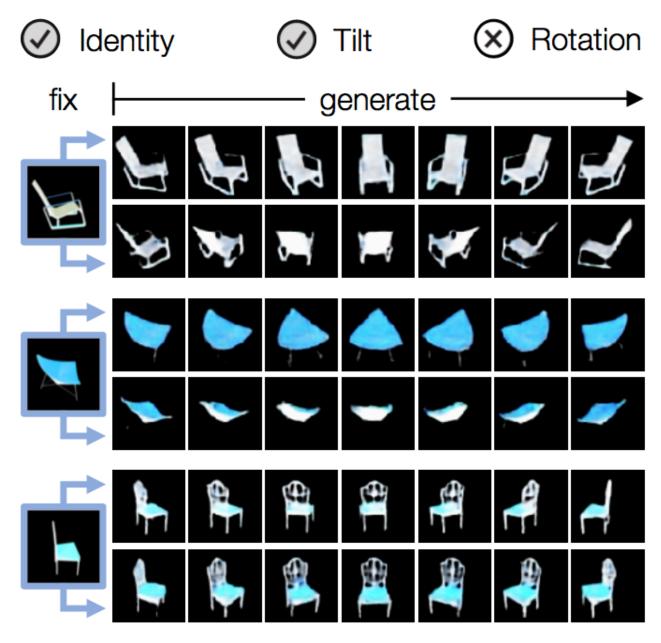


VAE + LSTM with Structured Latent Space

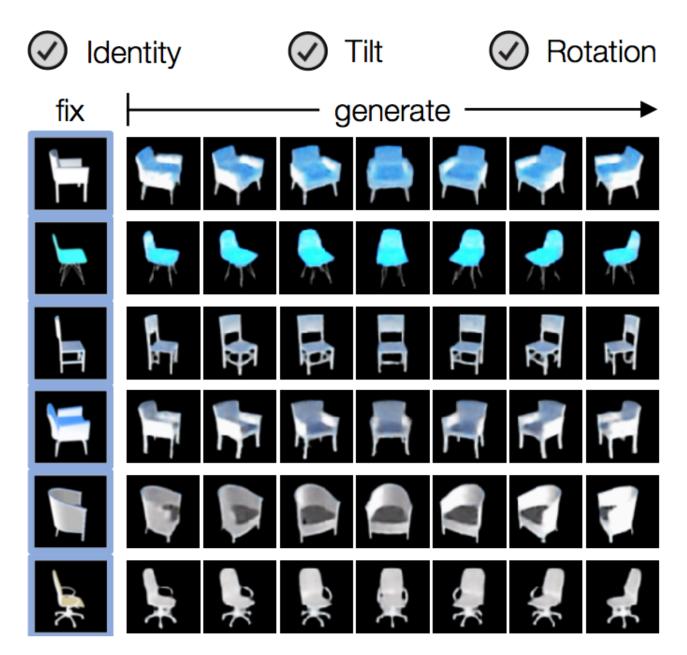




Results: Chair CAD dataset



(a) Partial control.



(b) Full control.

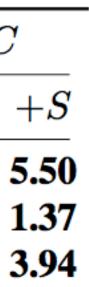
Ablation

_

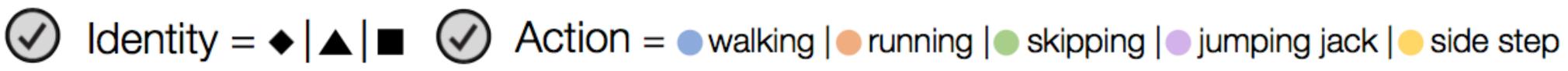
	Bound	Static	-C		+C	
	Dound	Stutie	-S	+S	-S	
Intra-E ↓	1.98	40.33	17.64	7.79	14.81	
Inter-E ↑	1.39	0.42	0.73	1.35	1.02	
I-Score ↑	4.01	1.28	1.83	3.63	2.56	

Quantitative

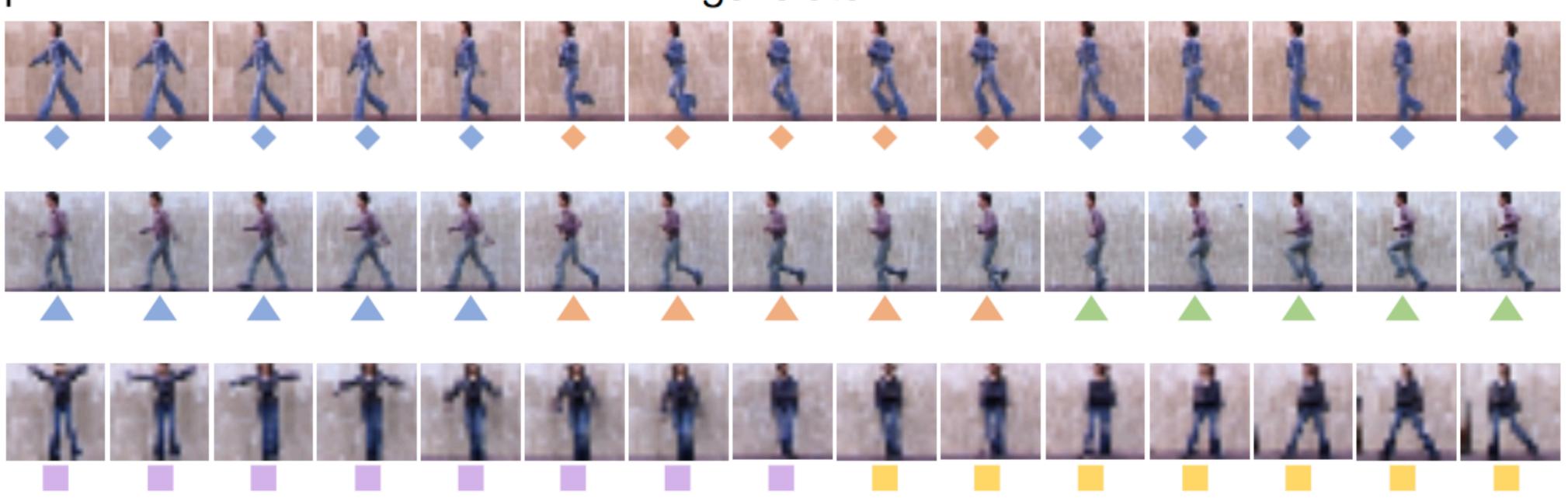
	Chair CAD [1, 40]		
]	Bound	Deep Rot. [40]	VideoVAE (our
		\bigcirc	\bigcirc
Intra-E ↓	1.98	14.68	5.50
Inter-E ↑	1.39	1.34	1.37
I-Score \uparrow	4.01	3.39	3.94

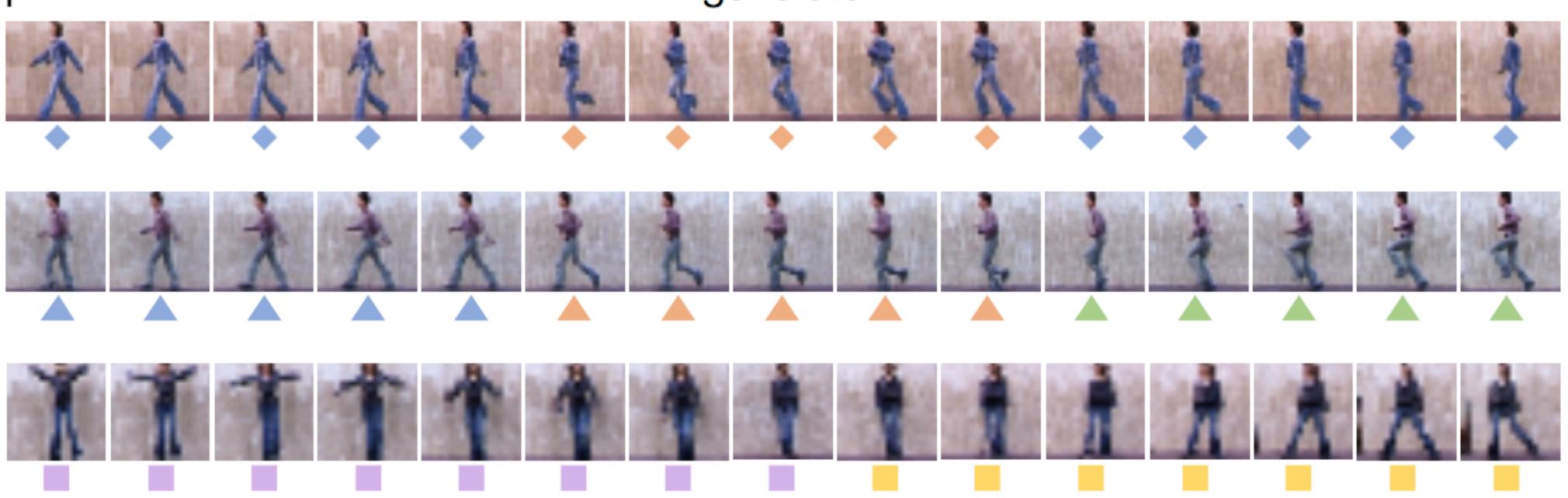


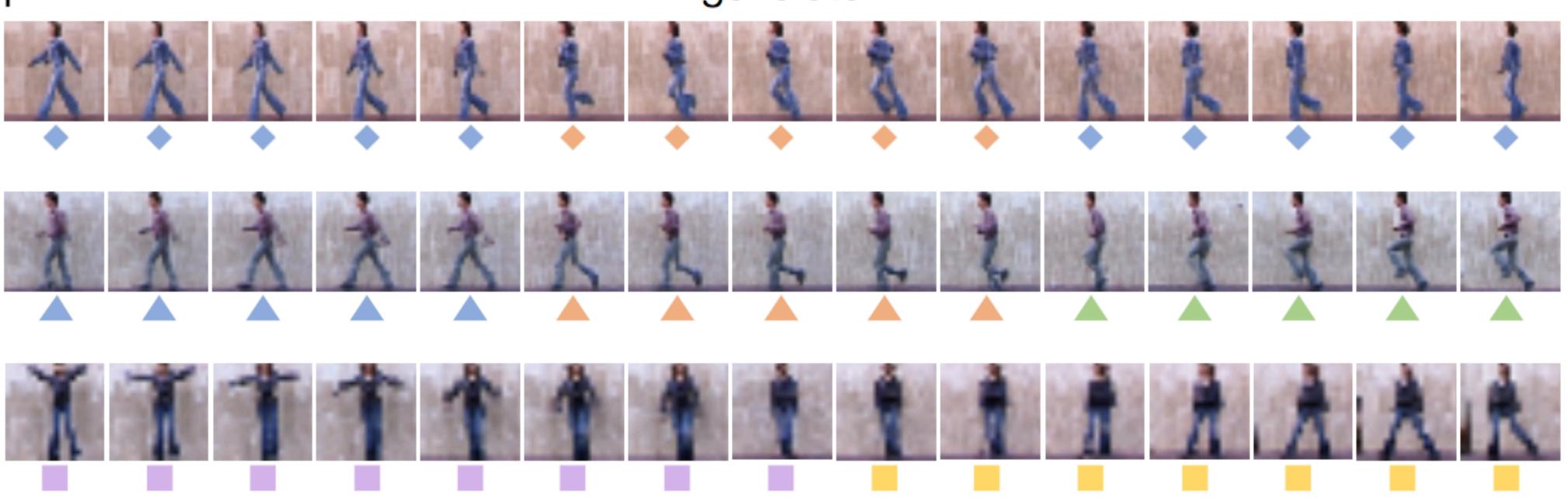
Results: Weizmann Human Action dataset



generate



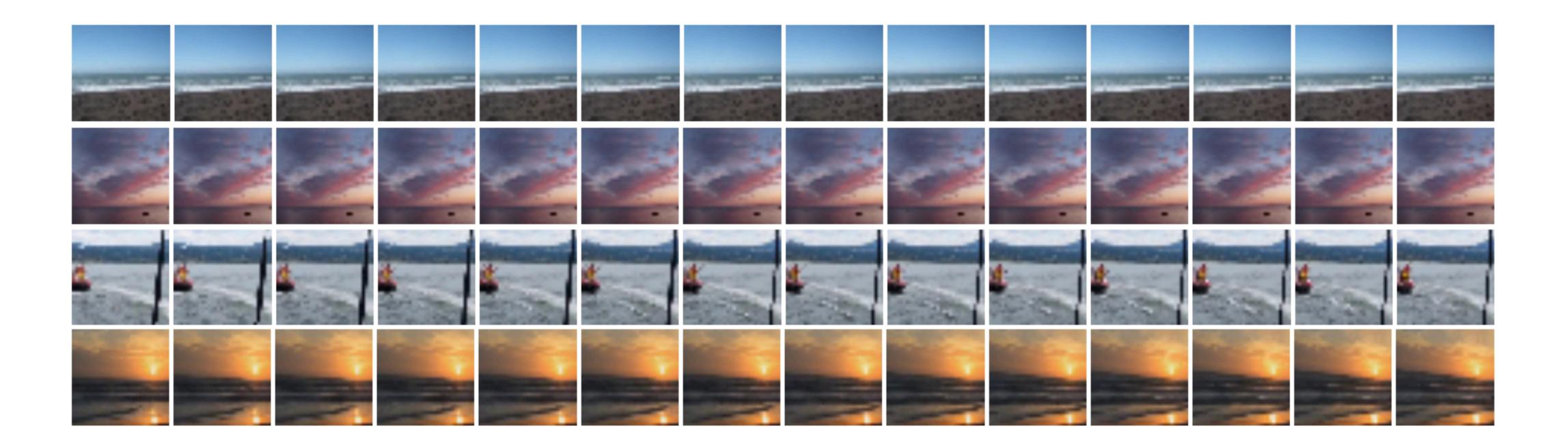




Weizmann Human Action [2]

Bound	MoCoGAN [32] VideoVA		AE (ou
	\bigcirc	\bigcirc	\bigcirc
Intra-E \downarrow 0.63	23.58	9.53	9.44
Inter-E \uparrow 4.49	2.91	4.37	4.37
I-Score ↑ 89.12	13.87	69.55	70.10

Results: MIT Flickr



	YFCC [31] — MIT Flickr [34]			
Bou	nd VGAN	[34] Video	VAE (ours)	
	0	0		
Intra-E \downarrow 30.3	34 46.9	6 44.03	3 38.20	
Inter-E $\uparrow 0.69$	0.69	2 0.691	0.692	
I-Score \uparrow 1.8	7 1.58	3 1.62	1.81	

Probabilistic spin to traditional autoencoders = allows generating data Defines an intractable density = derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active area of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)

PixelCNNs define tractable density function, optimize likelihood of training data: $p(x) = \prod$ i=1

VAEs define intractable density function with latent variables z (that we need to marginalize):

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample?

$$\left[p(x_i | x_1, ..., x_{i-1}) \right]$$

PixelCNNs define tractable density function, optimize likelihood of training data: $p(x) = \prod$ i=1

VAEs define intractable density function with latent variables z (that we need to marginalize):

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample?

GANs: don't work with any explicit density function

$$\left[p(x_i | x_1, ..., x_{i-1}) \right]$$

Generative Adversarial Networks (GANs)

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

[Goodfellow et al., 2014]

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random noise. Learn transformation to the training distribution

Goodfellow et al., 2014

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random noise. Learn transformation to the training distribution

Question: What can we use to represent complex transformation function?

Goodfellow et al., 2014]

Problem: Want to sample from complex, high-dimensional training distribution. There is no direct way to do this!

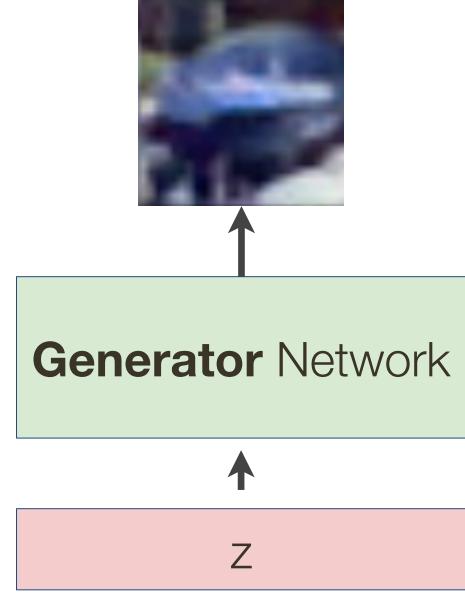
Solution: Sample from a simple distributions, e.g., random noise. Learn transformation to the training distribution

Question: What can we use to represent complex transformation function?

Goodfellow et al., 2014]

Output: Sample from training distribution

Input: Random noise



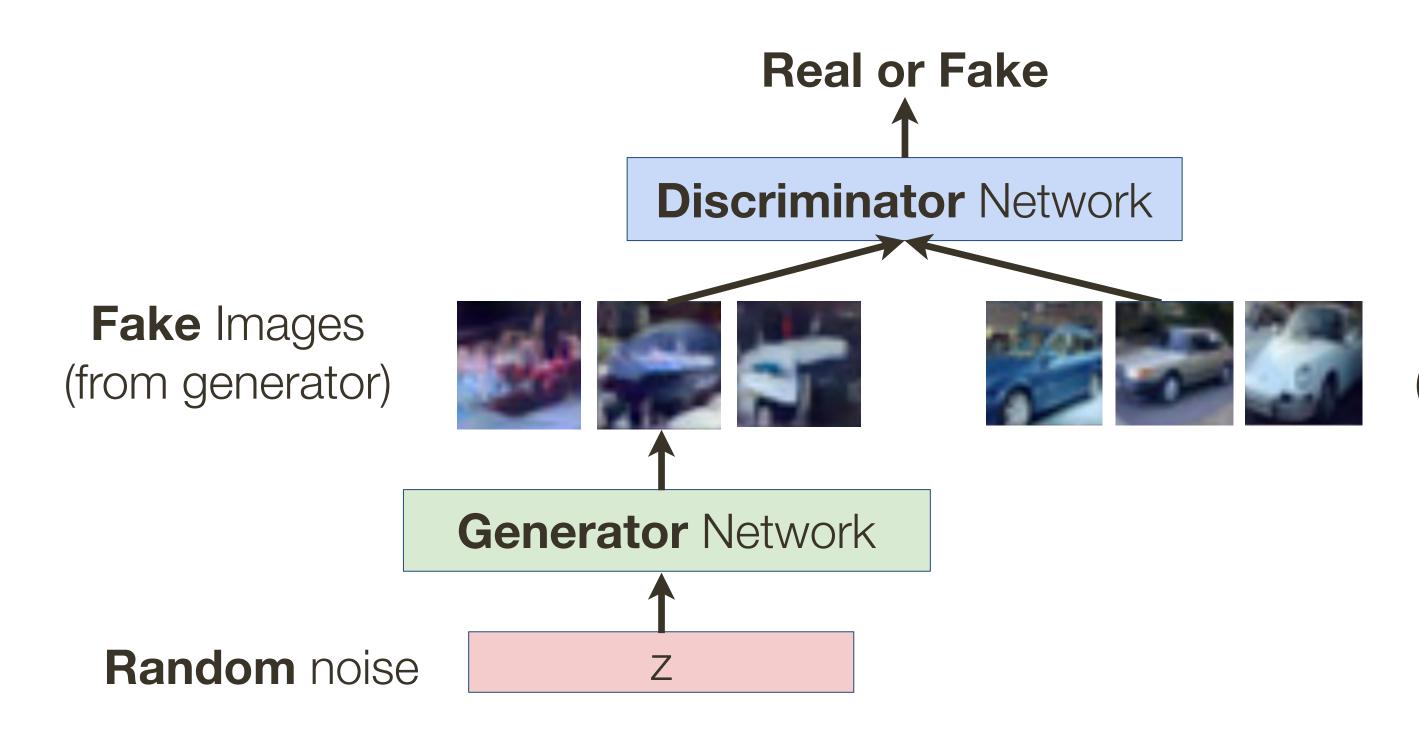
Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

[Goodfellow et al., 2014]

Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images



Goodfellow et al., 2014]

Real Images (from training set)

Training GANs: Two-player Game

Generator network: try to fool the discriminator by generating real-looking images **Discriminator** network: try to distinguish between real and fake images

Train jointly in **minimax** game Discriminator outputs likelihood in (0,1) of real image Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log \underline{D_{\theta_d}(x)} + \mathbb{E}_{z \sim p(z)} \log(1 - \underline{D_{\theta_d}(G_{\theta_g}(z))}) \right]$$

$$\text{Discriminator output} \quad \text{Discriminator output} \quad \text{or real data x} \quad \text{Discriminator output face data G}$$

- **Discriminator** (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- into thinking generated G(z) is real)

Goodfellow et al., 2014]

or generated fake data G(z)

- **Generator** (θ_{α}) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled

Minimax objective function: $\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_z \right]$$

2. Gradient **descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

[Goodfellow et al., 2014]

$\sum_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

)))

Minimax objective function: $\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_z \right]$$

2. Gradient **descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

[Goodfellow et al., 2014]

$\sum_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

)))

Minimax objective function: $\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient **descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Goodfellow et al., 2014]

Gradient signal

where sample is

)))

already good $\log(1 - D(G(z)))$ When sample is likely fake, want to learn from it to improve generator. But gradient in this region 0.2 0.4 0.6 0.8 0.0 1.0 is relatively flat! D(G(z))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

dominated by region

Minimax objective function: $\min_{\theta_{q}} \max_{\theta_{d}} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_{d}}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_{d}}(G_{\theta_{g}}(z))) \right]$

Alternate between:

1. Gradient **ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z} \right]$$

2. Instead, gradient **ascent** on generator, different objective

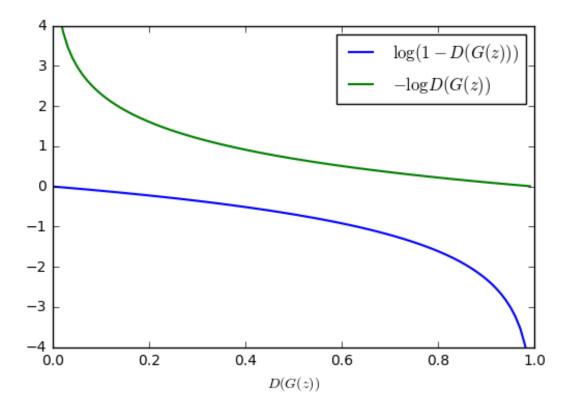
$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

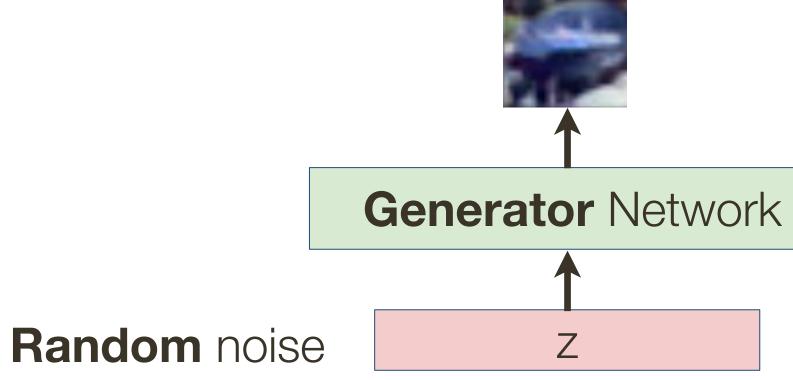
Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Goodfellow et al., 2014

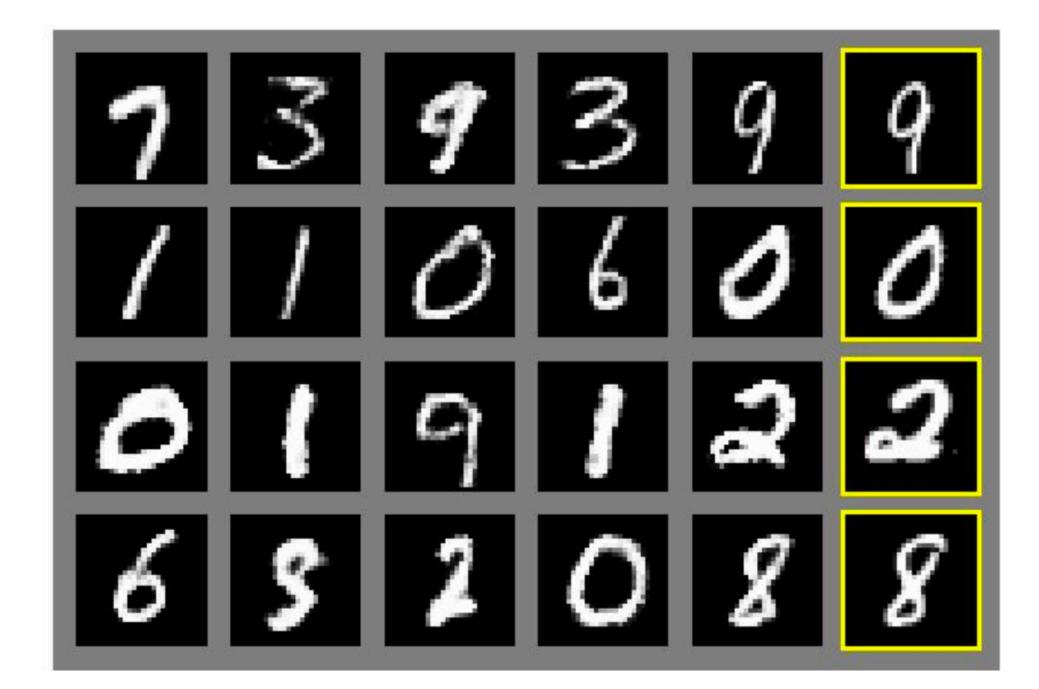
 $\sim_{p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$



Sampling GANs

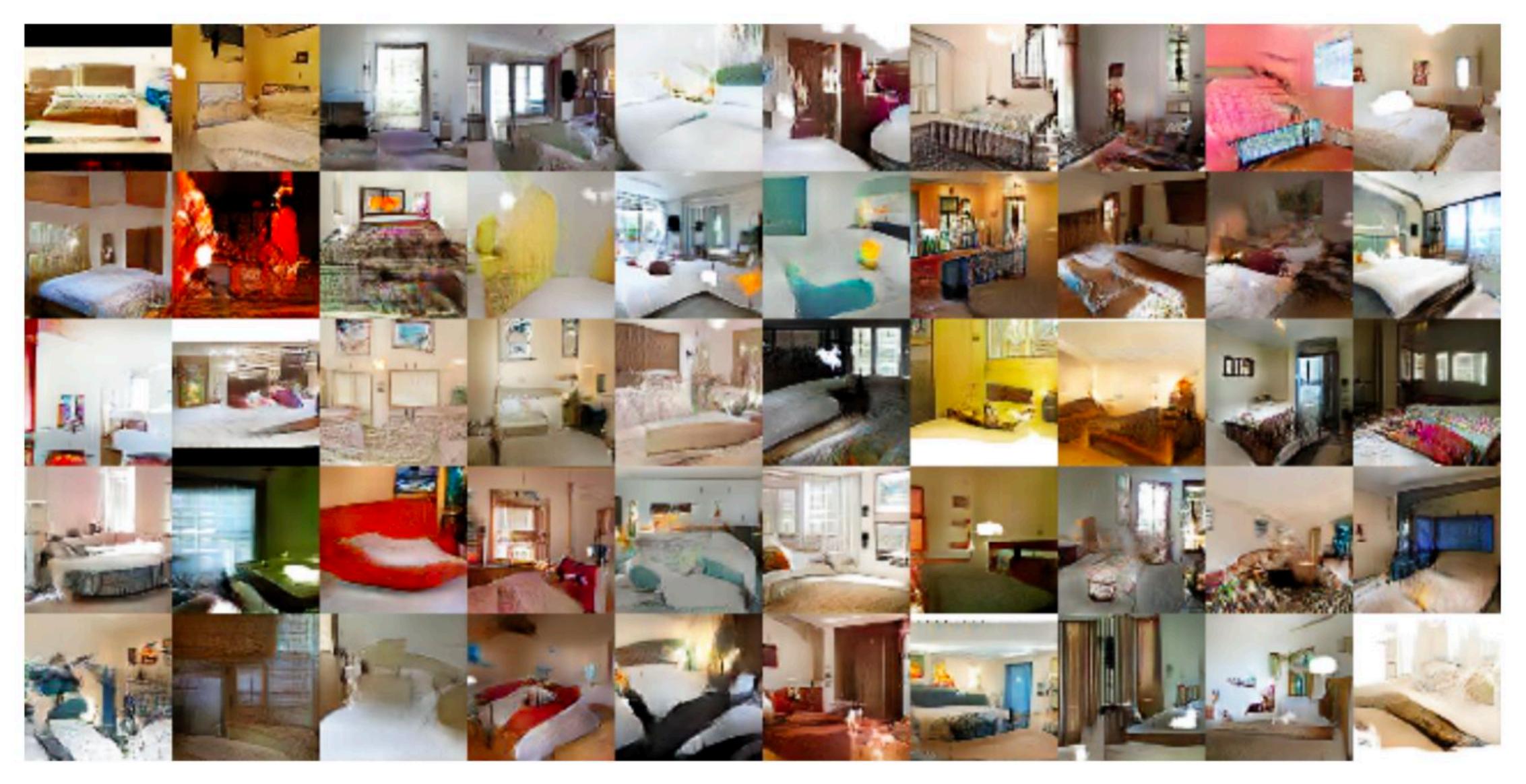


Generative Adversarial Nets



Generated Samples

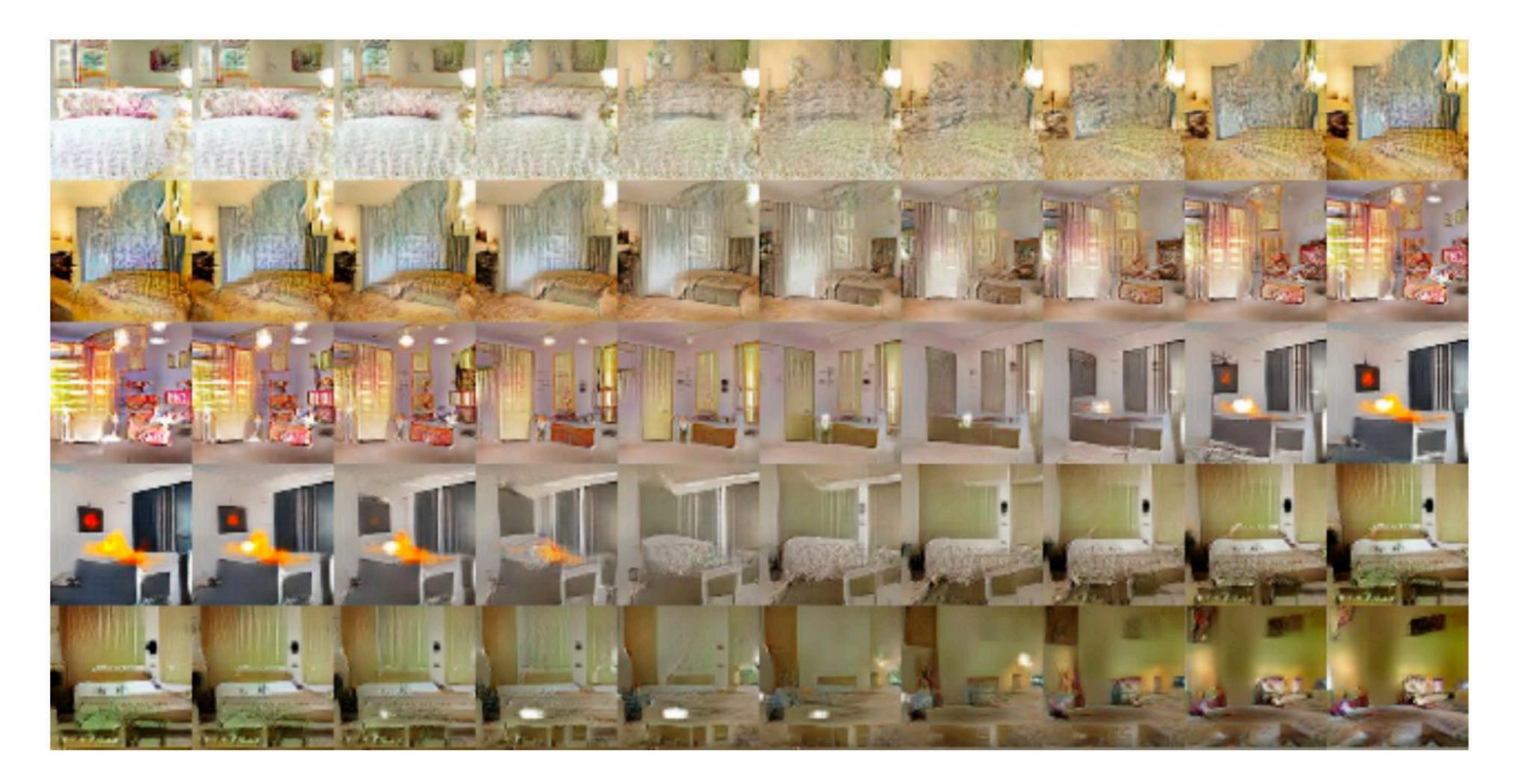
GANs with Convolutional Architectures



[Radford et al., 2016]

GANs with Convolutional Architectures

Interpolating between points in latent space



[Radford et al., 2016]

Smiling woman

Samples from the model

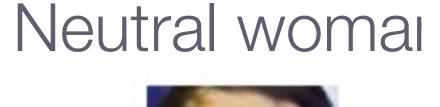
Neutral womai Neutral man

Radford et al., 2016]

Smiling woman

Samples from the model -

Average z vectors, do arithmetic



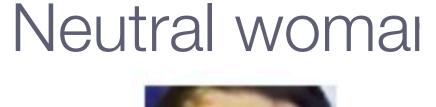
Radford et al., 2016]

Neutral man

Smiling woman

Samples from the model

Average z vectors, do arithmetic



Radford et al., 2016]

Neutral man

Smiling man

Samples from the model

[Radford et al., 2016]

Glasses Man No Glasses Man No Glasses Woman

Samples from the model

Average z vectors, do arithmetic

[Radford et al., 2016]

Glasses Man No Glasses Man No Glasses Woman

Glasses Man

Samples from the model

Average z vectors, do arithmetic

Radford et al., 2016]

No Glasses Man No Glasses Woman

Radford et al, **ICLR 2016**

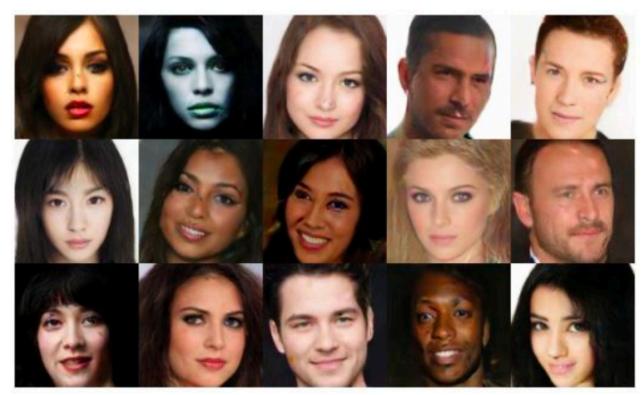
Year of the **GAN**

Better training and generation

(a) Church outdoor.

(b) Dining room.

(d) Conference room. (c) Kitchen. LSGAN. Mao et al. 2017.



BEGAN. Bertholet et al. 2017.

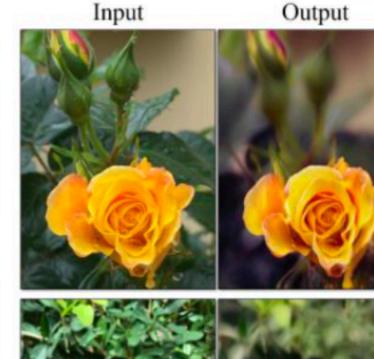
Source->Target domain transfer

horse \rightarrow zebra

 $zebra \rightarrow horse$

apple \rightarrow orange

CycleGAN. Zhu et al. 2017.



→ summer Yosemite

[→] winter Yosemite

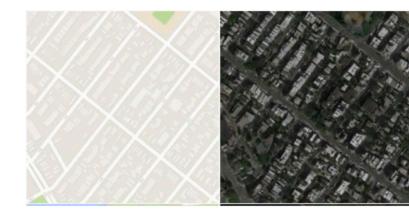
Text -> Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

this magnificent fellow is crest, and white cheek patch.

Reed et al. 2017.

Many GAN applications



Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix/

Year of the GAN

- GAN Generative Adversarial Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Model
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calo with Generative Adversarial Networks
- CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks

Discovery	•	Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
	•	C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
	•	CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
	•	CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
	•	CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
	•	DTN - Unsupervised Cross-Domain Image Generation
	•	DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
	•	DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
	•	DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
	•	DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
	•	EBGAN - Energy-based Generative Adversarial Network
	•	f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
	•	FF-GAN - Towards Large-Pose Face Frontalization in the Wild
	•	GAWWN - Learning What and Where to Draw
	•	GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
	•	Geometric GAN - Geometric GAN
	•	GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
	•	GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
	•	IAN - Neural Photo Editing with Introspective Adversarial Networks
alorimeters	•	iGAN - Generative Visual Manipulation on the Natural Image Manifold
	•	IcGAN - Invertible Conditional GANs for image editing
	•	ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
	•	Improved GAN - Improved Techniques for Training GANs
	•	InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversaria
	•	LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

• LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Synthesis

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

al Nets

GANS

Don't work with an explicit density function Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

— Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active area of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications