
Lecture 12: Generative Models

Topics in AI (CPSC 532S): 
Multimodal Learning with Vision, Language and Sound



Supervised vs. Unsupervised Learning

Supervised Learning 

Data: (x, y) 
x is data, y is label 

Goal: Learn a function to map x    y 

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Supervised Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs. Unsupervised Learning

Supervised Learning 

Data: (x, y) 
x is data, y is label 

Goal: Learn a function to map x    y 

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Object Detection

This image is CC0 public domain

Supervised Learning

DOG, DOG, CAT

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


GRASS, CAT, TREE, SKY

Supervised vs. Unsupervised Learning

Supervised Learning 

Data: (x, y) 
x is data, y is label 

Goal: Learn a function to map x    y 

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Semantic Segmentation

This image is CC0 public domain

Supervised Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs. Unsupervised Learning

Supervised Learning 

Data: (x, y) 
x is data, y is label 

Goal: Learn a function to map x    y 

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image Captioning

This image is CC0 public domain

Supervised Learning

A cat sitting on a suitcase on the floor

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs. Unsupervised Learning

Supervised Learning 

Data: x 
Just data, no labels! 

Goal: Learn some underlying hidden 
structure of the data 

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

k-means clustering

This image is CC0 public domain

Unsupervised Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs. Unsupervised Learning

Supervised Learning 

Data: x 
Just data, no labels! 

Goal: Learn some underlying hidden 
structure of the data 

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

dimensionality reduction

This image is CC0 public domain

Unsupervised Learning

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs. Unsupervised Learning

Supervised Learning 

Data: x 
Just data, no labels! 

Goal: Learn some underlying hidden 
structure of the data 

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

2-dim density estimation

Unsupervised Learning

Figure	copyright	Ian	Goodfellow,	2016.	Reproduced	with	permission.	

1-dim density estimation

2-d density images left and right are CC0 public domain

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Supervised vs. Unsupervised Learning

just leSupervised Learning

Data: (x, y) 
x is data, y is label 

Goal: Learn a function to map x    y 

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generative Models
Given training data, generate new samples from the same distribution

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generative Models
Given training data, generate new samples from the same distribution

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Addresses density estimation, a core problem in unsupervised learning 
— Explicit density estimation: explicitly define and solve for pmodel(x) 

— Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it 

Want to learn pmodel(x) similar to pdata(x)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generative models

Taxonomy of Generative Models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Fully Visible Belief Nets 
- NADE 
- MADE 
- PixelRNN/CNN 
Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generative models

Taxonomy of Generative Models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Fully Visible Belief Nets 
- NADE 
- MADE 
- PixelRNN/CNN 
Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Why Generative Models? 
— Realistic samples for artwork, super-resolution, colorization, etc.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Why Generative Models? 

— Generative models of time-series data can be used for simulation, 
predictions and planning (reinforcement learning applications)
— Training generative models can also enable inference of latent representation 
that can be useful as general features
— Dreaming / hypothesis visualization 

— Realistic samples for artwork, super-resolution, colorization, etc.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN and PixelCNN



PixelRNN

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

[ van der Oord et al., 2016 ]

Use chain rule to decompose likelihood of an image x into product of (many) 
1-d distributions

Explicit Density model

then maximize likelihood of training data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

[ van der Oord et al., 2016 ]

Use chain rule to decompose likelihood of an image x into product of (many) 
1-d distributions

Explicit Density model

then maximize likelihood of training data
Complex distribution over pixel values,  
so lets model using neural network
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PixelRNN

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

[ van der Oord et al., 2016 ]

Use chain rule to decompose likelihood of an image x into product of (many) 
1-d distributions

Explicit Density model

then maximize likelihood of training data
Complex distribution over pixel values,  
so lets model using neural network

Also requires defining ordering of 
“previous pixels”

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)

PixelRNN [ van der Oord et al., 2016 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)
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PixelRNN [ van der Oord et al., 2016 ]

Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)
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PixelRNN [ van der Oord et al., 2016 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Generate image pixels starting 
from the corner 

Dependency on previous pixels 
model using an RNN (LSTM)

Problem: sequential generation is slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Still generate image pixels 
starting from the corner 

Dependency on previous pixels 
now modeled using a CNN over 
context region 

PixelCNN [ van der Oord et al., 2016 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelCNN [ van der Oord et al., 2016 ]

Still generate image pixels 
starting from the corner 

Dependency on previous pixels 
now modeled using a CNN over 
context region 

Training: maximize likelihood of 
training images

Softmax loss at each pixel

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelCNN [ van der Oord et al., 2016 ]

Still generate image pixels 
starting from the corner 

Dependency on previous pixels 
now modeled using a CNN over 
context region 

Training: maximize likelihood of 
training images

Generation is still slow (sequential), 
but learning is faster

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generated Samples

32x32 CIFAR-10 32x32 ImageNet

[ van der Oord et al., 2016 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN and PixelCNN

Improving PixelCNN performance 
— Gated convolutional layers 
— Short-cut connections 
— Discretized logistic loss 
— Multi-scale 
— Training tricks 
— Etc… 

Pros: 
— Can explicitly compute likelihood p(x) 
— Explicit likelihood of training data gives good 

evaluation metric 
— Good samples 

Con: 
— Sequential generation => slow

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Take sub-sampled pixels as 
additional input pixels 

Can capture better global 
information (more visually 
coherent)

Multi-scale PixelRNN [ van der Oord et al., 2016 ]

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Multi-scale PixelRNN [ van der Oord et al., 2016 ]

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation

Similar to PixelRNN/CNN but conditioned on a high-level image description 
vector h

[ van der Oord et al., 2016 ]

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad

Conditional Image Generation [ van der Oord et al., 2016 ]



Attention RNN: Structured  
Spatial Attention Mechanism

Siddhesh Khandelwal Leonid Sigal



Motivation
Attention is widely used in vision: helps identify relevant regions of the image

Q: What color is a hydrant?
What color is a hydrant ?

LSTM LSTM LSTM LSTM LSTM LSTM

Question Encoder

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Image Encoder

CNN

It is red

LSTM LSTM LSTM

Answer Decoder

X

A: It is red

FC



Motivation
Attention is widely used in vision: helps identify relevant regions of the image

Attention is applied:

CNN 
Extractor

On the output of CNN architecture After each CNN layer

(Image taken from Seo et al. BMVC 2018) 



Motivation
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Attention is applied:

CNN 
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Existing attention mechanisms are either global or local 

On the output of CNN architecture After each CNN layer

(Image taken from Seo et al. BMVC 2018) 



Motivation
Attention is widely used in vision: helps identify relevant regions of the image

Attention is applied:

CNN 
Extractor

Existing attention mechanisms are either global or local 

Pros: 
— Can model arbitrary context 
Cons: 
— Cannot be applied at high res.

On the output of CNN architecture After each CNN layer

(Image taken from Seo et al. BMVC 2018) 

Global:



Motivation
Attention is widely used in vision: helps identify relevant regions of the image

Attention is applied:

CNN 
Extractor

Existing attention mechanisms are either global or local 

Pros: 
— Can model arbitrary context 
Cons: 
— Cannot be applied at high res.

Pros: 
— Can be applied at any resolution 
Cons: 
— Can only model local context

On the output of CNN architecture After each CNN layer

(Image taken from Seo et al. BMVC 2018) 

Global: Local:



Motivation
Attention is widely used in vision: helps identify relevant regions of the image

Attention is applied:

CNN 
Extractor

Existing attention mechanisms are either global or local 

Pros: 
— Can model arbitrary context 
Cons: 
— Cannot be applied at high res.

Pros: 
— Can be applied at any resolution 
Cons: 
— Can only model local context

On the output of CNN architecture After each CNN layer

(Image taken from Seo et al. BMVC 2018) 

Global:

Neither can account (explicitly) for structure in the attention variables

Local:



AttentionRNN: Structured Spatial Attention 

Novel autoregressive attention mechanism 
that can encode structural dependencies 
among attention values 
— Inspired by diagonal Bi-LSTM architecture from PixelRNN  

— Spatial attention values are generated sequentially  

— Image is traversed diagonally from top-left to bottom-right



AttentionRNN: Structured Spatial Attention 

Novel autoregressive attention mechanism 
that can encode structural dependencies 
among attention values 
— Inspired by diagonal Bi-LSTM architecture from PixelRNN  

— Spatial attention values are generated sequentially  

— Image is traversed diagonally from top-left to bottom-right

Each attention value depends on 
— Local image context 

— Previously generated attention values



k x k 
convolution 

Image

Each attention value depends on 
— Local image context 

— Previously generated attention values

AttentionRNN: Structured Spatial Attention 



k x k 
convolution 

Image Attention Mask

Each attention value depends on 
— Local image context 

— Previously generated attention values

AttentionRNN: Structured Spatial Attention 
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— Previously generated attention values



AttentionRNN: Structured Spatial Attention 

k x k 
convolution 

Image Attention Mask

Each attention value depends on 
— Local image context 

— Previously generated attention values



AttentionRNN: Structured Spatial Attention 

k x k 
convolution 

Image Attention Mask

Each attention value depends on 
— Local image context 

— Previously generated attention values



LSTM with 
2x1 kernel

AttentionRNN: Structured Spatial Attention 

k x k 
convolution 

Image Attention Mask

Each attention value depends on 
— Local image context 

— Previously generated attention values



LSTM with 
2x1 kernel

AttentionRNN: Structured Spatial Attention 

k x k 
convolution 

Image Attention Mask

Each attention value depends on 
— Local image context 

— Previously generated attention values



Block Attention RNN: Scalability 
LSTMs don’t work well over large sequences (say beyond 50 x 50)  

We utilize symmetric down-sampling and up-sampling scheme to deal with 
larger resolution attention maps



Experiments: Visual Attribute Prediction 
Task: Given an image, predict a color of the number specified by a query

Global (only top layer)
Local (all layers)

Local with context (all layers)

Local with context + structure (all layers)



Task: Given an image, predict a digit number specified by a query color

Experiments: Visual Digit Prediction 



Experiments: Visual Question Answering

[ Lu et al., NIPS 17 ]
HCA — Hierarchical Co-attention 

Task: Visual Question Answering



Conclusions

— Modeling structure among the latent attention variables is useful  



Variational Autoencoders 
(VAE)



So far …

PixelCNNs define tractable density function, optimize likelihood of training data:

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



So far …

PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent variables z (that we need to 
marginalize):

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

z usually smaller than x 
(dimensionality reduction)

Input data
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Autoencoders Reminder …

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid) 
Later: Deep, fully-connected 
Later: ReLU CNN

z usually smaller than x 
(dimensionality reduction)

Want features that capture 
meaningful factors of variation 

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Train such that features can reconstruct original data best they can

Reconstructed 
input data

Decoder

Input data

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Train such that features can reconstruct original data 
best they can

Reconstructed 
input data

Decoder

Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Reconstructed 
input data

Decoder

L2 Loss function: Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Reconstructed 
input data

Decoder

L2 Loss function: 

Doesn’t use labels!
Reconstructed data

Input data

Encoder: 4-layer conv 
Decoder: 4-layer upconv

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder …

Encoder

Input data

Features

Classifier

Loss function 
(e.g., softmax)

Fine-tune 
encoder 
jointly with 
classifier 

plane
dog deer

bird
truck

Train for final task 
(sometimes with small data)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Probabilistic spin on autoencoder - will let us sample from the model to generate 
Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Sample from 
true prior

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Probabilistic spin on autoencoder - will let us sample from the model to generate 
Assume training data is generated from underlying unobserved (latent) 
representation z

Sample from 
true conditional

Sample from 
true prior

Intuition: x is an image, z is latent 
factors used to generate x (e.g., 
attributes, orientation, etc.)

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we represent this model?

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

Choose prior p(z) to be simple, e.g., Gaussian  
Reasonable for latent attributes, e.g., pose, amount of smile

We want to estimate the true parameters 𝛳* of this generative model

How do we represent this model?

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we represent this model?

Choose prior p(z) to be simple, e.g., Gaussian  
Reasonable for latent attributes, e.g., pose, amount of smile

Conditional p(x|z) is complex (generates image) 
Represent with Neural Network

Decoder 
Network

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Decoder 
Network

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

What is the problem with this?

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

Sample from 
true conditional

Sample from 
true prior

We want to estimate the true parameters 𝛳* of this generative model

How do we train this model?

Remember the strategy from earlier — learn 
model parameters to maximize likelihood of 
training data

(now with latent z that we need to marginalize)

Decoder 
Network

Intractable ! 

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Simple Gaussian Prior
🙂

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂

Simple Gaussian Prior
🙂

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

Posterior density is also intractable: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

Posterior density is also intractable: 
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Intractability in Variational Autoencoder [ Kingma and Welling, 2014 ]

Data likelihood: 

Decoder Neural Network

🙂☹

Intractable to compute for every z

Simple Gaussian Prior
🙂

Posterior density is also intractable: 

Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)  
— Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize 

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Optional subtitle



Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)

Why?

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 ]

Decoder NetworkEncoder Network

Sample z from: Sample x | z from:

Since we are modeling probabilistic generation of data, encoder and decoder 
networks are probabilistic (they model distributions)

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Taking expectation with respect to z 
(using encoder network) will come in 

handy later

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Expectation with respect to z 
(using encoder network) leads to nice KL terms

[ Kingma and Welling, 2014 ]

* slide from Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

pθ(z|x) intractable (saw earlier), can’t 
compute this KL term :(  

But we know KL divergence always >= 0.

This KL term (between Gaussians 
for encoder and z prior) has nice 

closed-form solution!

Decoder network gives pθ(x|z), can 
compute estimate of this term through 

sampling. (Sampling differentiable through 
reparam. trick, see paper.)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

 Tractable lower bound which we can take gradient of 
and optimize! (pθ(x|z) differentiable, KL term differentiable)

[ Kingma and Welling, 2014 ]
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Training: Maximize lower bound

Variational lower bound (“ELBO”)
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Derivation of lower bound of the data likelihood
Variational Autoencoder

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

Training: Maximize lower bound

Variational lower bound (“ELBO”)

Reconstruct  
Input Data

Make approximate posterior  
close to the prior

[ Kingma and Welling, 2014 ]
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Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Lets look at computing the bound (forward pass) 
for a given mini batch of input data

Variational Autoencoder: Learning
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Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Variational Autoencoder: Learning
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Encoder network

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: 
maximizing the likelihood lower 
bound

Maximize likelihood of 
original input being 

reconstructed

For every minibatch of input data: compute this forward pass, and then backprop!

Make approximate 
posterior distribution 

close to prior

Variational Autoencoder: Learning
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoder: Generating Data
Use decoder network and sample z from prior Data manifold for 2-d z

Vary z1

Vary z2
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation
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Variational Autoencoder: Generating Data
Data manifold for 2-d z

Vary z1 

(degree of smile)

Vary z2 

(head pose)

Diagonal prior on z => 
independent latent variables 

Different dimensions of z encode 
interpretable factors of variation

Also good feature representation that can 
be computed using qɸ(z|x)! 
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Variational Autoencoder: Generating Data

32x32 CIFAR-10
Labeled Faces in the Wild
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Conditional VAEs [ Xue et al., 2016 ]



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data 
Defines an intractable density => derive and optimize a (variational) lower bound 

Pros: 
- Principled approach to generative models 
- Allows inference of q(z|x), can be useful feature representation for other tasks 

Cons: 
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN 
- Samples blurrier and lower quality compared to state-of-the-art (GANs) 

Active area of research: 
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian 
- Incorporating structure in latent variables (our submission to CVPR)


