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Topics Iin Al (CPSC 532S):

Multimodal Learning with Vision, Language and Sound

Lecture 12: Generative Models



Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X 1S data, vy Is label

Goal: Learn a function to map x—vy

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Classification

This image is CCQO public domain

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X IS data, vy Is label

Goal: Learn a function to map x—y
= v .
Examples: Classification, DOG, DOG, CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

This image is CCQO public domain

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X 1S data, vy Is label

Goal: Learn a function to map x—vy

Examples: Classification, GRASS, , TREE, SKY
regression, object detection,
semantic segmentation, image Semantic Segmentation

captioning, etc.

This image is CCQO public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X IS data, vy Is label

Goal: Learn a function to map x—vy

. . A cat sitting on a suitcase on the floor
Examples: Classification, °

regression, object detection,
semantic SegmentatiOﬂ, image \mage Cap’[ioning
captioning, etc.

This image is CCO public domain

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised | earning

?65( X

Data: x 222%?
FX

x°

Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature k-means C|u3tering
learning, density estimation, etc.

This image is CCO public domain

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised | earning

Data: x
Just data, no labels!

original data space

component space

Goal: Learn some underlying hidden
Structure of the data

==
T

PC1

Examples: Clustering,
dimensionality reduction, feature dimensionality reduction
learning, density estimation, etc.

This image is CCO public domain

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised | earning

Data: x
Just data, no labels! | | -
1-dim density estimation
Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, |
dimensionality reduction, feature 2-dim density estimation
learning, density estimation, etc.

left right CCO public domain

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised Learning iJasupervised Learning

Data: (%, V)
X 1S data, vy Is label

Goal: Learn a function to map x—y
Examples: Classification,
regression, object detection,

semantic segmentation, image
captioning, etc.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Models

Given training data, generate new samples from the same distribution

A "

Training data ~ pgaa(x) Generated samples ~ Pmodel(X)

Want to learn pmodei(x) sSimilar to pyata(x)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Models

Given training data, generate new samples from the same distribution

B2

Training data ~ pgaa(x) Generated samples ~ Pmodel(X)

Want to learn pmodei(x) sSimilar to pyata(x)

Addresses density estimation, a core problem in unsupervised learning
— Explicit density estimation: explicitly define and solve for ppodel(x)

— Implicit density estimation: learn model that can sample from p0qaa(x) W/0 explicitly defining it

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Ghain
Fully Visible Belief Nets / \ .
- NADE
_ MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear |CA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Ghain
Fully Visible Belief Nets / \ .
- NADE
_ MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear |CA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Why Generative Models”?

— Realistic samples for artwork, super-resolution, colorization, etc.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Why Generative Models”?

— Realistic samples for artwork, super-resolution, colorization, etc.

— (Generative models of time-series data can be used for simulation,
predictions and planning (reinforcement learning applications)

— [raining generative models can also enable inference of latent representation
that can be useful as general features

— Dreaming / hypothesis visualization

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN and PixelCNN



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

then maximize likelihood of training data

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

Complex distribution over pixel values,

so lets model using neural network

then maximize likelihood of training data

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

T

p(z) = | | pl@ilzs, .. zio1)
T =1

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

Complex distribution over pixel values,

L T . so lets model using neural network
then maximize likelihood of training data .

Also requires defining ordering of
“previous pixels”

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O O O @
o O O O O
o O O 0O O
o O O O O
o O O O O

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting ?_’@ o O O
from the corner ®@ O O O O
. . o O O O O

Dependency on previous pixels
model using an RNN (LSTM) o O O O O
o O O O O

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O

o O O

o O O O
o O O O O
o O O O O

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Pixel=RNN

4 o

| van der Oord et al., 2016 |

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

model using an RNN (LSTM)

o O O O O

Dependency on previous pixels &
O

o O O
o O O O

O
O
Problem: sequential generation is slow

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels
starting from the corner

b i

0 ? 255

Dependency on previous pixels
now modeled using a CNN over

context region Z 1 /

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels

starting from the corner
Softmax |loss at each pixel

b i

0 ? 255

Dependency on previous pixels
now modeled using a CNN over

context region A~ /

/
/
/

Training: maximize likelihood of
training images

Hp Ti|T1y ey Tio1)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels
starting from the corner

Dependency on previous pixels
now modeled using a CNN over

context region A~ /

Training: maximize likelihood of
training images

H p(zi|T1, ey Ti1) Generation is still slow (sequential),

but learning is faster

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generated Samp‘es [ van der Oord et al., 2016 ]
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* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRNN and Pixel CNN

Pros: Improving PixelCNN performance
— Can explicitly compute likelihood p(x) — Gated convolutional layers
— Explicit likelihood of training data gives good — Short-cut connections
evaluation metric — Discretized logistic loss
— Good samples — Multi-scale
— Training tricks
— Ete...
Con:

— Sequential generation => slow

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Multi-scale PixelRNN [ van der Oord et al., 2016 |

Take sub-sampled pixels as
additional input pixels

Can capture better global
iInformation (more visually
coherent)

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Multi-scale PixelRNN [ van der Oord et al., 2016 |

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Similar to PixelRNN/CNN but conditioned on a high-level image description
vector h

p(x) = p(T1, T2, ..., Tp2)

!

p(x/h) = p(x1, 29, ...,x,2|h)

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Sandbar

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Attention RNN: Structured
Spatial Attention Mechanism

Siddhesh Khandelwal eonid Sigal




Motivation

Attention is widely used in vision: helps identity relevant regions of the image

Image Encoder

N

tion En r
Questio code Answer Decoder

s i s
v v oy

[t IS red

LSTM LSTM

LSTM g LSTM g LSTM L gLSTM g
Q: What color is a hydrant? 4 4 4 4 4 4

What color IS a hydrant

A: It Is red



Motivation

Attention is widely used in vision: helps identity relevant regions of the image

Attention is applied:

On the output of CNN architecture After each CNN layer

next convolution layer (g-ik)
— attended N / e
a
Extractor y Jearure (i) gl ¢ vl

. = m) B

N £ T N R i B

. =22 > _nl_

£ ©

£ © © \
Jealilel) orobabiity (al) fouture map () (Image taken from Seo et al. BMVC 2018)




Motivation

Attention is widely used In vision: helps identity relevant regions of the image

Attention is applied:

On the output of CNN architecture After each CNN layer

next convolution layer (g-ik)
— attended N / * e
a
Extractor 5 Feare (=) Apd ¢ i
L = - s
O =20 [ T O I I B i
. =2 _nl
£
£ © © \
Jealilel) orobabiity (al) fouture map () (Image taken from Seo et al. BMVC 2018)

Existing attention mechanisms are either global or local



Motivation

Attention is widely used In vision: helps identity relevant regions of the image

Attention is applied:

On the output of CNN architecture After each CNN layer

t lution layer (g&ik)
CNN attended " /nex convolution layer (gcnn
a
Extractor Z feature ( f ) “71 / 2
r = ilf
O =755 L I B R By i e o
. 25 > _mall
0
a o O \
Jealilel) orobabiity (al) fouture map () (Image taken from Seo et al. BMVC 2018)

Existing attention mechanisms are either global or local

e Global:
QOOQOOOEC:%)LO Pros:
X — Can model arbitrary context
© 0 Cons:
— Cannot be applied at high res.



Motivation

Attention is widely used In vision: helps identity relevant regions of the image

Attention is applied:

On the output of CNN architecture After each CNN layer

EX?rI:gor ;;;iz gee 7fatt) 2 /next convolution Iayer-(:q,lcm)
P 2% - —mall
fﬁZL”{Fl;}Z%’ZL?/’,-’ty(az) feature map () (Image taken from Seo et al. BMVC 2018)
Existing attention mechanisms are either global or local
o0 Global: ~ccoc Local:
QOO OO IO QOO OOO OO KO OOO

00 00O Pros: 0O00Qo Pros:

EFC Layer \ . \ \

— Can model arbitrary context 00000 — Can be applied at any resolution
Cons: T Cons:
OO 00O
— Can only model local context

— Cannot be applied at high res.



Motivation

Attention is widely used in vision: helps identity relevant regions of the image

Attention is applied:
On the output of CNN architecture
attended /| /next convolution

CNN att
Extractor feature (f ) I s BN
u =) 0

— mall

@ @’:;5 | f
Jeatule.) mrababiity (al) foaturs map (71 (Image taken from Seo et al. BMVC 2018)

Existing attention mechanisms are either global or local

After each CNN layer

layer (gEik)

attribute
classifier

cocooo  Local:

OOOOQOOOQQ GIObaI: O O O O O
QOOQO%QOOO QOQOOTOQOO
000Qgo Pros: 0O00Qqo Pros:
;FCLayer . ! . .
— Can model arbitrary context KR SXCRCeKe — Can be applied at any resolution
Cons: SO Cons:
O O OO0 0O
— Can only model local context

— Cannot be applied at high res.

Neither can account (explicitly) for structure in the attention variables



AttentionRNN: Structured Spatial Attention

O 0 00O

Novel autoregressive attention mechanism :
that can encode structural dependencies ORONONONO
among attention values O OO O O

— Inspired by diagonal Bi-LSTM architecture from Pixel[RNN

— Spatial attention values are generated sequentially O O | () O | O

— Image Is traversed diagonally from top-left to bottom-right



AttentionRNN: Structured Spatial Attention

Each attention value depends on O (DD

— Local | text o o e e
OCal Image contex . / ) _ / /

— Previously generated attention values O ~ 5 - 510 OO O

Novel autoregressive attention mechanism :

that can encode structural dependencies ORONONONO

among attention values O OO0 O O

_ Inspired by diagonal Bi-LSTM architecture from PixelRNN A O @ @ -t A O

— Spatial attention values are generated sequentially O O | ® ® ®

— Image Is traversed diagonally from top-left to bottom-right



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution

Image



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution Y,

%

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution o

7

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution Y,

4

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

[ k x k }
convolution

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

k x k } LSTM with
convolution 2x1 kernel
O\
L
-

Image Attention Mask



AttentionRNN: Structured Spatial Attention

Fach attention value depends on

— Local image context

— Previously generated attention values

k x k } LSTM with
convolution 2x1 kernel
O\
L
......... : <ol

Image Attention Mask



Block Attention RNN: Scalability

LSTMs don’t work well over large sequences (say beyond 50 x 50)

We utilize symmetric down-sampling and up-sampling scheme to deal with
larger resolution attention maps

o O o
~O O A O's
00 Qs 0 eCs
:%@OQO OO O . :O%()OOO
> O O O O Sa 2 O O
QOOQ | Attention QOOQ
QOO mage Mask QOO



Experiments: Visual Attribute Prediction

Task: Given an image, predict a color of the number specified by a query

>

O

(a) MREF (b) MDIST (c) MBG

MREF | MDIST | MBG

CNN+SAN [23] 81.28 78.06 52.36 Gilobal (only top layer)

CNN+-CTX [23] | 94.95 90.06 | 66.83 Local (all layers)

CNN+CTX [25] 97.92 95.80 79.26  Local with context (all layers)
CNN+ARNN 90.11 97.04 86.07 Local with context + structure (all layers)




Experiments: Visual Digit Prediction

Task: Given an image, predict a digit number specified by a query color

Inputs
and
Outputs

Attention 1

Attention 2

Attention 3

Attention 4

CITX

Query: Ye]]ho;r
CNN+CTX: 0

CNN+ARNN: 9| &

SAN

- CTX

CTX

ARNN

Correctness

0.1258

0.2017

0.2835

0.3729




Experiments: Visual Question Answering

Task: Visual Question Answering

Accuracy
what is tﬁe man hoiding a )

Prior 24.04 T——
snowboard on top of a snow Y sl 18 E1e matl Mo snowboard on top of a snow snowboard on top of a snow

t A ~overed
HCA [ 1 8] 5 ]. 27 covered? A: mountain on top of a snow coverec covered ? covered ?

HCA+ARNN 53.23 .
.

-

A

Q: what is the color of the bird? A:
white

_L'Lfk

what is the of the bird ? what is the color of the bird ? what is the

‘L ilD

Q: how many snowboarders in how many in how many snowboarders in how many snowboarders in
formation in the snow, four is formation in the snow , four is formation in the snow , four is formation in the snow , four is
sitting? A: § ? sitting ? sitting ?

HCA — Hierarchical Co-attention
[ Lu et al., NIPS 17 ]



Conclusions

— Modeling structure among the latent attention variables is useful

:4—.' <— )

o
//OO

00000

O 00doO




Variational Autoencoders
(VAE)



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(x) = Hp(ib‘z'|$1, veey Ti—1)

1=1

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(x) = HP(SBi|$1, veey Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(a]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connecteo
Later: ReLU CNN

Features Z

data

[ Encoder E
l.;‘ﬁ@
Input data T !SQE
a7l « MBS

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected
V\ Later: ReLU CNN
Features Z

data

[ Encoder .-

A ﬁ@
Input data X SEN
sl < MBS

\v

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

¥ Later: ReLU CNN
Want features that capture
meaningful factors of variation

Features Z

Input‘data
[ Encoder uiﬁ < .n
Input data T ﬁ%g
U
a7 < G

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data best they can

llmiﬂ@
P el 0
erl R | T

Reconstructed A
input data L
T Decoder
Features Z
data
Encoder Wt e
i

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data Reconstructed data

best they can E=§‘==
Reconstructed n!sqp

I-EDlﬁ
o el 3 0 Y
erl R | T

Input data

@ P sl < WS
Decoder 'f
Encoder: 4-layer conv

Decoder: 4- Iayer upconv

Features 2
data

Encoder o I T

b

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

| 2 |oss function: Reconstructed data

o e b . I
P oS
Tl 3P
-EH; vl

|z — 2|

—

Reconstructed
input data

Decoder Encoder: 4-layer conv
Decoder: 4- Iayer upconv
data
Encoder B ..

T
Features 2
XL

I-Kll@
sl LR by
erl R | T

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

2 Loss function: Reconstructed data

- [ -
o — 11 e e
PN .ahe
] T

—

Reconstructed

. T ;
nput data sl < 6
D d t
ecoaer Encoder: 4-layer conv
Decoder: 4-layer upconv
Features Z A
data
Encoder .- \,-,,_ _
|nput data m .’ Q.

HEISQN
erl R | T

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Loss function
(e.g., softmax)

/ \

7 Fine-tune Train for ﬁnal task
encoder (sometimes with small data)
T Classifier ointly with
Features o classifier
oird plane
[ Fneoder deer  truck
Input data T Mﬂ'mm

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

| Intuition: x is an image, z Is latent
po- (z | 2V) factors used to generate x (e.q.,
attributes, orientation, etc.)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional X , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional X , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Decoder

network  Conditional p(x|z) is complex (generates image)

Sample from Represent with Neural Network
true prior yA

po~(2)
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Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

X

Decoder
Network

VA

How do we train this model?
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Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional b L G
Model parameters to maximize likelihood of
po-(z | 2() Secoder training data
Network pg(a:) — [ Pé (Z)pg (:BlZ)dZ
Sample from
true prior Z (now with latent z that we need to marginalize)
po-(2)
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Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
rue conditional L model parameters to maximize likelihood of
po~(z | (V) oo training data
e po(z) = [ pol()po(al2)d:
Sample from
true prior Z (now with latent z that we need to marginalize)
po-(2) What is the problem with this?
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Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional 4 b L .
Model parameters to maximize likelihood of
po<(x | V) Secoder | lrAINING data
Network po(z) = [ pe(2)pe(z|z)dz
Sample from
true prior Z (now with latent z that we need to marginalize)

po-(2) —inuractable!

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood:  pg(x) = /po(z)pg(a:|z)dz
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood:  pg(x) = /po(z)pg(a:|z)dz

Simple Gaussian Prior
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Decoder Neural Network

@
Data likelihood:  pg(x) = /po(z)pg(a:|z)dz

Simple Gaussian Prior
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

@

Simple Gaussian Prior
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

Simple Gaussian Prior

Posterior density is also intractable: Pe(2|T) = po(z|2)pe(2)/po(x)
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

Simple Gaussian Prior

Posterior density Is also intractable: Po(z |$) — Pe(fB \Z)pe(z) 9(33)
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

Simple Gaussian Prior

Posterior density Is also intractable: PG(Z |517) — pe(l‘ \Z)po(z) 9(33)

Solution: In addition to decoder network modeling pg(x|z), define additional
encoder network gg(zlx) that approximates pg(z|x)

— Wil see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize
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Optional subtitle



Variational Autoencoder

| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Mean and (diagonal) covariance of z | x

N\

Hz|x

Encoder Network

4 (2|7)

(parameters ¢)

z\a:

Mean and (diagonal) covariance of x | z

\

Hx|z

Decoder Network

po(z|2)

(parameters )

\

a:lz
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Variational Autoencoder

| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Why*? Mean and (diagonal) covariance of z | x

N\

Hz|x

Encoder Network

4 (2|7)

(parameters ¢)

z\a:

Mean and (diagonal) covariance of x | z

\

Hx|z

Decoder Network

po(z|2)

(parameters )

\

a:lz
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Variational Autoencoder [ Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Sample z from: z|x ~ N (py(z) X 2|2) Sample x | z from: z|z ~ N (g2, Ze|2)
Hz|x z\ar: M|z :z:lz
Encoder Network Decoder Network
qy(z|T) po(z|2)
(parameters ) (parameters )
XL Z

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —1ogp9(:c(i))- (po (") Does not depend on z)

——

Taking expectation with respect to z
(using encoder network) will come In
handy later
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

2mogy (2]2 () —log pg(:c(i))- (po (") Does not depend on z)

po(2® | 2)po(z)”
po(z | ()

(Bayes” Rule)

= E. |log
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Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

sy (220 108 Po(z)

log

log

po(2® | 2)po(z)”

(po (") Does not depend on z)

. Bayes’
po(z | @) (Bay
po () | 2)po(2) qo(z | V)

po(z | x®) qg(z|x)_

Rule)

(Multiply by constant)
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z'?) = E. q,(z]z) —1ogp9(:1;(i))- (po (") Does not depend on z)
po (x| 2)pg(2)

po(z |z)
po (2" | 2)pa(2) g (z | =)

= E. |log (Bayes’ Rule)

= E. |lo . . Multiply by constant
G [20) gzl )
- , : i (1)) I (4

= E, |logpe(z'¥ | 2)| — E. |log 4(z]2") + E. |log 42| @ . ) (Logarithms)
- : _ po(z) T pe(z | 2W)
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —1ogp9(:1;(i))_ (po (") Does not depend on z)

_ e _
= E, |log Po(z™ | z)pg(z) (Bayes’ Rule)
_ po(z [ =)

po (x| 2)pe(2) qp(z | V)

= E. |lo . . Multiply by constant
T [20) gz [a)] )
: | : i O i (4))"

—E. |logpg(z'¥ | 2)| —E. |log 4(z]2") + E. |log 42| @ . ) (Logarithms)
- : _ po(z) - pe(z | 2)

= E. [logpo (2 | 2)| = Dicr(a6(2 | 27) || p(2)) + Dicr (02 | 27) || po(z | 2))
_I_ —I—

Expectation with respect to z
(using encoder network) leads to nice KL terms
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| Kingma and Welling, 2014 |

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (') = E (po (") Does not depend on z)

—log pe(z'¥ )-

z~qg (z|z ()

po(2® | 2)po(z)”

log (Bayes’ Rule)

po(z | ()

po(29 | 2)ps(2) a2

5,3(71))'

. |log

po(z | V)

—
—

. [log pe (2@ | 2)

. —Inge(iU(i) | Z)-

Decoder network gives pg(x|z), can

compute estimate of this term through

sampling. (Samplin

g differentiable through

reparam. trick, see paper.)

Qe (2

— E. |log

;1;(73))_
gs(z | D)

po(2)

+ E,

This KL term (between Gaussians
for encoder and z prior) has nice
closed-form solution!

log

(2

(Multiply by constant)

m(z‘))‘

Pe(z

7))

(Logarithms)

— Dr1(q5(2 | ) || po(2)) + Drr(gs(z | V) || pa(z | "))

Pp(z|x) intractable (saw earlier), can't

compute this KL term :(

But we know KL divergence always >= 0.
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Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

= E. |log

= E. |log

— E, -lngg(iB(i) | 2)

=E, :logpe(f'?(i) | Z)-

sy (220 108 Po(z)

po(2® | 2)po(z)”

po(z | ()

po(29 | 2)ps(2) a2

(po (") Does not depend on z)

(Bayes” Rule)

gj(i))'

po(z | D)  qg(z

—E.

log

()

gs(z | D)

(Multiply by constant)

+ E,

po(2)

—_—— e —,——————
L(z™,0,0)

Tractable lower bound which we can take gradient of
and optimize! (pB(x|z) differentiable, KL term differentiable)

log

(2

x(i))‘

Pe(z

7))

(Logarithms)

— Drr(gs(z | 27) || po(2)) + Dr(gs(2 | ) || po(z | )
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

2mogy (2]2 () —1ogp9(:c(i))- (po (") Does not depend on z)

pe(fl«“(;) | 2)po(z)
po(z|2z))
po (x| 2)pe(2) qp(z | V)

(Bayes” Rule)

= E. |log

= E. |lo . . Multiply by constant
T [20) gz [a)] )
: | : i (4))" i (4))"

—E. |logpg(z'¥ | 2)| —E. |log 4(z]2") + E. |log 42| @ . ) (Logarithms)
- : _ po(2) po(z | 2(9)

=E. |logpg(z') | 2)| — Dicr(as(2 | %) [|pe(2)) + Dicr(ap(z | 2) || po(z | 7))
D ———————

(2)
| | L @) Training: Maximize lower bound
log po(z'V) > L(z", 0, ) N
Variational lower bound (“ELBO”) 0", 9" = arg r%%x L(z*,0,9)
=1
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z'?) = E. q,(z]z) —1ogp9(:1;(i))- (po (") Does not depend on z)

po (x| 2)pe(2)
po(z | x®)
po (x| 2)pa(2) qg(z | V)
po(z | 2®) qg(z|zW),

(Bayes” Rule)

= E. |log

(Multiply by constant)

= E. |log

Reconstruct Make approximate posterior
Input Data close to the prior

= E. {logpo(a” | 2)| - Drrlas(z | 29) || po(2)) + Drcr(ao(z | 2?) | po(z | =)
D ————————————————

(2)
| | L @) Training: Maximize lower bound
log po(z'V) > L(z", 0, ) N
Variational lower bound (“ELBO”) 0", 9" = arg ngf}px L(z*,0,9)
=1
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
—e
£(2,0,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data €T

* slide from Fei-Fel Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
—e
£(2,0,0)

I‘LZICC Zzlx
Encoder network
qe(2|T) \/
Input Data €T
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. [logps(2) | 2)| — Dicr(gs(z | 29) || po(2))
-—_  —,_e,e—,———_—_—_—_———
L(z9,,¢)

Make approximate

posterior distribution

close to prior / \

/’I’Z‘.’D Zzlx

Encoder network

gs(2|T)
Input Data b
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. [logps(2) | 2)| — Dicr(gs(z | 29) || po(2))
-—_  —,_e,e—,———_—_—_—_———
L(z9,,¢)

Z
Sample z from z|z ~ N(Mz|a;, Yolz)

Make approximate

posterior distribution

close to prior / \

/’I’Z‘.’D Zz Ix
Encoder network
qe(2|T) \/
Input Data b
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E; [lnge(f’?(i) | Z)] — Dgr(qe(z | D) || po(2)) M|z Y
. N Decoder network
Lz, 0, ) . (;z;lz) \/
Z

Make approximate

Sample z from z|z ~ N(Mz|a;, Yolz)

posterior distribution

close to prior / \

I‘I’Z‘.’B Zz Ia;
Encoder network
qe(2|T) \/
Input Data £z
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Miaximize fikelinood of T
5OUNG original input being
reconstructed Sample x|z from z|z ~ N (tg|, Lg|2)
E. [logpo(a® | 2)] - Dics(as(z | 2) | po() Fols x|z
_ Decoder network
L(xD,0,0)
po(z|2)
Z

Make approximate Sample z from z|z ~ N(Mz|a;, 2z|:z:)

posterior distribution

close to prior / \

/“I’Z‘.’D Zz Ig;
Encoder network
qo(2|T) \/
Input Data b
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Miaximize fikelinood of T
5OUNG original input being
reconstructed Sample x|z from z|z ~ N (tg|, Lg|2)
E. [logpo(a® | 2)] - Dics(as(z | 2) | po() Fols x|z
_ Decoder network
L(xD,0,0)
po(z|2)
Z

Make approximate Sample z from z|z ~ N(Mz|a;, 2z|:z:)

posterior distribution

close to prior / \

Mz >
Encoder network | z|
qo(2|T) \/
Input Data b

For every minibatch of input data: compute this forward pass, and then backprop!
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Variational Autoencoder: Generating Data

Use decoder network and sample z from prior

Sample x|z from |z ~ N(/Lm|z, Ea:|z)

A

L

/

M|z

Decoder network

Po(|2)

™~

23:z:\z

~_

Z

Sample z from z ~ N (0, I)
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Data

[gle

Use decoder network and sample z from prior

Generat

Variational Autoencoder

Data manifold for 2-d z

DAY SNANNANAANNNNNSNNNNS
QAR e LLLLLLYWNYNNNN~
QUAVYINN L LLLVYY Y NN~
QAUAVVDUINIninlglo to VWV W -~~~
QOAOAOUODHLINLNKWBIVIYY W W ——
QOOOOHIHINNNKNOEPBIIIDY W W - —
QAQOQOIMHIMMMMN M DIOID D W - —
QOODODMMMMMN WO DD D e e —
OO0DOMMM MM N0 WBD DD e —
OQO0DMMOMMMMOMNO WA e e e
QONMMM M OO0 00 e o o oo —
QAP P0P 000000 00 o~ o~ 0~ P~~~
RS N N N N ol ol ol o Ll o
S L e N o ol ok ol ok ol - Sl Sl S
il odogororrororrrTaaaonnn~
SdadadadadogorrrrrrrrTIIINN
SdadaddagoorororrrdTT22INN
SO B B g gl gl s s s ol ol i S S S S A LN N
S I e gl gl plte i« il ol el el ol ol ol ol N N UL N

2:1:|z

TN

T
Sample x|z from x|z ~ N (i) ,, &
M|z

Decoder network
po(z|2)

xb)
Vary z;

Sample z from z ~ N (0, I)

Vary zo
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Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => :__:33_!:3 e
i W S SRR
o T T g e

;33‘3‘3‘3‘3&3&3&3’-

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

(degree of smile)

zﬁﬁ%%ﬁﬂ‘i‘qnf ]
B B B S S S
55 B B s
PEPE DS D ESE

(head pose)
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Variational Autoencoder: Generating Data

Diagonal prior on z =>
iIndependent latent variables

Different dimensions of z encode
iNnterpretable factors of variation

Also good feature representation that can
be computed using ge(z|x)!

Data manifold for 2-d z

R
SRR
Ay
SRR EE RIS

aas folesbesbesfenfe

-

Vary z;

o
B R
SEPEEEELEE
BEEEEEEEEE
SEEEEEEEEE

-_—m" "@€" @ mn - mpHom -
Vary Zo

(degree of smile)

(head pose)
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Variational Autoencoder: Generating Data

L abeled Faces in the Wild
32x32 CIFAR-10
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Conditional VAES [ Xue et al., 2016

(a) Frame 1 (b) Frame 2 (c) Frame 2 (d) Frame 2
(ground truth) (Sample 1) (Sample 2)



Variational Autoencoders

Probabillistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active area of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)




