
Lecture 17: Generative Models Cont. (VAE, GANs)

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Course Logistics 

— Great set of projects! 
— Modes of “sub-optimality” at this stage: 

(1) not enough thought into what alterations to base-model should be tested 
(2) motivation for architectures  

— What am I expecting for the project? 
— Feedback (still working on this) 

— Proposal and presentation submission (Canvas on Friday) 

— Paper presentations and list 



So far …

PixelCNNs define tractable density function, optimize likelihood of training data:
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So far …

PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead
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Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

z usually smaller than x 
(dimensionality reduction)

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

z usually smaller than x 
(dimensionality reduction)

Want features that capture 
meaningful factors of variation 

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Train such that features can reconstruct original data best they can

Reconstructed 
input data

Decoder

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Train such that features can reconstruct original data 
best they can

Reconstructed 
input data

Decoder

Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv
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Autoencoders Reminder …

Encoder

Input data

Features

Reconstructed 
input data

Decoder

L2 Loss function: Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Reconstructed 
input data

Decoder

L2 Loss function: 

Doesn’t use labels!
Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv
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Autoencoders Reminder …

Encoder

Input data

Features

Classifier

Loss function 
(e.g., softmax)

Fine-tune 
encoder 
jointly with 
classifier 

plane
dog deer

bird
truck

Train for final task 
(sometimes with small data)
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Variational Autoencoders

Probabilistic spin on autoencoder - will let us sample from the model to generate 
Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Sample from 
true prior

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Probabilistic spin on autoencoder - will let us sample from the model to generate 
Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Sample from 
true prior

Intuition: x is an image, z is latent 
factors used to generate x (e.g., 
attributes, orientation, etc.)

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we represent this model?

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

Choose prior p(z) to be simple, e.g., Gaussian  
Reasonable for latent attributes, e.g., pose, amount of smile

We want to estimate the true parameters 𝛳* of this generative model

How do we represent this model?

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we represent this model?

Choose prior p(z) to be simple, e.g., Gaussian  
Reasonable for latent attributes, e.g., pose, amount of smile

Conditional p(x|z) is complex (generates image) 
Represent with Neural Network

Decoder 
Network

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Decoder 
Network

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

What is the problem with this?

[ Kingma and Welling, 2014 ]
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Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

Intractable ! 

[ Kingma and Welling, 2014 ]
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Simple Gaussian Prior
🙂
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂

Simple Gaussian Prior
🙂
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

Posterior density is also intractable: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

Posterior density is also intractable: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

Posterior density is also intractable: 

Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)  
— Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize 
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Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)
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Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)

Why?
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Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Sample z from: Sample x | z from:

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Taking expectation with respect to z 
(using encoder network) will come in 

handy later

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Expectation with respect to z 
(using encoder network) leads to nice KL terms

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

pθ(z|x) intractable (saw earlier), can’t 
compute this KL term :(  

But we know KL divergence always >= 0.

This KL term (between Gaussians 
for encoder and z prior) has nice 

closed-form solution!

Decoder network gives pθ(x|z), can 
compute estimate of this term through 

sampling. (Sampling differentiable through 
reparam. trick, see paper.)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

 Tractable lower bound which we can take gradient of 
and optimize! (pθ(x|z) differentiable, KL term differentiable)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Training: Maximize lower bound

Variational lower bound (“ELBO”)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Training: Maximize lower bound

Variational lower bound (“ELBO”)

Reconstruct  
Input Data

Make approximate posterior  
close to the prior

[ Kingma and Welling, 2014 ]
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Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Lets look at computing the bound (forward pass) 
for a given mini batch of input data

Variational Autoencoder: Learning
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Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Variational Autoencoder: Learning
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Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

For every minibatch of input data: compute this forward pass, and then backprop!

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior Data manifold for 2-d z

Vary z1

Vary z2
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation

Also good feature representation that can 
be computed using qɸ(z|x)! 
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Variational Autoencoder: Generating Data

32x32 CIFAR-10
Labeled Faces in the Wild
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Conditional VAEs [ Xue et al., 2016 ]



Probabilistic Video Generation using 
Holistic Attribute Control

Jiawei (Eric) He Andreas Lehrmann Leonid SigalGreg MoriJoe Marino



Variational Autoencoder (VAE)

Latent Space 



Variational Autoencoder (VAE) + LSTM

Latent Space 



VAE + LSTM with Structured Latent Space

Initial  
Approximate  

Posterior

Conditional  
Approximate  

Posterior

Dynamic 
Approximate  

Posterior
Prior

Controlled 
Appearance

Residual 
Appearance



Results: Chair CAD dataset

Ablation

Quantitative



Results: Weizmann Human Action dataset



Results: MIT Flickr



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data 
Defines an intractable density => derive and optimize a (variational) lower bound 

Pros: 
- Principled approach to generative models 
- Allows inference of q(z|x), can be useful feature representation for other tasks 

Cons: 
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN 
- Samples blurrier and lower quality compared to state-of-the-art (GANs) 

Active area of research: 
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian 
- Incorporating structure in latent variables (our submission to CVPR)



So far …
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead
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What if we give up on explicitly modeling density, and just want to sample?



So far …
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

What if we give up on explicitly modeling density, and just want to sample?

GANs: don’t work with any explicit density function



Generative Adversarial 
Networks (GANs)



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

[ Goodfellow et al., 2014 ]
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

Solution: Sample from a simple distributions, e.g., random 
noise. Learn transformation to the training distribution 

[ Goodfellow et al., 2014 ]
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

Solution: Sample from a simple distributions, e.g., random 
noise. Learn transformation to the training distribution 

Question: What can we use to represent complex 
transformation function? 

[ Goodfellow et al., 2014 ]
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional 
training distribution. There is no direct way to do this!  

Solution: Sample from a simple distributions, e.g., random 
noise. Learn transformation to the training distribution 

Question: What can we use to represent complex 
transformation function? 

[ Goodfellow et al., 2014 ]

zInput: Random noise 

Generator Network

Output: Sample from 
training distribution  
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Training GANs: Two-player Game [ Goodfellow et al., 2014 ]

Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 
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Training GANs: Two-player Game [ Goodfellow et al., 2014 ]

Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images 
(from generator)

Real Images 
(from training set)

Real or Fake
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Training GANs: Two-player Game [ Goodfellow et al., 2014 ]

Generator network: try to fool the discriminator by generating real-looking images 
Discriminator network: try to distinguish between real and fake images 

Train jointly in minimax game 
Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is 
close to 0 (fake) 

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled 
into thinking generated G(z) is real)
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Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Gradient descent on generator



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Gradient descent on generator

In practice, optimizing this generator 
objective does not work well!



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Gradient descent on generator

In practice, optimizing this generator 
objective does not work well!

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good



Training GANs: Two-player Game [ Goodfellow et al., 2014 ]
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Minimax objective function:

Alternate between: 
1. Gradient ascent on discriminator 

2. Instead, gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being 
correct, now maximize likelihood of discriminator 
being wrong. 


Same objective of fooling discriminator, but now 
higher gradient signal for bad samples => works 
much better! Standard in practice.



Sampling GANs

zRandom noise

Generator Network
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Generative Adversarial Nets

Generated Samples



GANs with Convolutional Architectures [ Radford et al., 2016 ]
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Interpolating between points in latent space

GANs with Convolutional Architectures [ Radford et al., 2016 ]
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GANs: Interpretable Vector Math [ Radford et al., 2016 ]

Smiling woman Neutral woman Neutral man

Samples 
from the 
model
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GANs: Interpretable Vector Math [ Radford et al., 2016 ]

Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Average z  
vectors, do 
arithmetic
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GANs: Interpretable Vector Math [ Radford et al., 2016 ]

Smiling woman Neutral woman Neutral man

Smiling manSamples 
from the 
model

Average z  
vectors, do 
arithmetic
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Glasses Man No Glasses Man No Glasses Woman

Samples 
from the 
model

GANs: Interpretable Vector Math [ Radford et al., 2016 ]
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Glasses Man No Glasses Man No Glasses Woman

Samples 
from the 
model

Average z  
vectors, do 
arithmetic

GANs: Interpretable Vector Math [ Radford et al., 2016 ]
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Glasses Man No Glasses Man No Glasses Woman

Woman with GlassesSamples 
from the 
model

Average z  
vectors, do 
arithmetic

GANs: Interpretable Vector Math [ Radford et al., 2016 ]
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Year of the GAN
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Year of the GAN
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GANs 
Don’t work with an explicit density function 
Take game-theoretic approach: learn to generate from training distribution 
through 2-player game  

Pros: 
— Beautiful, state-of-the-art samples!  

Cons:  
— Trickier / more unstable to train  
— Can’t solve inference queries such as p(x), p(z|x)  

Active area of research:  
— Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)  
— Conditional GANs, GANs for all kinds of applications  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