THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 17: Generative Models Cont. (VAE, GANSs)

Course Logistics

— Great set of projects!
— Modes of “sub-optimality” at this stage:
(1) not enough thought into what alterations to base-model should be tested
(2) motivation for architectures
— What am | expecting for the project”
— Feedback (still working on this)

— Proposal and presentation submission (Canvas on Friday)

— Paper presentations and list

So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(x) = Hp(:z:i\azl, veey Ti—1)

=1

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(x) = Hp(ib‘z'|$1, veey Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(a]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connecteo
Later: ReLU CNN

Features Z

da_ta
[Encoder a
o bl
Input data X Sﬂﬂ
sl < B2

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

V\ Later: RelLU CNN

Features Z

d_ata

[Encoder a
Input data b SQN
sl < S

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

¥ Later: ReLU CNN
Want features that capture
meaningful factors of variation

Features Z

Inputldata
[Encoder uiﬁ > .u
A WY
Input data T BSQW
a7 < B

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

Train such that features can reconstruct original data best they can

l‘y&ﬂ@
o el 3 0 Y
erl R | T

Reconstructed A
input data L
T Decoder
Features Z
data
Encoder o I T
h

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

Train such that features can reconstruct original data Reconstructed data

best they can E=§‘==
Reconstructed nasﬂ

@ P sl < S
D der T
ecoade Encoder: 4-layer conv

Decoder: 4- Iayer upconv

Features it
data

Encoder B ..

4 ¥

l-Kll@
sl LR by
erl R | T

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

L2 Loss function: Reconstrurcitb_ed data
oz — 2|2 ol = T

B L&
RS Wl
-EH; My

—

Reconstructed
input data

Decoder “ncoder: 4-layer conv
Decoder: 4- Iayer upconv
data
Encoder B

T
Features 2
XL

I-SAlﬁ
sl o USRS by
erl R | T

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

2 Loss function: Reconstructed data

) [
o e ="
e

] TR
==

—

Reconstructed
input data

Decoder Encoder: 4-layer conv
Decoder: 4- Iayer upconv
data
Encoder E

T
Features Z
L

l Bl@
IIDSQE
erl R | T

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Autoencoders Reminder ...

Loss function
(e.g., softmax)

/ \

2 Fine-tune Train for final task
encoder (sometimes with small data)
T Classifier ointly with
Features o classifier
oird plane

[mneoder dog deer truck

Input data T &JT 'mw
= '

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

| Intuition: x is an image, z Is latent
po- (z | 2V) factors used to generate x (e.q.,
attributes, orientation, etc.)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po=(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po=(2)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional X , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional X , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Decoder

network Conditional p(x|z) is complex (generates image)

Sample from Represent with Neural Network
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

X

Decoder
Network

VA

How do we train this model?

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional b L G
Model parameters to maximize likelihood of
po-(z | 2() Secoder training data
Network pg(a:) — [Pé (Z)p9 (:ElZ)dZ
Sample from
true prior Z (now with latent z that we need to marginalize)
po-(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
rue conditional L model parameters to maximize likelihood of
po~(z | (V) oo training data
e po(z) = [pol()po(al2)d:
Sample from
true prior Z (now with latent z that we need to marginalize)
po-(2) What is the problem with this?

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoders [Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional b o 0y
Model parameters to maximize likelihood of
po=(x | 29) Secoder | lrAINING data
Network po(z) = [pe(2)pe(z|z)dz
Sample from
true prior Z (now with latent z that we need to marginalize)

po-(2) —inuractable!

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Data likelihood: pe(z) = /pg(z)pg(a:\z)dz

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Data likelihood: pe(z) = /pg(z)pg(a:\z)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Decoder Neural Network

@
Data likelihood: pg(x) = /pg(z)pg(a:\z)dz

»

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood: pg(x) =| [| pe(2)pe(z|2)dz

@

Simple Gaussian Prior

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood: pg(x) =| [| pe(2)pe(z|2)dz

»

Simple Gaussian Prior

Posterior density is also intractable: po(2|x) = po(x|2)pe(2)/po(x)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood: pg(x) =| [| pe(2)pe(z|2)dz

»

Simple Gaussian Prior

Posterior density is also intractable: Pe(z|T) = pe(x|2)pe(2)/Jpe(x)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Intractability in Variational Autoencoder [Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood: pg(x) =| [| pe(2)pe(z|2)dz

@

Simple Gaussian Prior

Posterior density Is also intractable: PO(Z |$) — Pe(il? \Z)pe(z) 9(33)

Solution: In addition to decoder network modeling pg(x|z), define additional
encoder network gg(zlx) that approximates pg(z|x)

— Wil see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder

y 4
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Mean and (diagonal) covariance of z | x

N\

Hz|x

Encoder Network

4 (2|7)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

Hx|z

a:lz

Decoder Network

po(z|2)

(parameters)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder

y 4
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Why*? Mean and (diagonal) covariance of z | x

N\

Hz|x

Encoder Network

4 (2|7)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

Hx|z

a:lz

Decoder Network

po(z|2)

(parameters)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Sample z from: z|x ~ N (py(z) X 2|2) Sample x | z from: z|z ~ N (g2, Ze|2)
Hz|x z|a: Hx|z a:lz
Encoder Network Decoder Network
6(2]2) po(a]2)
(parameters) (parameters)
XL Z

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —1ogp9(:1;(i))_ (po (") Does not depend on z)

——

Taking expectation with respect to z
(using encoder network) will come In
handy later

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z'?) = E. q,(zlz) —logpg(a:(i))- (po (") Does not depend on z)

po (D | 2)pe(z)
po(z | ()

= E. |log (Bayes’ Rule)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder

Derivation of lower bound of the data likelihood

y 4
| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

sy (220 |10 Po(z)

log

log

po(2® | 2)po(z)”

(po (") Does not depend on z)

. Bayves’

po(z [20) | (B
po (x| 2)pg(2) qp(z | V)
po(z | W) gp(z | z®))_

Rule)

(Multiply by constant)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(zlz) —logpg(:c(i))- (po (") Does not depend on z)
po (2" | 2)pa(2)”

po(z [z))
po (') | 2)pg(2) gp(2 | =)

= E. |log (Bayes’ Rule)

= E. |lo . . Multiply by constant
BT P [20) gl [a)] (TP by constant
. . - i (1)) I (%))

= E, |logpe(z'¥ | 2)| — E. |log (2| 2) + E. |log 42| @ .) (Logarithms)
: - _ po(z) T pe(z | 2W)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —logpg(:c(i))_ (po (") Does not depend on z)

_ e _
= E. |log G z)pg(z) (Bayes” Rule)
_ po(z [z))

po(z') | 2)po(2) qp(z |)

=E., |lo . . Multiply by constant
T [20) gz [a)])
: | : i O i (4))"

—E. |logpg(z'¥ | 2)| —E. |log 4(z]2") + E. |log 42| @ .) (Logarithms)
- : _ po(z) - pe(z | 2)

= E. [logpo (2 | 2)| = Dicr(a6(2 | 27) || p(2)) + Dicr (02 | 27) || po(z | 2))
I —I—

Expectation with respect to z
(using encoder network) leads to nice KL terms

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

y 4
| Kingma and Welling, 2014 |

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (') = E (po (") Does not depend on z)

sy (220 |10 Po(z)

po(2® | 2)po(z)”

log (Bayes’ Rule)

log

log po(2?) | 2)

log po(z® | z)

po(z | ()

po(29 | 2)ps(2) a2

:,;(i))'

po(z | V)

—
—

Decoder network gives pg(x|z), can

compute estimate of this term through
sampling. (Sampling differentiable through
reparam. trick, see paper.)

Qe (2

— E. |log

;1;(73))_
gs(z | D)

po(2)

+ E,

This KL term (between Gaussians
for encoder and z prior) has nice
closed-form solution!

log

(2

(Multiply by constant)

w(i))‘

Pe(z

7))

(Logarithms)

— Dr1(q5(2 |) || po(2)) + Drr(gs(z | V) || pa(z | "))

Pp(z|x) intractable (saw earlier), can't

compute this KL term :(

But we know KL divergence always >= 0.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

= E. |log

= E. |log

= E, -lngg(ili(i) | 2)

=E, :1ng9(33(i) | Z)-

sy (220 108 Po(z)

pe(fl«“(;) | 2)po(z)

po(z | ()

pa(2® | 2)pa(2) a2

(po(2'?) Does not depend on z)

(Bayes” Rule)

a;("'>)'

po(z | xV) qg(z

—E.

log

()

gs(z | D)

(Multiply by constant)

+ E,

po(2)

—_—— e —,——————
L(z,0,)

Tractable lower bound which we can take gradient of
and optimize! (pB(x|z) differentiable, KL term differentiable)

log

(2

x(i))‘

Pe(z

7))

(Logarithms)

— Drr(gs(2 | #7) || po(2)) + Dicr(as(2 | 2'7) || po(z | z1*)))

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

2oy (2]2) —1ogp9(:1;(i))_ (po (") Does not depend on z)

pe(iﬂ(;) | 2)po(z)
po(z|2z))
po (x| 2)pe(2) qp(z | V)

(Bayes’ Rule)

= E. |log

= E. |lo . . Multiply by constant
T [20) gz [a)])
: | : i O i (4))"

—E. |logpg(z'¥ | 2)| —E. |log 4(z]2") + E. |log 42| @ .) (Logarithms)
- : _ po(z) po(z | z)

=E. |logpg(z') | 2)| — Dicr(as(2 | %) [|pe(2)) + Dicr(ap(z | 2) || po(z | 7))
D ———————

(2)
| | L @) Training: Maximize lower bound
log po(z'V) > L(z", 0, $) N
Variational lower bound (“ELBO”) 0", 9" = arg rro}%x L(z*,0,9)
=1

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder [Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —1ogp9(:c(i))- (po (") Does not depend on z)

po (x| 2)pe(2)
po(z | x®)
po (x| 2)pa(2) qg(z | V)
po(z | ™) gqu(z | z™)_

(Bayes” Rule)

= E. |log

(Multiply by constant)

= E. |log

Reconstruct Make approximate posterior
Input Data close to the prior

= E. {logpo(a” | 2)| - Drrlas(z | 29) || po(2)) + Drcr(ao(z | 2?) | po(z | =)
D ————————————————

(2)
| | L @) Training: Maximize lower bound
log po(z'V) > L(z", 0,) N
Variational lower bound (“ELBO”) 0", 9" = arg r%%x L(z*,0,9)
=1

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
—e
£(2,0,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data €T

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
—e
£(2,0,0)

I‘LZICC Zzlx
Encoder network
qe(2|T) \/
Input Data €T

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
- —
£(2,0,0)

Make approximate

posterior distribution

close to prior / \

ﬂ’z\a: Zzlx

Encoder network

gs(2|T)
Input Data b

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
- —
£(2,0,0)

Z
Sample z from z|x ~ N(uz\m, 2z|a:)

Make approximate

posterior distribution

close to prior / \

ﬂ’z\a: Zz Ia;
Encoder network
qo(2|T) \/
Input Data b

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E; [logpe(x(i) | Z)] — Dgr(qe(z | D) || po(2)) M|z Y
. N Decoder network
Lz, 0,) . (a:lz) \/
Z

Make approximate

Sample z from z|z ~ N(Mz|a;, Yolz)

posterior distribution

close to prior / \

/“I’Z‘.’D Zz Ig;
Encoder network
qe(2|T) \/
Input Data b

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Miaximize fikelinood of T
5OUNG original input being
reconstructed Sample x|z from z|z ~ N (tg|, Lg|2)
E. [logpo(a |)] - Dics(as(z | 29) | p0(2)) Fols x|z
_ Decoder network
L(xD,0,0)
po(z|2)
Z

Make approximate Sample z from z|x ~ N(Mz|a;, 2z|:z:)

posterior distribution

close to prior / \

l‘l’Z‘.’E Zz |3;
Encoder network
qo(2|T) \/
Input Data b

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Miaximize fikelinood of T
5OUNG original input being
reconstructed Sample x|z from z|z ~ N (tg|, Lg|2)
E. [logpo(a |)] - Dics(as(z | 29) | p0(2)) Fols x|z
_ Decoder network
L(xD,0,0)
po(z|2)
Z

Make approximate Sample z from z|x ~ N(Mz|a;, 2z|:z:)

posterior distribution

close to prior / \

Mz >
Encoder network | z|
qo(2|T) \/
Input Data b

For every minibatch of input data: compute this forward pass, and then backprop!

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Generating Data

Use decoder network and sample z from prior

Sample x|z from |z ~ N(/Lm|z, Ea:|z)

A

L

/

M|z

Decoder network

Po(|2)

™~

23:z:\z

~_

Z

Sample z from z ~ N (0, I)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Data

[gle

Use decoder network and sample z from prior

Generat

Variational Autoencoder

Data manifold for 2-d z

DAY SNANNANAANNNNNSNNNNS
QAIYM iy By LuLLuLuwwNwNN~
QUAVANNIN L LLLVYY Y N~
QAUAVVDUINIninlglo to VWV W -~~~
QOAVODHIHIN LN LY G VYOV Y Y W -~ —
QAOAODOHINININMHOE POV W W - —
QAQQODMINMMMNOoY MDY ID D W@ = —
QOOQOIMMMMMON M W®O DD D @ e e —
OO0DIMOMMM M M0N0 WWY DD D e e —
QOMMMM " "0 0000 Go en on o oo —
RS N N N N Nl ol ol ol Ul o e
SR K2 1o e B al alk ak ok ok 2R S S N N
oo rrTT NN
Sdadadadadogorrrorr T IIINNN
SdadaddagoorororrrdTT22INN
SAddTTTTrrrrr>rdFrr222NN
SFTToooororoococoIXNNN

Z:1:\2:

TN

T
Sample x|z from x|z ~ N (i) ,, &
M|z

Decoder network
po(z|2)

xb)
Vary z;

Sample z from z ~ N (0, I)

Vary zo

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => PPy YYy _:_; ‘

e
PR,
ieslesberterferferferfer s

AR
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

(degree of smile)

ARARRARA
S e R L
SRR
BEEEEESEEE
EEEEEEEEEE

D S
Vary Zo

(head pose)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;33_‘_: Ry ley by I
Cryr Ty
P
;;xw “.‘w‘.ﬁ. oy

asx feofefesfeofesfe
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

ARAARARAR
R
SRR
S EEE SRS
5555 EE SRS

D
Vary Zo

(degree of smile)

Also good feature representation that can
be computed using ge(z|x)!

(head pose)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Variational Autoencoder: Generating Data

L abeled Faces in the Wild
32x32 CIFAR-10

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Conditional VAES [Xue et al., 2016

(a) Frame 1 (b) Frame 2 (c) Frame 2 (d) Frame 2
(ground truth) (Sample 1) (Sample 2)

TG

Probabilistic Video Generation using
Holistic Attribute Control

Jiawel (Eric) He Andreas Lehrmann Joe Marino Greg Mor Leonid Sigal

(1P
0

oculus

Variational Autoencoder (VAE)

=5

Variational Autoencoder (VAE) + LSTM

VAE + LSTM with Structured Latent Space

T T T T T T T T TR TS T TS e . A R T T TR T T T T e

Dynamic
Prior @ Approximate
Posterior

Conditional
T Approximate
Posterior

-

Initial
\/ D Approximate
Posterior

Residual
Appearance

Structured |
I Latent Space

Controlled

Ap pearan CE Holistic Attribute Control

B O S e e e e e B S T S S S S S T S S R S R R R e e

Results: Chair CAD dataset

& Identity @ Tilt

fix I generate

uﬂﬂﬂﬂﬂﬂﬂ
Ml
.IIII
DR

(a) Partial control.

@ Rotation

& Identity @ Tit

fix | generate

[OOCOEEE
b L1LdLILIEIRdES
CIEIGIEREEED
[LILALEIEIE LD
L1 GICEEEEIED
EILILIEIEIES

(b) Full control.

@ Rotation

Ablation

—C +C
-5 +5 -5 +S5

Intra-E | 1.98 40.33 17.64 7.79 14.81 35.50
Inter-E T 139 042 0.73 1.35 1.02 1.37
[I-Score T 4.01 1.28 1.83 3.63 2.56 3.94

Bound Static

Quantitative

Chair CAD [1, 40]
Bound Deep Rot. [40] VideoVAE (ours)

O O
Intra-E | 1.98 14.68 5.50
Inter-E 1 1.39 1.34 1.37

I-Score 1T 4.01 3.39 3.94

Results: \Weizmann Human Action dataset

@ ldentity =& | A | @ Action = @ walking | @ running | skipping | jumping jack | side step

generate
| - ™ | Yas! ' b B N PR (LB ~ w o
f

B 0 00 O 8 0 Wk Wt O Ok, b LBt U O
¢ ¢ & & & 6 6 6 6 6 ¢ 6 oo o+ o
A A A A A A A A A A A A A A A

FTFF2424 00 2 2 AAAR
i B E E E E = =

Weizmann Human Action [2]
Bound MoCoGAN [32] VideoVAE (ours)

O O @
Intra-E | 0.63 23.58 0.53 9.44
Inter-E 1T 4.49 2.91 437 4.37

[-Score 1 89.12 13.87 69.55 70.10

Results: MIT Flickr

YFCC [31] — MIT Flickr [34]
Bound VGAN [34] VideoVAE (ours)

O O @
Intra-E | 30.34 46.96 4403 38.20
Inter-E 1 0.693 0.692 0.691 0.692

I-Score 1 1.87 1.58 1.62 1.81

Variational Autoencoders

Probabillistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active area of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)

So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
p(z) = Hp(fl?z'\flila ey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(T) = /Pe(z)m(w\z)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
p(z) = Hp(fl?z'\flila ey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(T) = /Pe(z)m(w\z)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

GANS: don’t work with any explicit density function

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Generative Adversarial
Networks (GANS)

Generative Adversarial Networks [Goodfellow et al., 2014]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Generative Adversarial Networks [Goodfellow et al., 2014]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Generative Adversarial Networks [Goodfellow et al., 2014]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution

Question: \What can we use to represent complex
transformation function®

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Generative Adversarial Networks [Goodfellow et al., 2014]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution

Question: \What can we use to represent complex
transformation function®

Input: Random noise

Output: Sample from
training distribution

1

Generator Network

A

Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

t

Discriminator Network

’ Real Images
' :— (from training set)

Generator Network

t

Random noise Z

Fake Images
(from generator)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Irain jointly In minimax game
Minimax objective function: Discriminator outputs likelihood in (0,1) of real image

min max (Ezcpg.,. 108 Do, () + E,np(z) log(1l — Dy, (G, (2)))

99 Od _ —— ——
Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (84 wants to maximize objective such that D(x) is close to 1 (real) and D(G(2)) is

close to O (fake)
- Generator (6, wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled

into thinking generated G(z) is real)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Minimax objective function:

min max [L rnpaata 108 Do, (T) + Eznp(z) log(1l — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max | Eonp,,,, 108 Do, (€) + Esnpz) log(1 — Do, (G, (2)))

2. Gradient descent on generator

r%in *:z,\,p(z) log(1 — D, (GGQ (2)))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Minimax objective function:

min max [L rnpaata 108 Do, () + Eznp(z) 10g(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max | Eonpy,,, 108 Doy (2) + Eznp(z) log(1 — Dy, (Go, (2)))

2. Gradient descent on generator

I%in *:sz(z) log(1 — Dy, (GGQ (2)))

In practice, optimizing this generator

objective does not work welll

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Minimax objective function:

min max [L rnpaata 108 Do, () + Eznp(z) 10g(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

Gradient signal
dominated by region
where sample Is
already good

4 \
min K ~ log(1 — D9 GQ VA | | | — log;\l—DtjG(:)'))_
o, PL) 8 (Go, (2)) When sample is likely . |

mo?X i 4:CL‘Nipdam log D9d (:U) T 4‘ZNP(Z) 1Og(1 - ng (G99 (z)))_

2. Gradient descent on generator

fake, want to learn

from it to improve 7 |

S— But 4 |

In practice, optimizing this generator generator. Bu - |
objective does not work well gradientinthisregion . .\

S relatively flat!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Training GANs: Two-player Game [Goodfellow et al., 2014]

Minimax objective function:

ngin LB [znpaata 108 D0, (T) + Eznp(z) log(l — Do, (Go, (2)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max | Eonp,,,, 108 Do, (€) + Esnpz) log(1 — Do, (G, (2)))

2. Instead, gradient ascent on generator, different objective

— log(1 —D(
— —logD(G(z

o

#(2))) |

Hlei.x tsz(z) 1Og(D9d (Geg (Z)))

Instead of minimizing likelihood of discriminator being :
correct, now maximize likelihood of discriminator N j
being wrong,. _

D(G(z))

S—
—

Same objective of fooling discriminator, but now
higher gradient signal for bad samples => works
much better! Standard in practice.
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sampling GANs

t

Generator Network

t

Random noise Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Generative Adversarial Nets

Generated Samples

GANSs with Convolutional Architectures [Radford et al., 2016]

. ol "

m
P
»

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

GANSs with Convolutional Architectures [Radford et al., 2016 |

Interpolating between points in latent space

TP T

4 v »,
.-tul;‘ ' S.,uu% }r' S ‘r

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs: Interpretable Vector Math [Radford et al., 2016

Smiling woman Neutral womal Neutral man

Samples
from the
model

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs: Interpretable Vector Math [Radford et al., 2016

Smiling woman Neutral womal Neutral man

Samples
from the
model

- Average z
vectors, do _ — +
~arithmetic ~

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs: Interpretable Vector Math [Radford et al., 2016

Smiling woman Neutral womal Neutral man

Smiling man

Samples
from the
model

- Average z
vectors, do
arithmetic

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs: Interpretable Vector Math [Radford et al., 2016

Glasses Man No Glasses Man No Glasses \Woman

Samples
from the
model

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs: Interpretable Vector Math [Radford et al., 2016

Glasses Man No Glasses Man No Glasses \Woman

Samples
from the
model

Average z e

arithmetic
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs: Interpretable Vector Math [Radford et al., 2016]
Glasses Man No Glases Man No Glasses WWoman E:aféogg fé al,

Samples Woman with Glasses

from the
model

vectors, do
arithmetic

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Year of the GAN

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

« . . breast and crown, and black almost all black with a red
Better trammg and generatlon Source->Targe(;t domaln trarllpsi:er Outpu primaries and secondaries. crest, and white cheek patch.
A DO L s = [nput utput - SES

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

3 & PR3 4
L “ - winter Yosemite

‘ Pix2pix. Isola 2017. Many examples at
CycleGAN. Zhu et al. 2017. P y examp

https://phillipi.github.io/pix2pix/

BEGAN. Bertholet et al. 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Year of the GAN

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALl - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN - Coupled Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

 CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

GANSs

Don’t work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution
through 2-player game

Pros:
— Beautiful, state-of-the-art samples!

Cons:

— Trickier / more unstable to train
— Can’t solve inference queries such as p(x), p(z|x)

Active area of research:

— Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

— Conditional GANs, GANSs for all kinds of applications

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

