

Topics in AI (CPSC 532S): Multimodal Learning with Vision, Language and Sound

Lecture 12: Coordinated Representations and Joint Embeddings (cont)

Logistics

- Assignment 4 Due tomorrow
 - BLUE4 scores
 - Self-attention

- Project pitches right after break (register on Google form!!!)

— Two more lectures after that from me, then paper readings

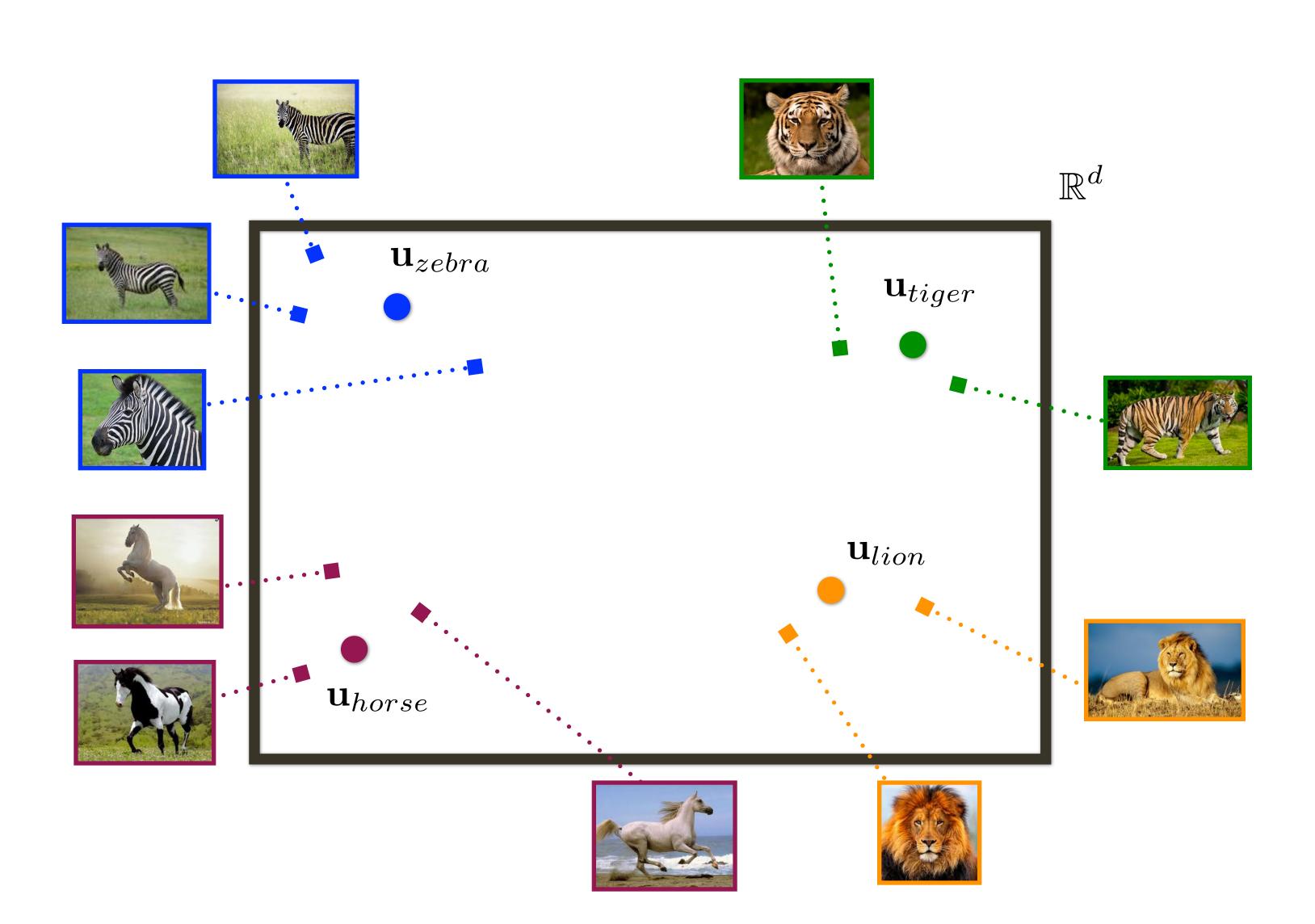
Semantic Embeddings

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

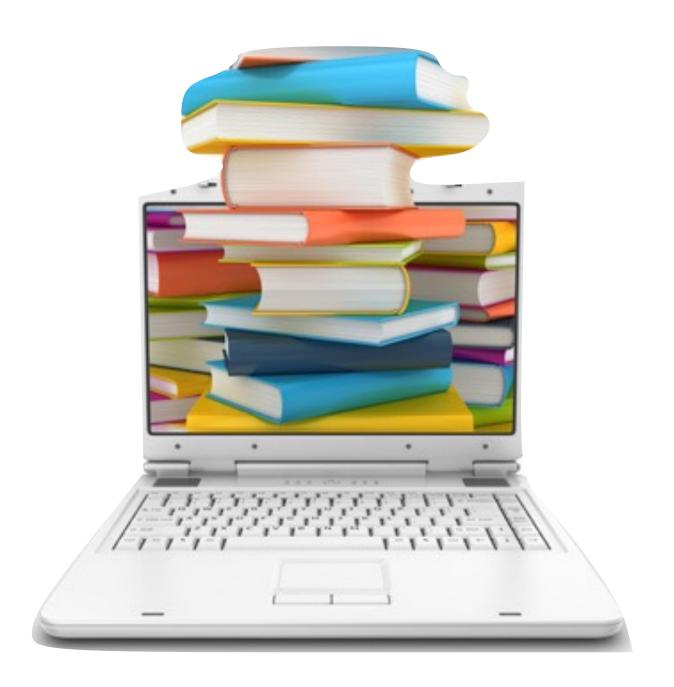


word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning

Label Embedding ••••

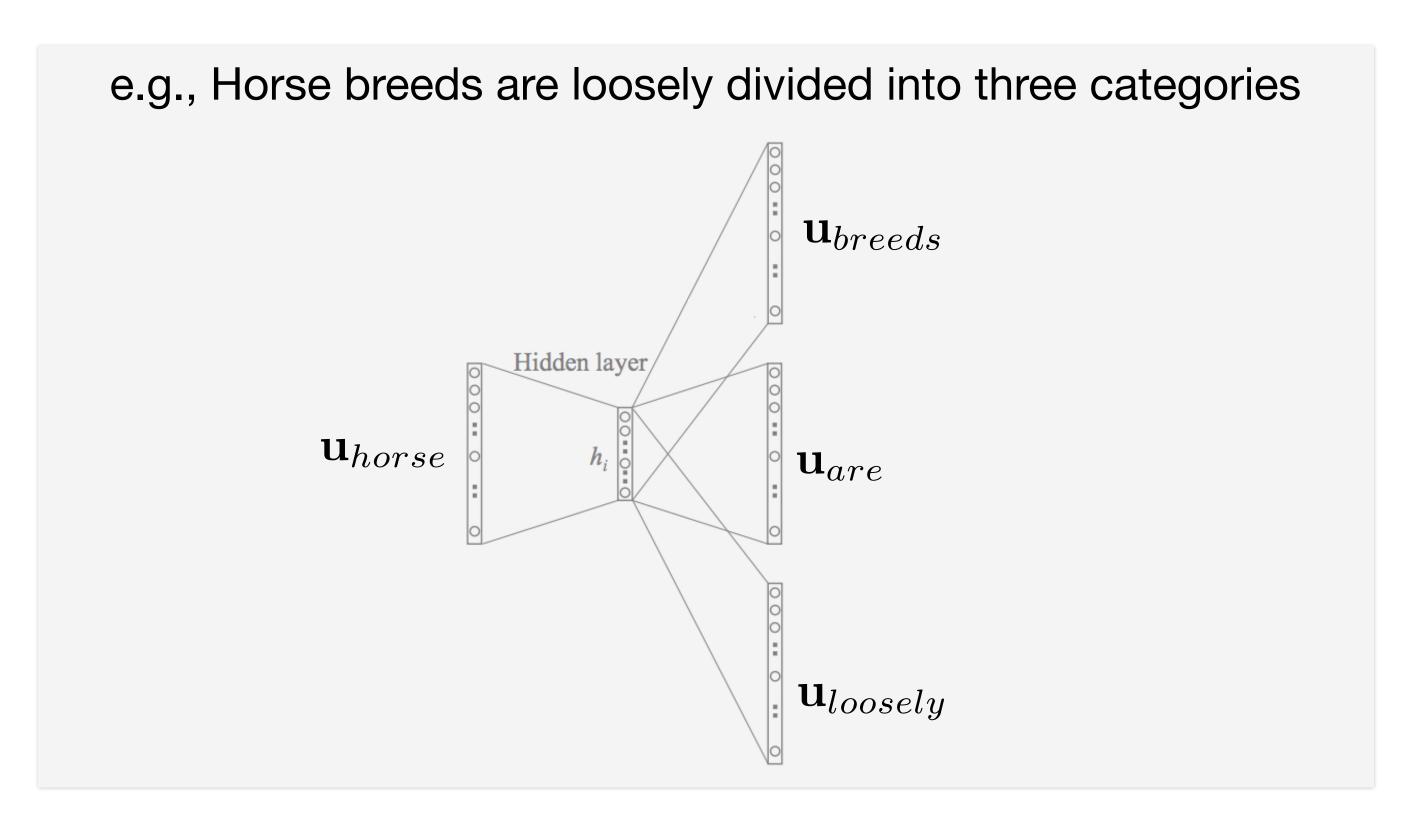
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning

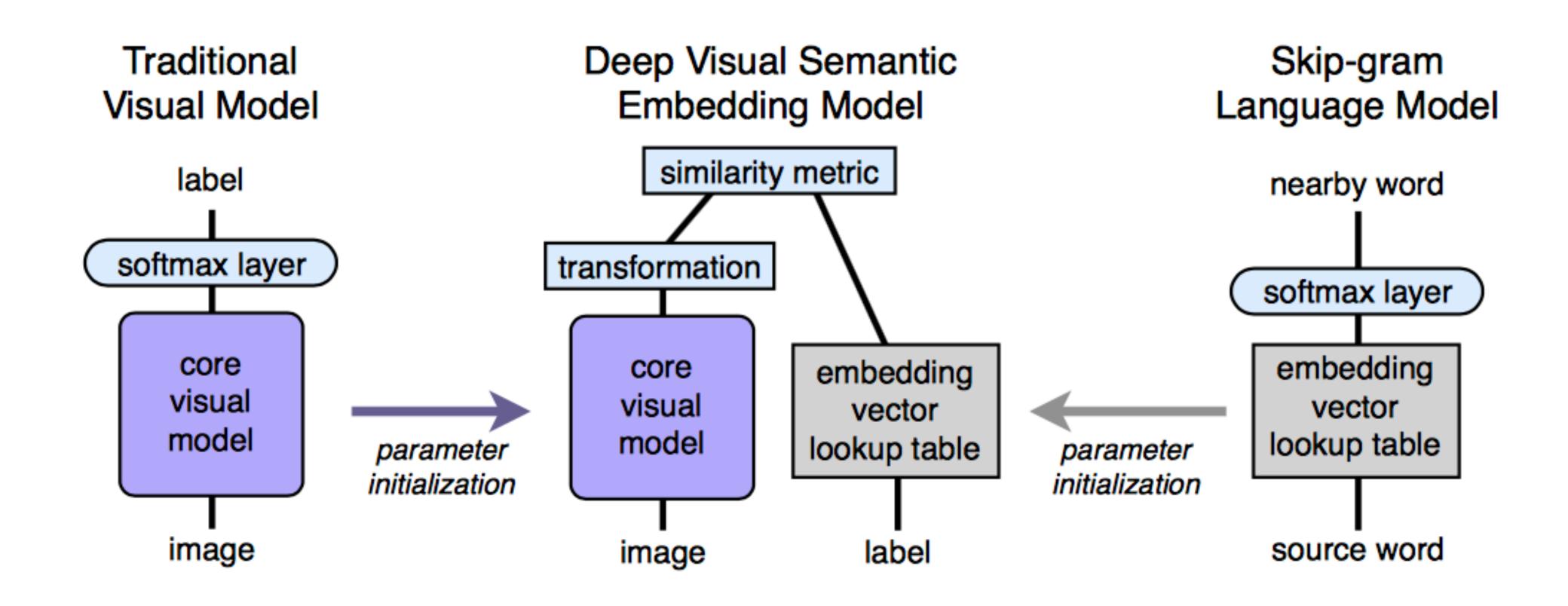
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



Skip-gram Model: unsupervised semantic representation for words

DeViSE: A Deep Visual-Semantic Embedding Model

[Frome et al., 2013]



$$loss(image, label) = \sum_{j \neq label} \max[0, margin - \vec{t}_{label} M \vec{v}(image) + \vec{t}_{j} M \vec{v}(image)]$$

DeViSE: A Deep Visual-Semantic Embedding Model

[Frome et al., 2013]

Supervised Results

		Flat hit@k (%)			Hierarchical precision@k				
Model type	dim	1	2	5	10	2	5	10	20
Softmax baseline	N/A	55.6	67.4	78.5	85.0	0.452	0.342	0.313	0.319
DeViSE	500	53.2	65.2	76.7	83.3	0.447	0.352	0.331	0.341
	1000	54.9	66.9	78.4	85.0	0.454	0.351	0.325	0.331
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042

Zero-shot Results

Model	200 labels	1000 labels
DeViSE	31.8%	9.0%
Mensink et al. 2012 [12]	35.7%	1.9%
Rohrbach et al. 2011 [17]	34.8%	_

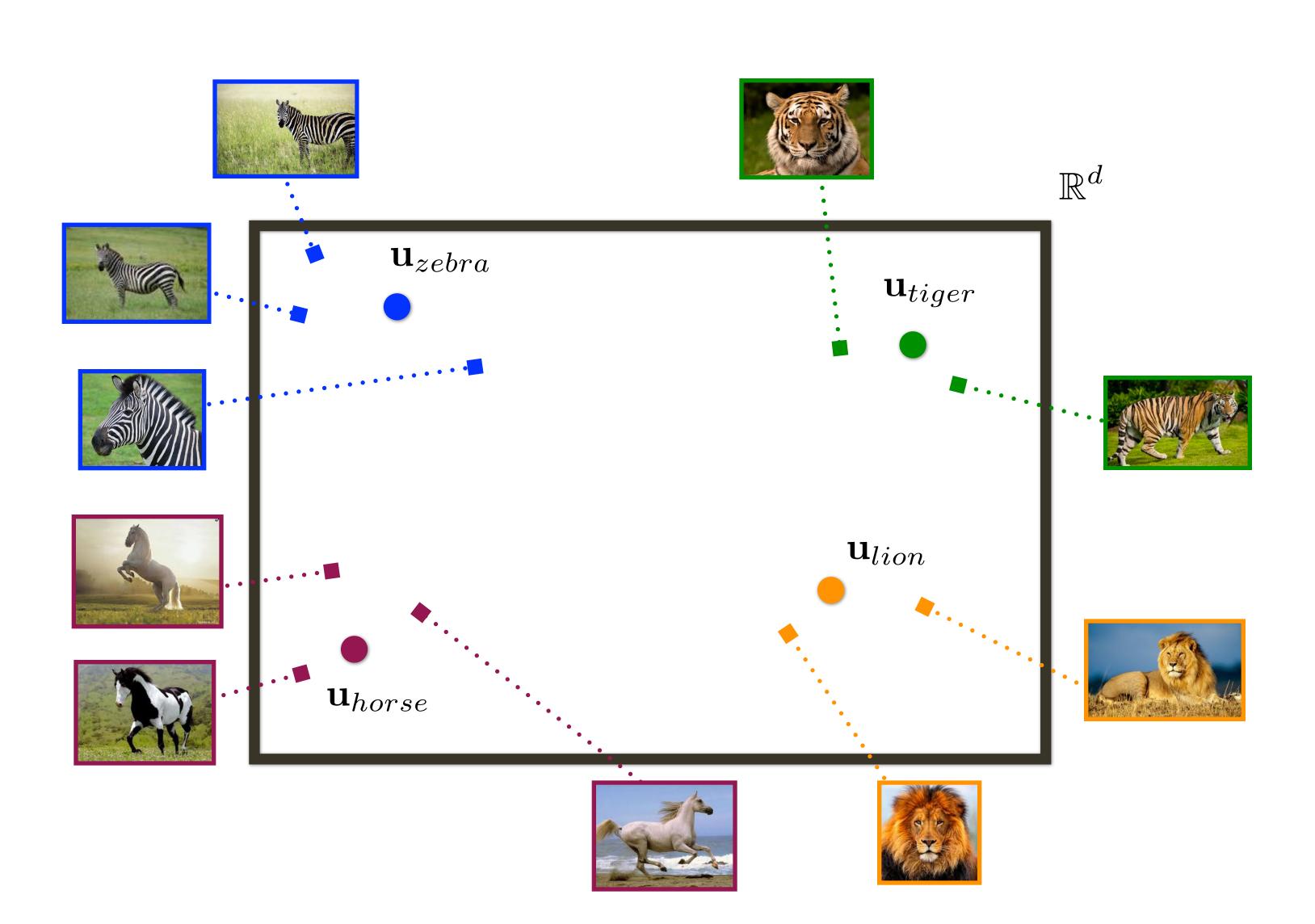
Semantic Embeddings

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

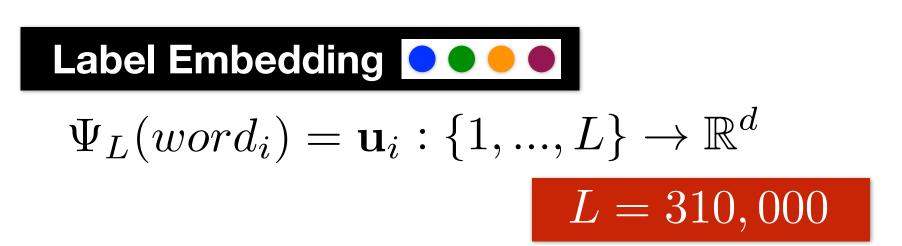
Label Embedding ••••

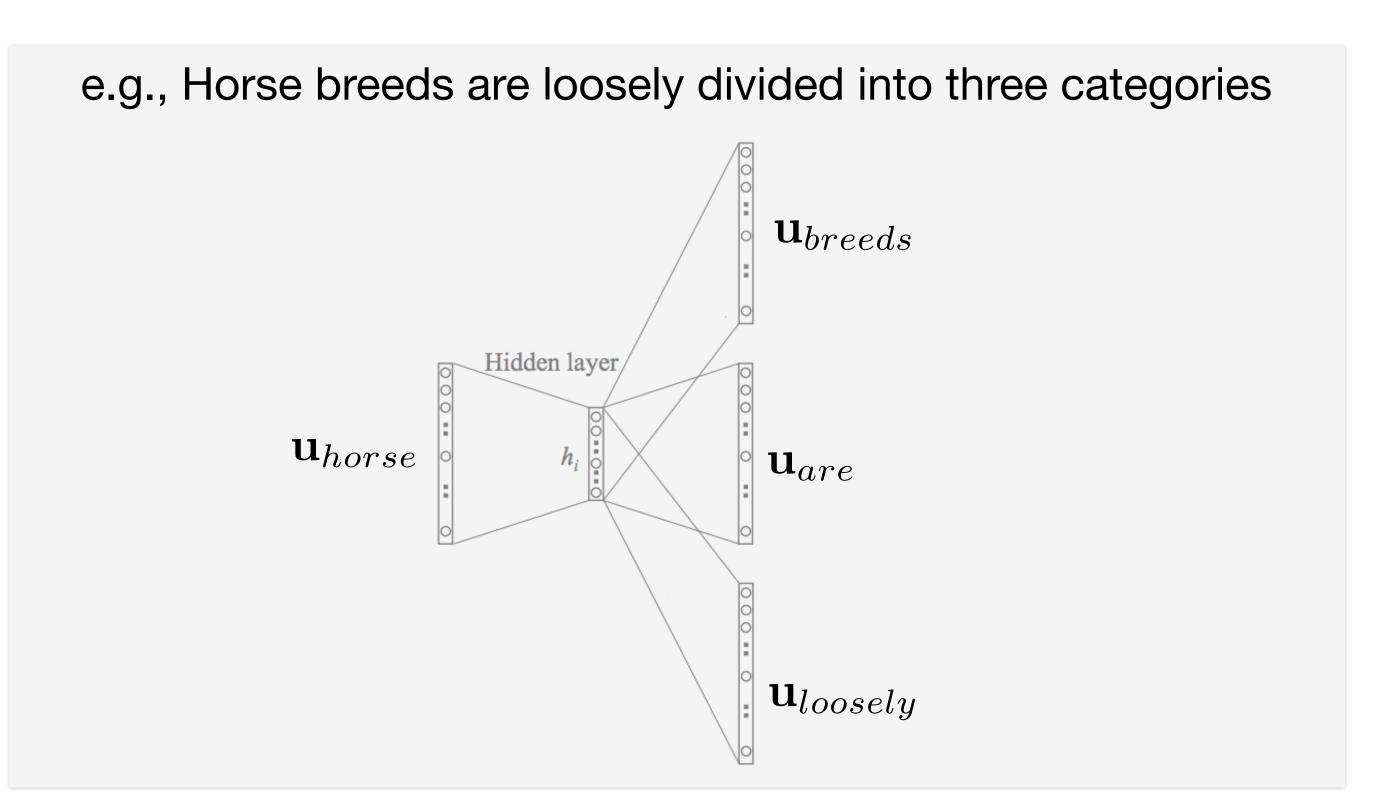
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning





Skip-gram Model: unsupervised semantic representation for words (trained from 7 billion word linguistic corpus)

[Fu et al., 2016]

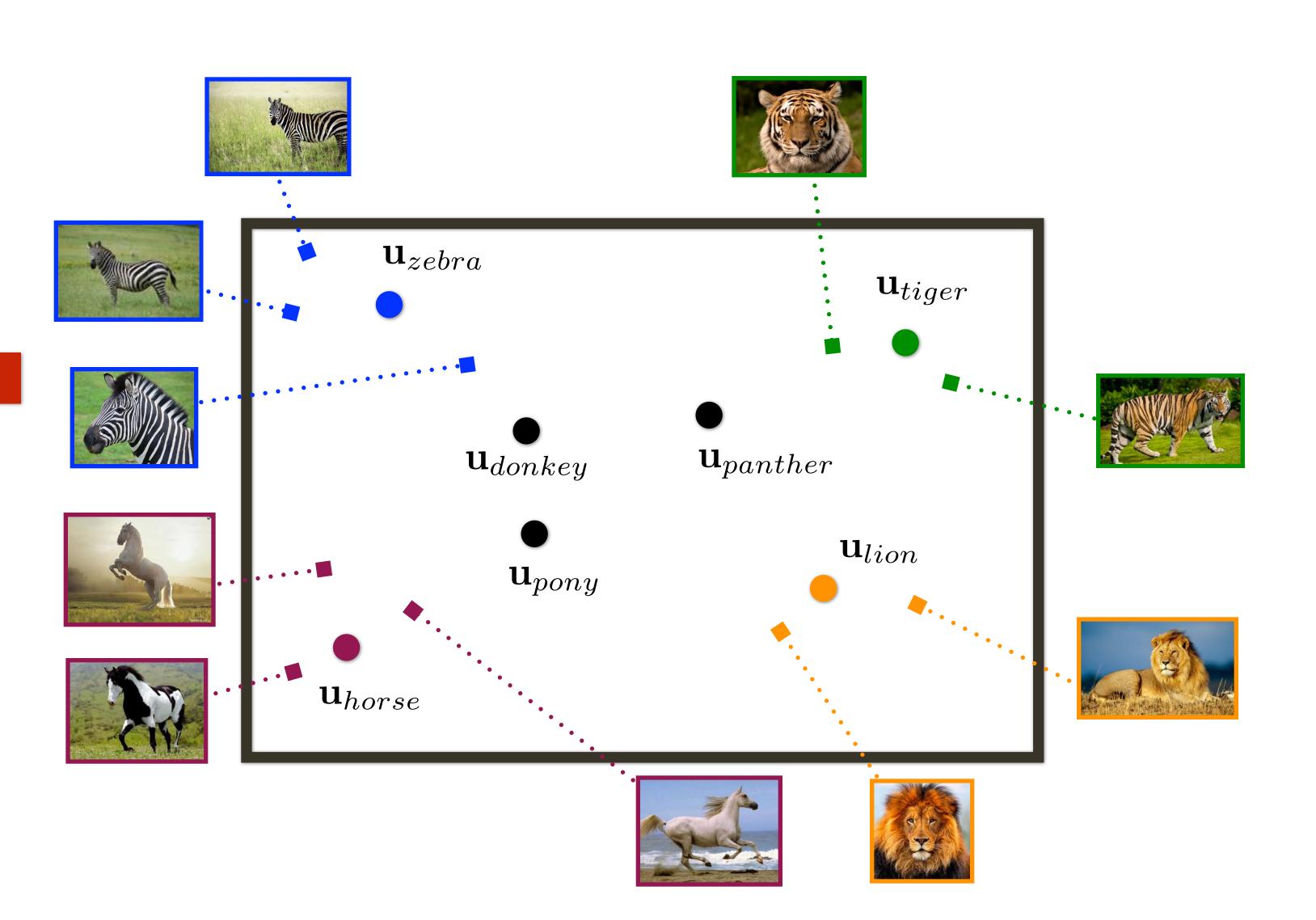
Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000



[Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

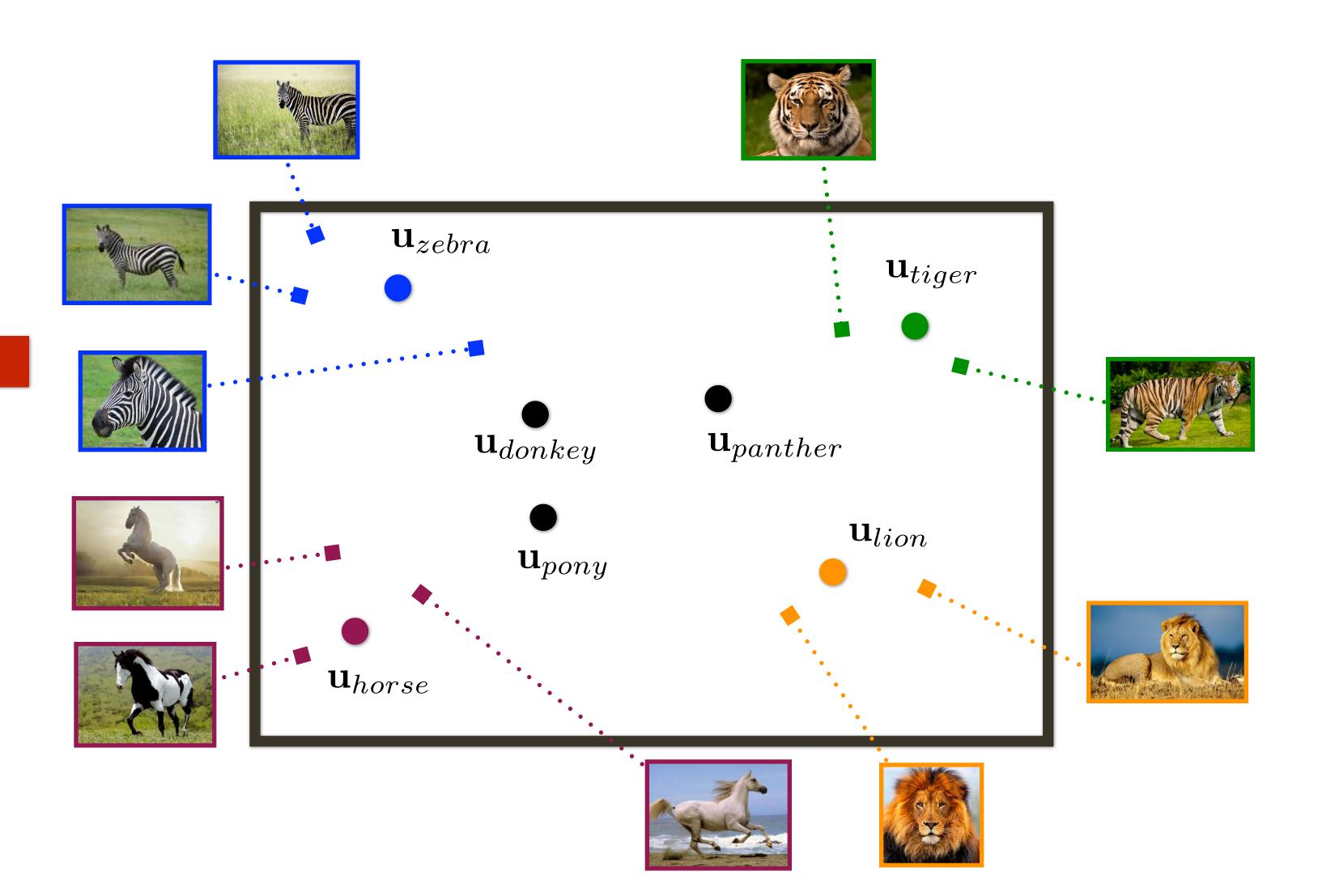
Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



[Fu et al., 2016]

Image Embedding

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

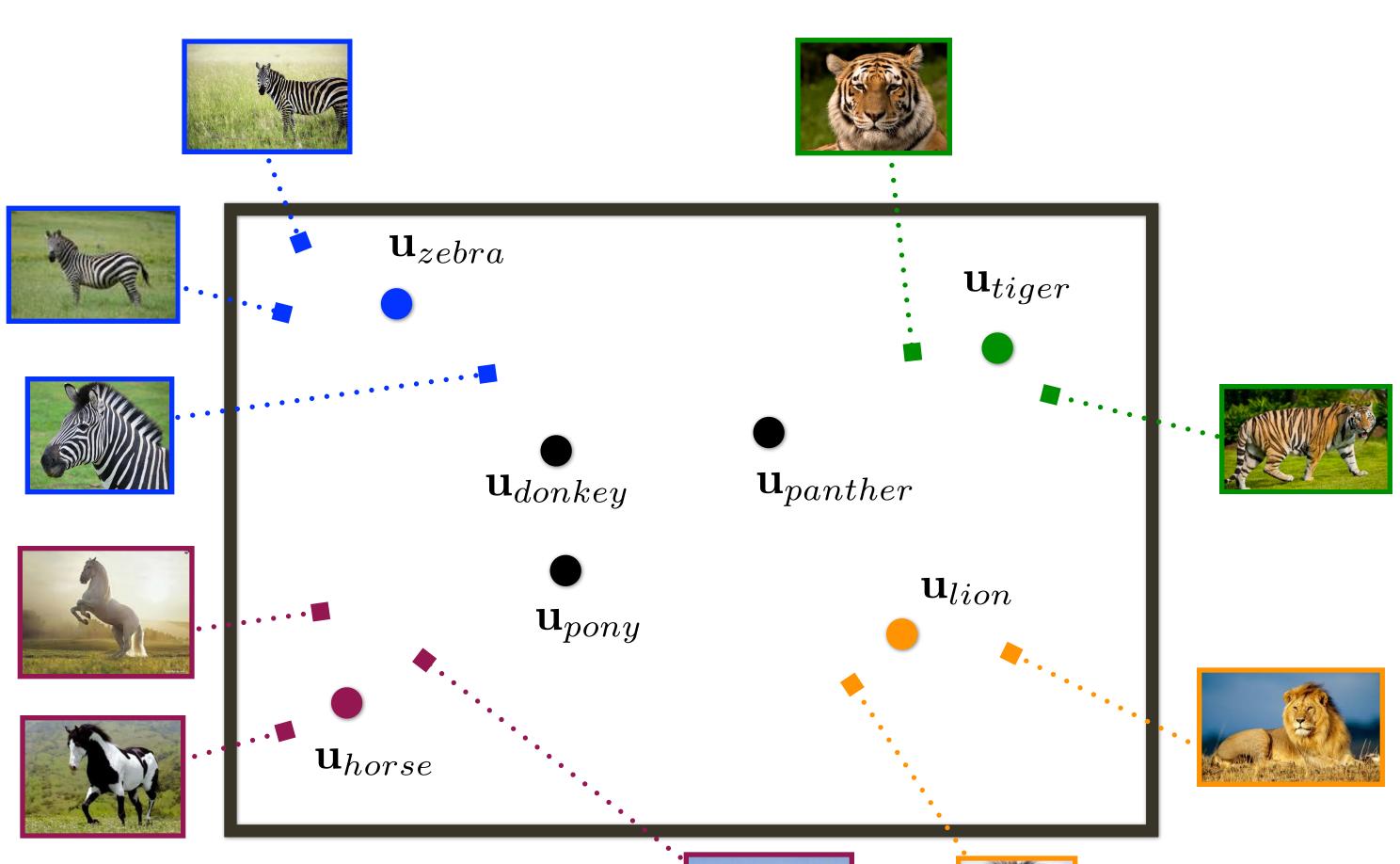
L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$$



[Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000

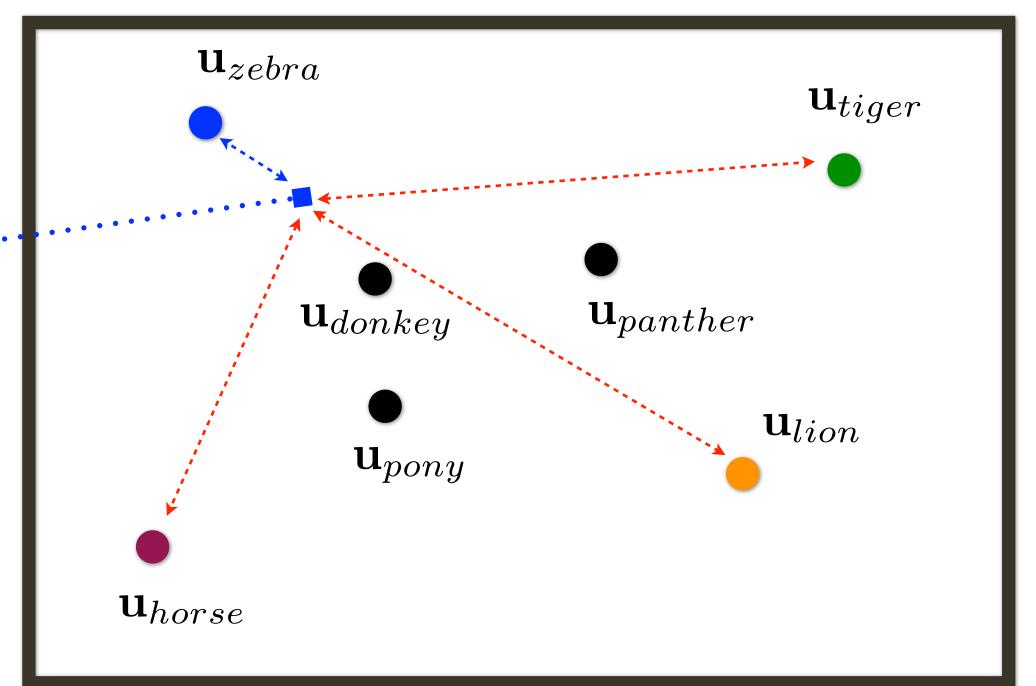
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$



[Fu et al., 2016]

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000

\mathbf{u}_{zebra} \mathbf{u}_{tiger} $\mathbf{u}_{panther}$ \mathbf{u}_{donkey} \mathbf{u}_{horse}

 $\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$

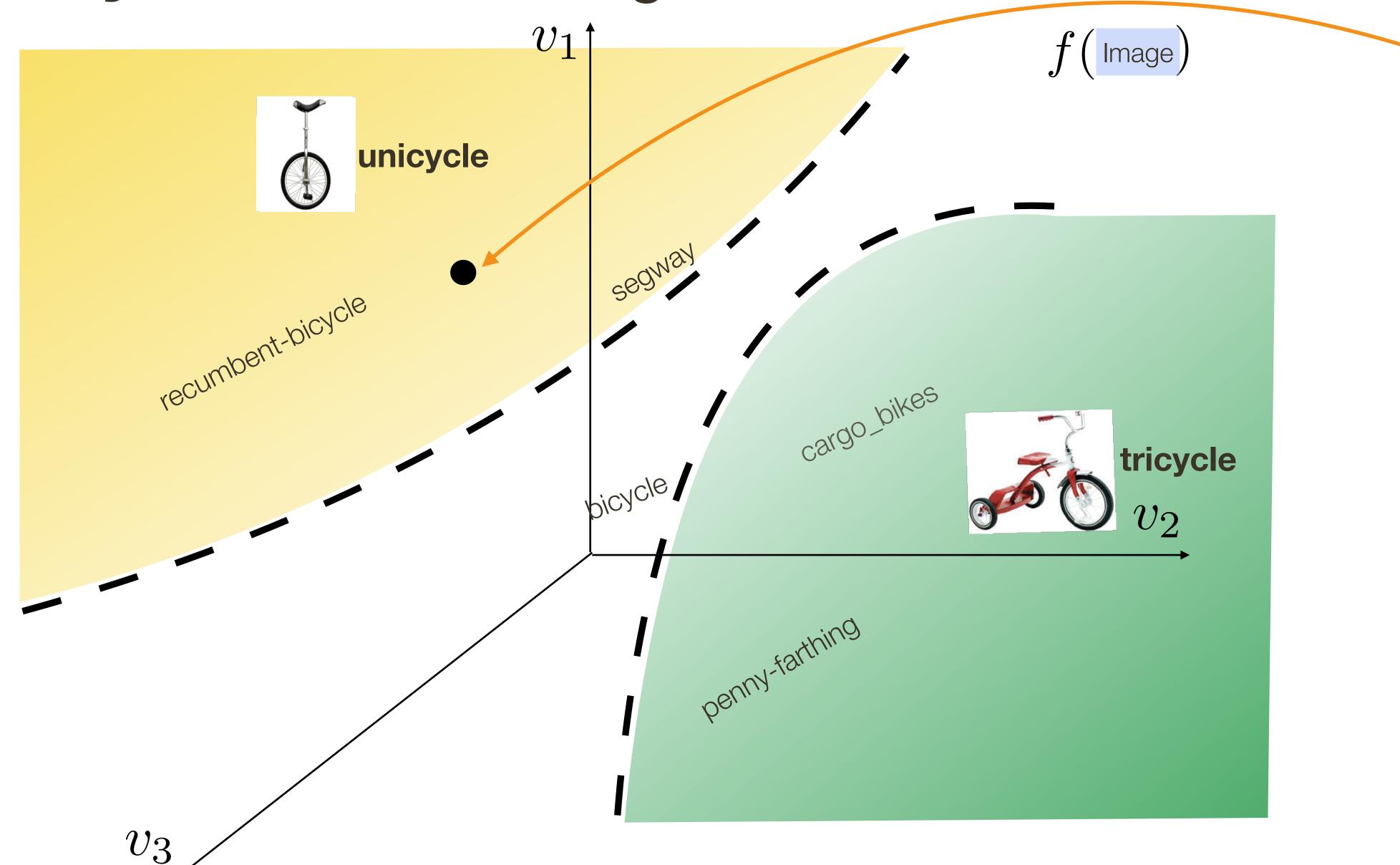
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$$

Vocabulary Informed Recognition



Experiments: Datasets

Animals with Attributes

Otter

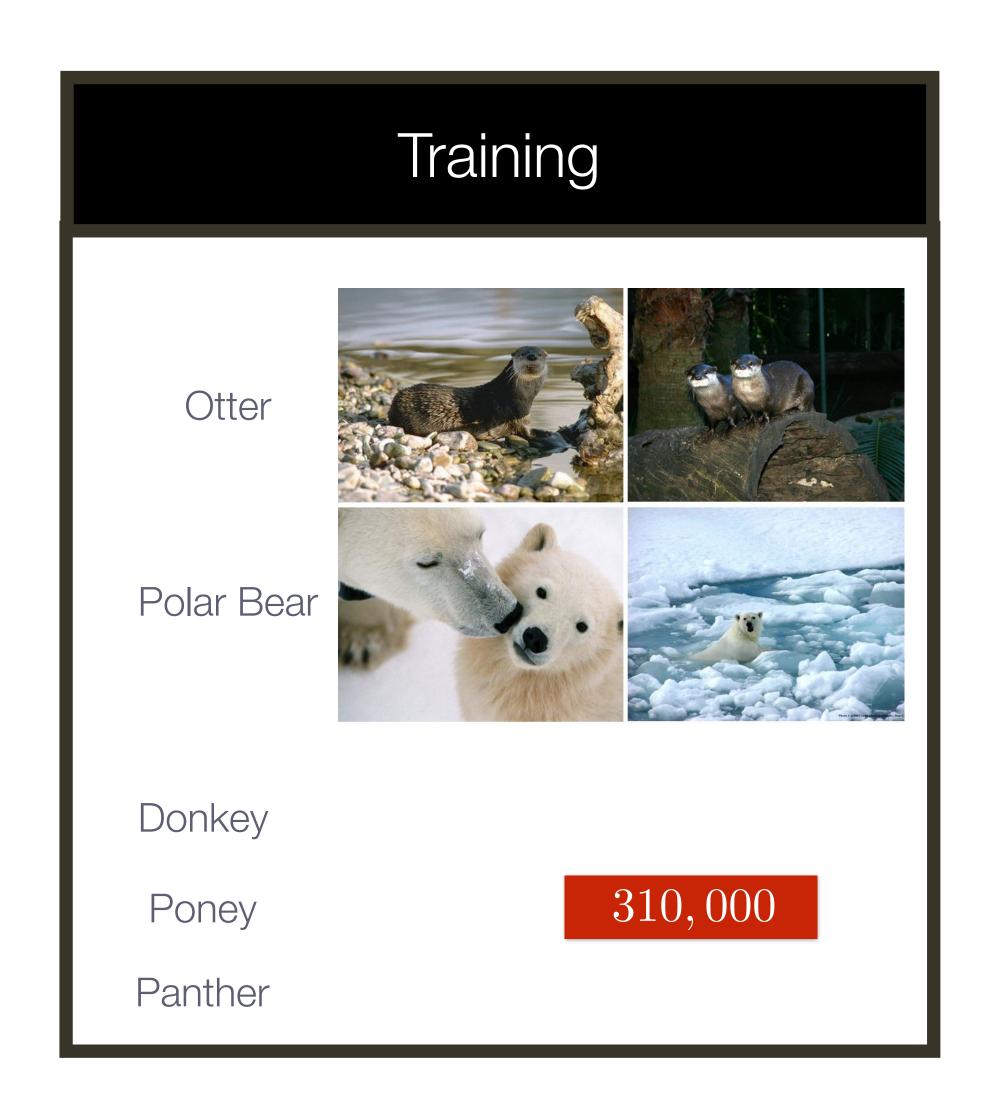
Auxiliary: 40 Animal Classes (annotated)

Target: 10 Animal Classes (NO annotation)

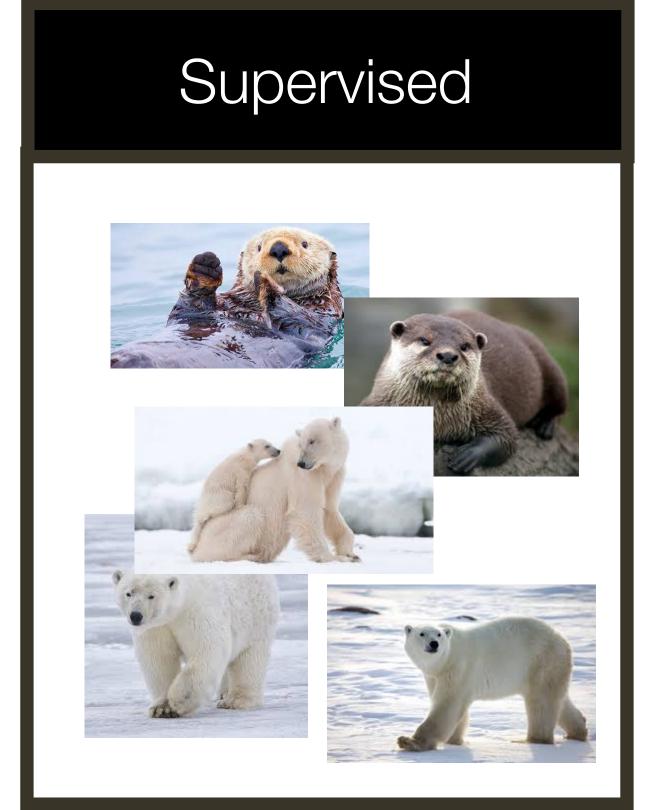
	No. Testing Classes			No. Testing Words		
AwA/ImageNet	Auxiliary	Target	Total	Vocabulary	Chance(%)	
SUPERVISED			40/1000	40/1000	2.5/0.1	
ZERO-SHOT			10/360	10/360	10/0.28	
OPEN-SET			50/1360	310K/310K	3.2E-04	

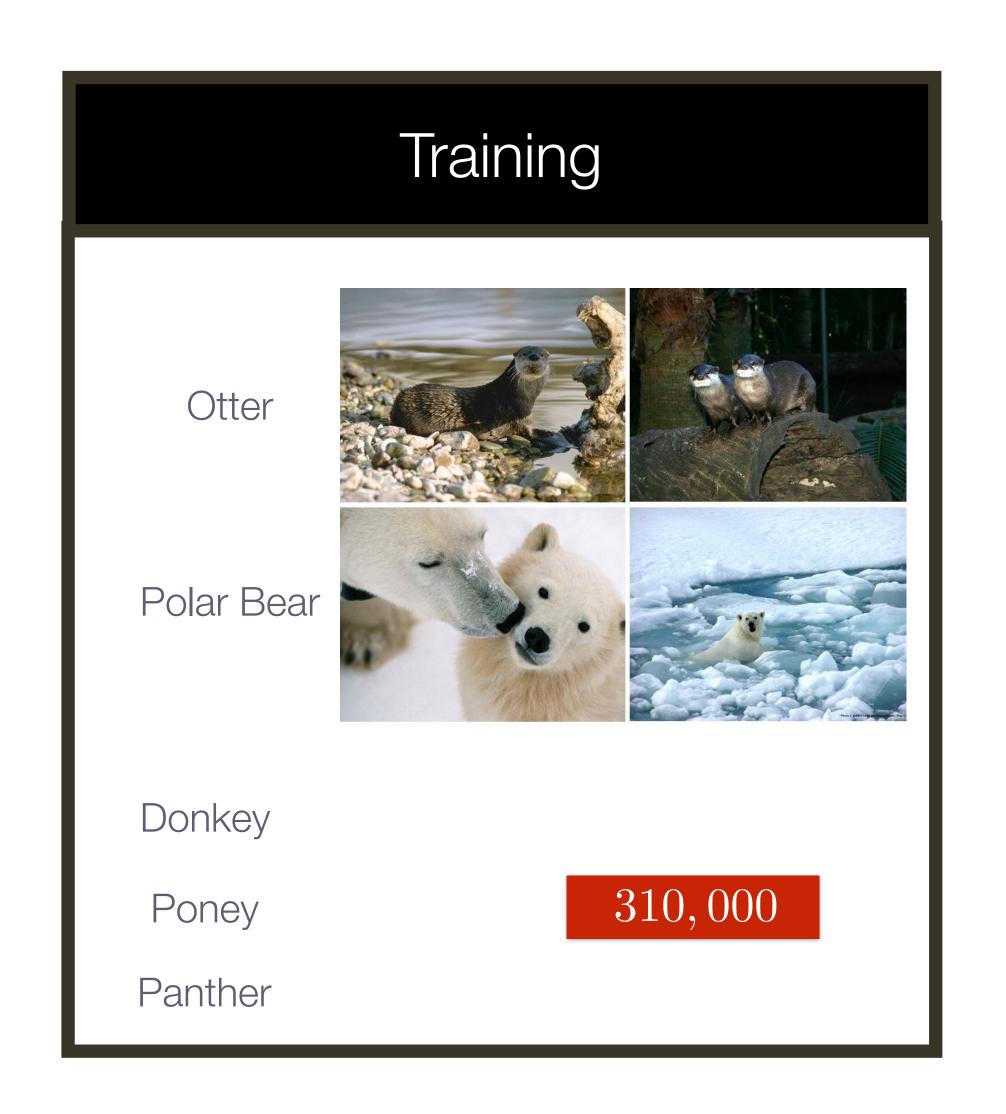
The tasks are only separated in **evaluation**;

We train **one unified model** for all the settings

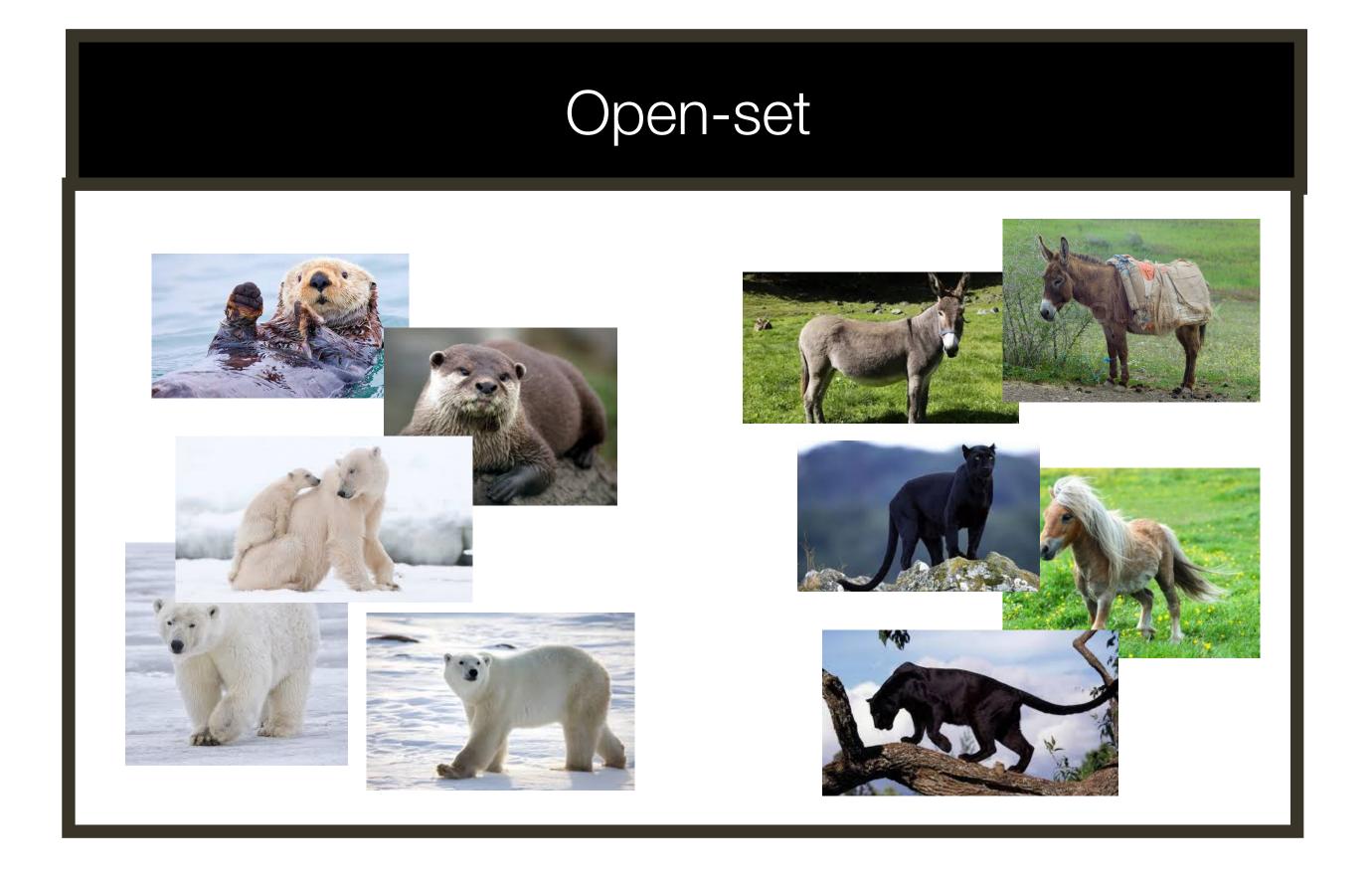


Testing





Testing



	No. Testing Classes			No. Testing Words		
AwA/ImageNet	Auxiliary	Target	Total	Vocabulary	Chance(%)	
SUPERVISED			40/1000	40/1000	2.5/0.1	
ZERO-SHOT			10 /360	10 /360	10 /0.28	
OPEN-SET			50/1360	310K/310K	3.2E-04	

The tasks are only separated in **evaluation**;

We train **one unified model** for all the settings

Zero-shot Results

Results with AWA

Method	Features	Accuracy	
SS-Voc: full instances	CNNoverFeat	78.3	+
Akata et al. CVPR 2015	CNNGoogLeNet	73.9	
TMV-BLP (Fu et al. ECCV 2014)	CNNoverFeat	69.9	
AMP (SR+SE) (Fu et al. CVPR 2015)	CNNoverFeat	66.0	
DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5	
PST (Rohrbach et al. NIPS 2013)	CNNoverFeat	53.2	
DS (Rohrbach et al. CVPR 2010)	CNN _{OverFeat}	52.7	
IAP (Lampert et al. TPAMI 2013)	CNNoverFeat	44.5	
HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2	

Zero-shot Results

Results with AWA

	Method	Features	Accuracy
	SS-Voc: full instances	CNN _{OverFeat}	78.3
3.3% of training data	800 instances (20 inst*40 class);	CNN _{OverFeat}	74.4
trairing date			
	Akata et al. CVPR 2015	CNNGoogLeNet	73.9
	TMV-BLP (Fu et al. ECCV 2014)	CNNOverFeat	69.9
	AMP (SR+SE) (Fu et al. CVPR 2015)	CNNoverFeat	66.0
	DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5
	PST (Rohrbach et al. NIPS 2013)	CNNoverFeat	53.2
	DS (Rohrbach et al. CVPR 2010)	CNNoverFeat	52.7
	IAP (Lampert et al. TPAMI 2013)	CNN _{OverFeat}	44.5
	HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2

Zero-shot Results

Results with AWA

0.82% of training data

Method	Features	Accuracy
SS-Voc: full instances	CNN _{OverFeat}	78.3
800 instances (20 inst*40 class);	CNN _{OverFeat}	74.4
200 instances (5 inst*40 class);	CNN _{OverFeat}	68.9
Akata et al. CVPR 2015	CNNGoogLeNet	73.9
TMV-BLP (Fu et al. ECCV 2014)	CNN _{OverFeat}	69.9
AMP (SR+SE) (Fu et al. CVPR 2015)	CNN _{OverFeat}	66.0
DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5
PST (Rohrbach et al. NIPS 2013)	CNN _{OverFeat}	53.2
DS (Rohrbach et al. CVPR 2010)	CNN _{OverFeat}	52.7
IAP (Lampert et al. TPAMI 2013)	CNN _{OverFeat}	44.5
HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2

[Xiao et al., 2017]

Given **image-sentence pairs** learn how to **localize** arbitrary language phrase or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

[Xiao et al., 2017]

Given **image-sentence pairs** learn how to **localize** arbitrary language phrase or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

a man

[Xiao et al., 2017]

Given image-sentence pairs learn how to localize arbitrary language phrase or sentence in new images

The man at bat readies to swing at the pitch while the umpire looks on.

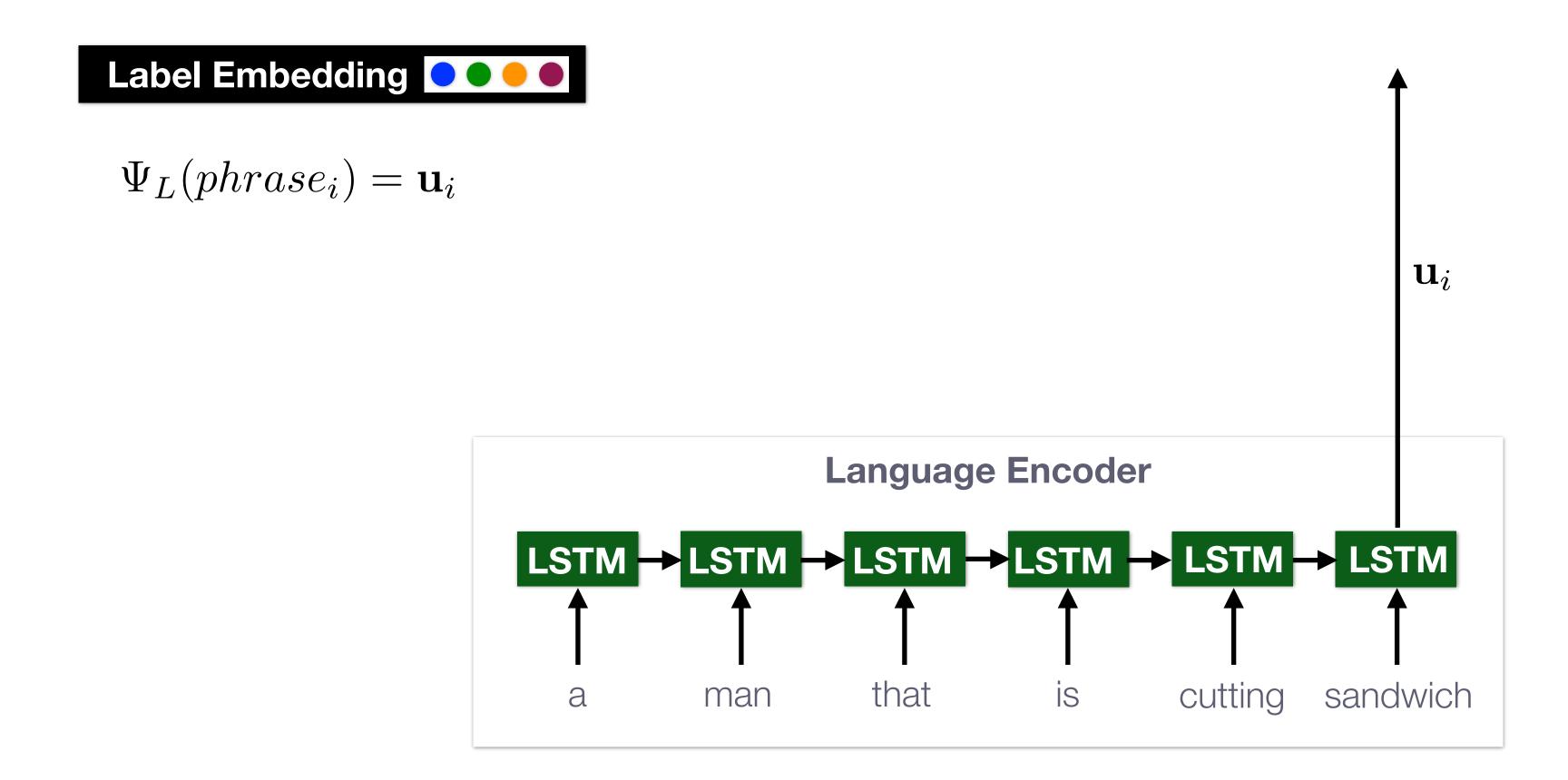
A large bus sitting next to a very tall building.

a table

[Xiao et al., 2017]

Label Embedding •••••

$$\Psi_L(phrase_i) = \mathbf{u}_i$$



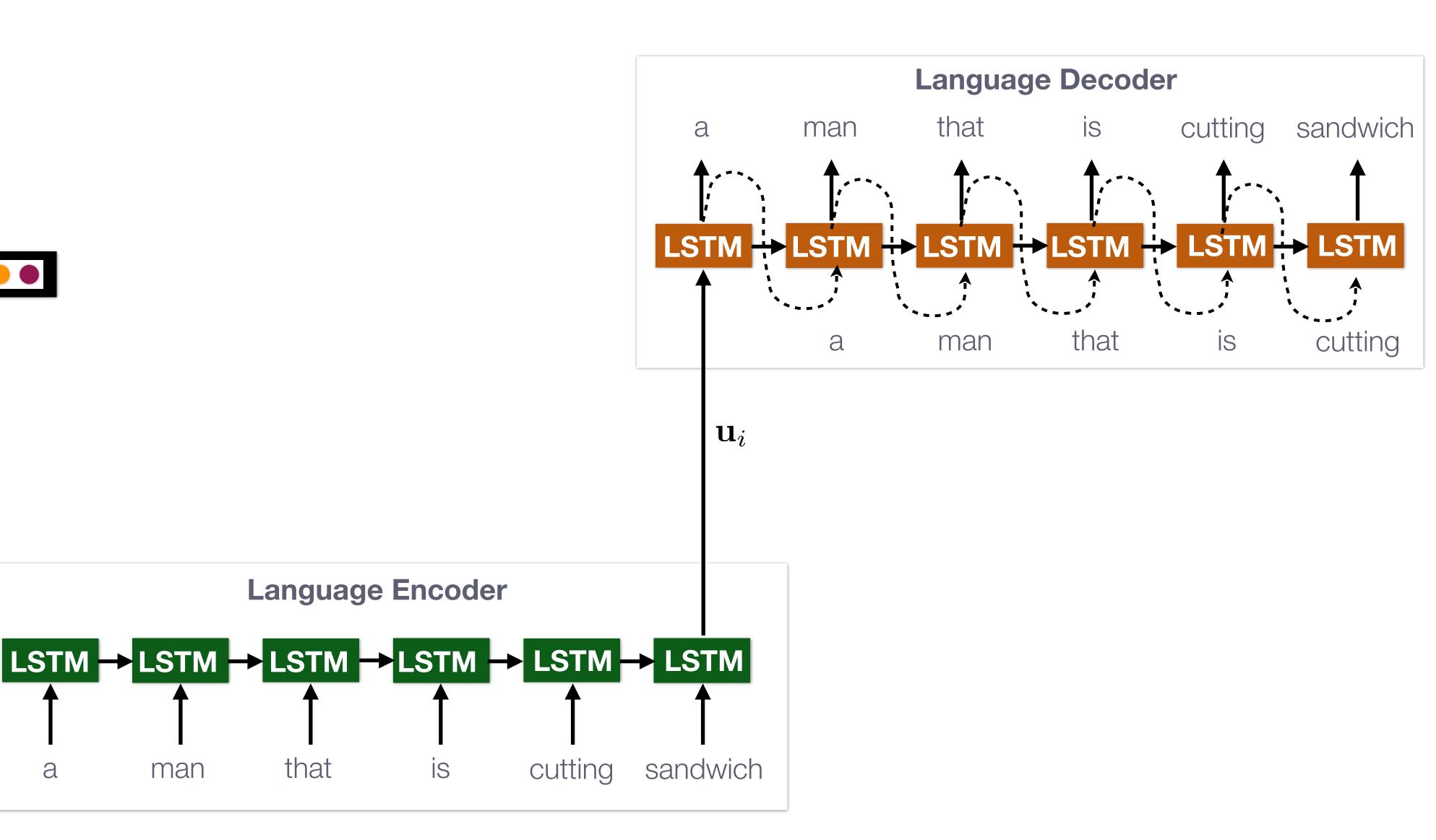
Language Encoder

that

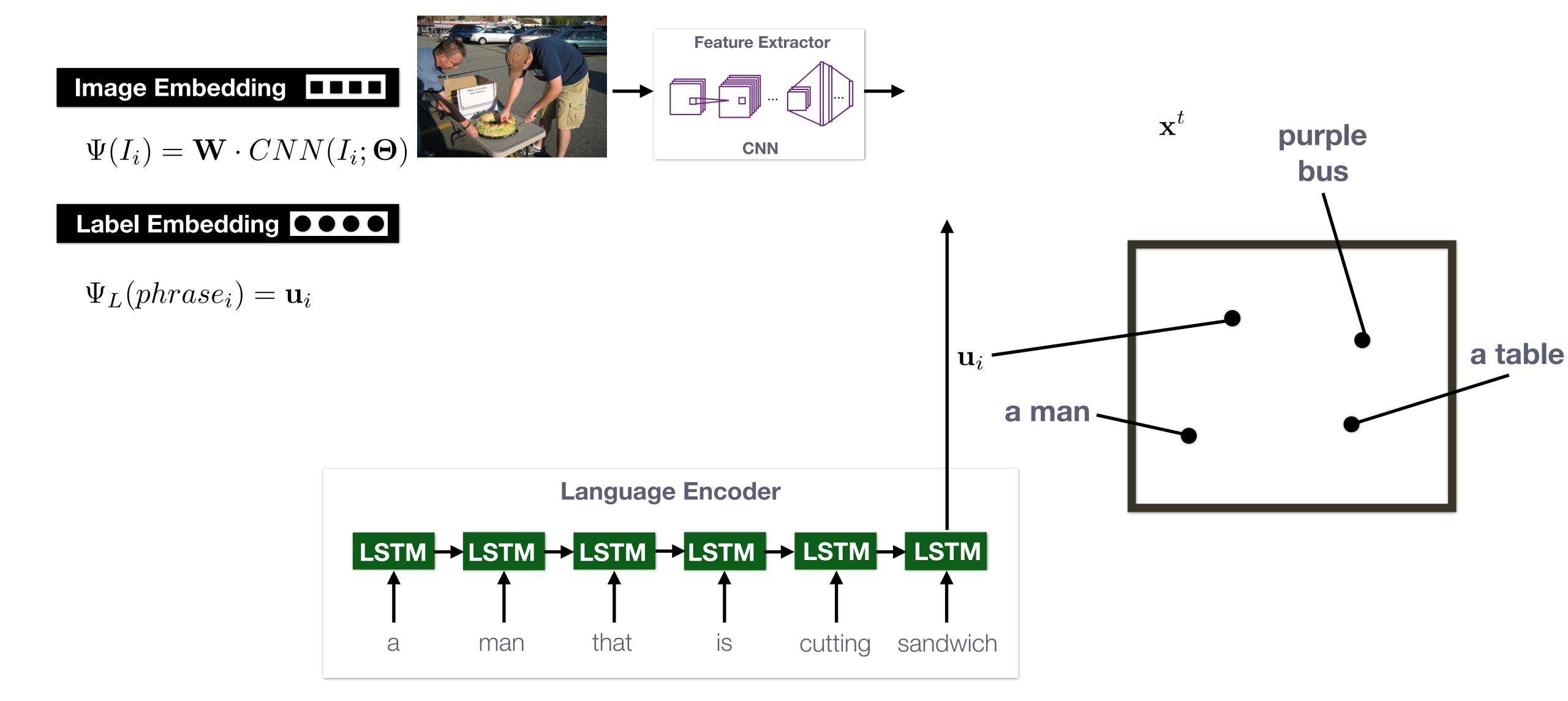
man

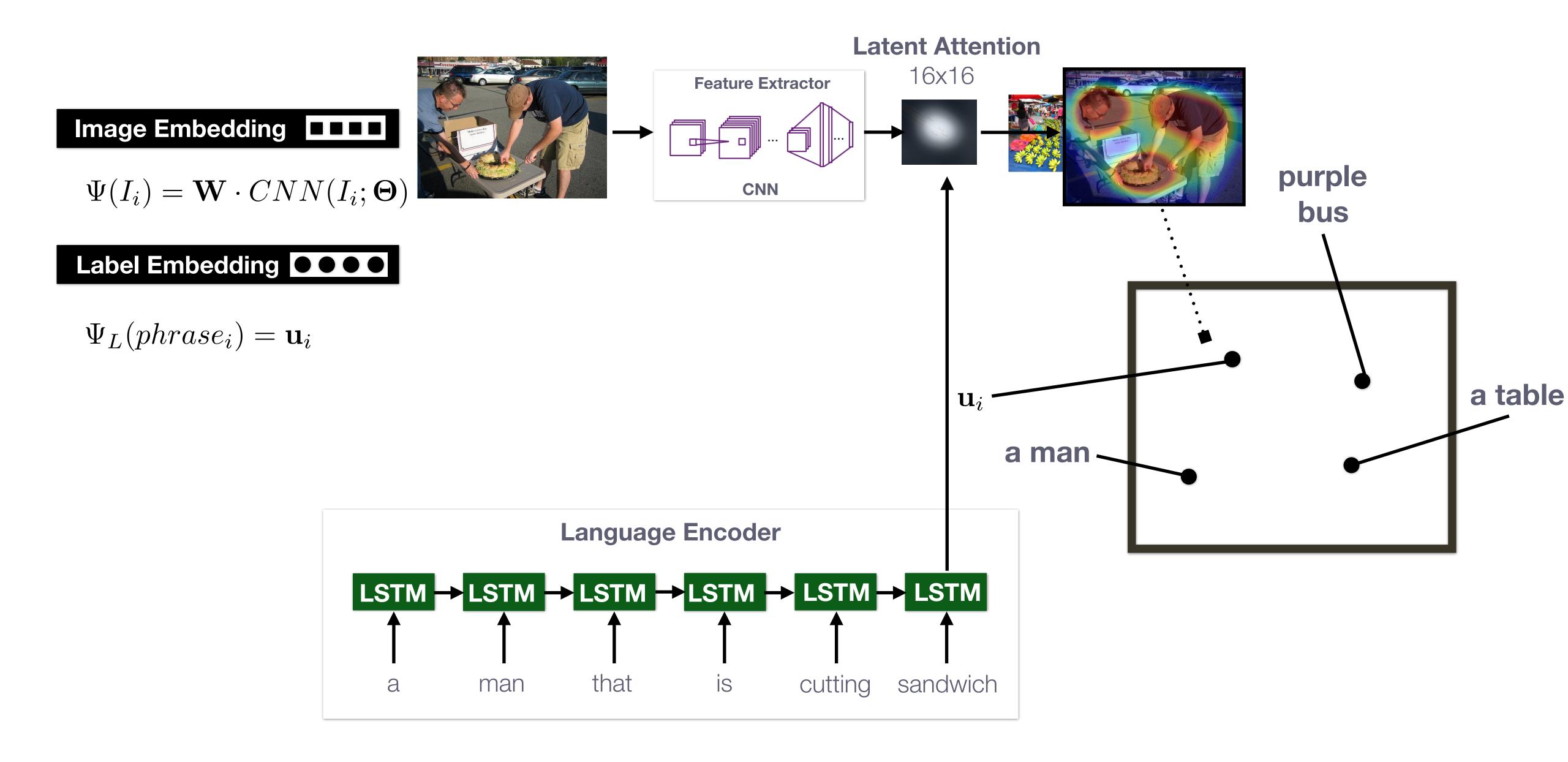
[Xiao et al., 2017]

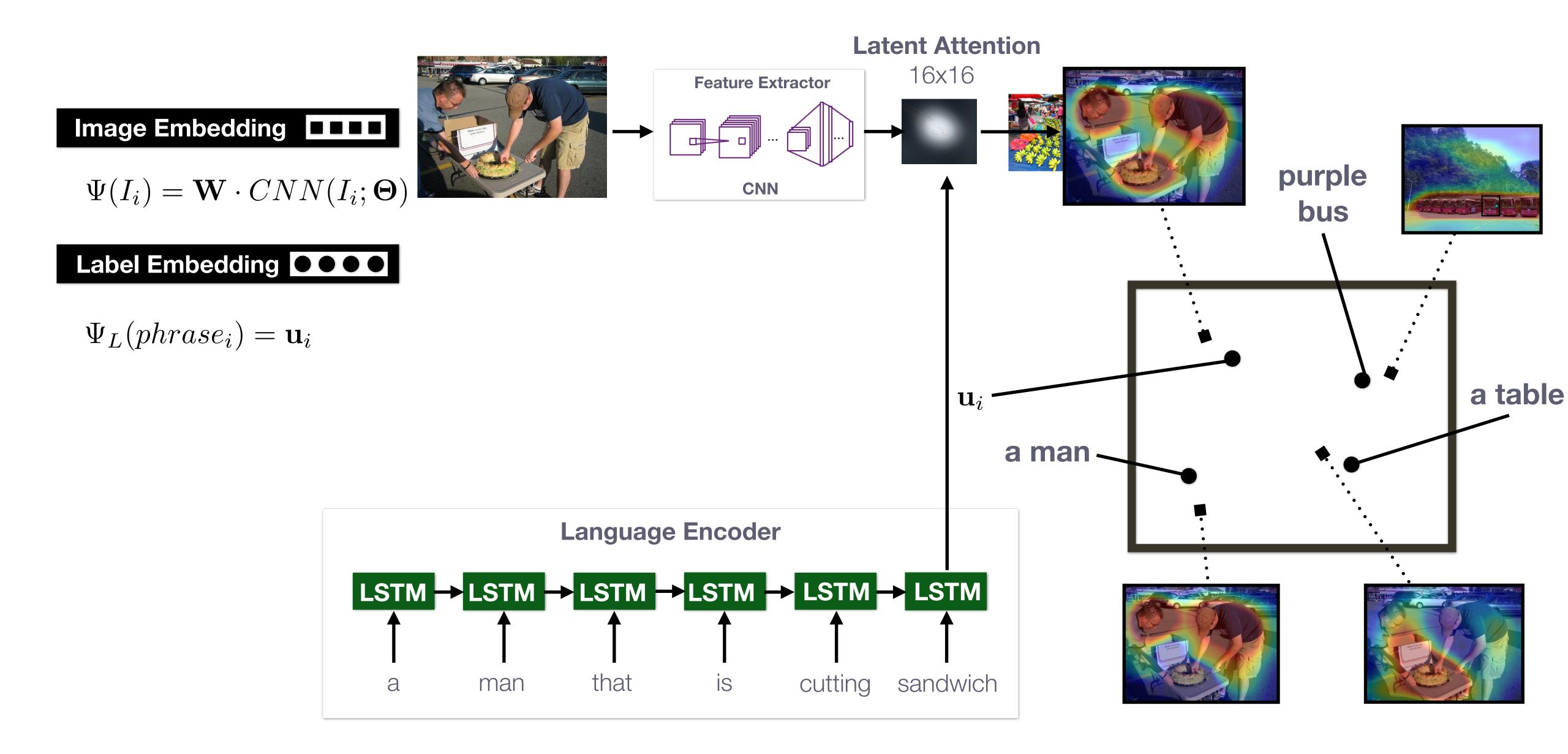
 $\Psi_L(phrase_i) = \mathbf{u}_i$











[Xiao et al., 2017]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

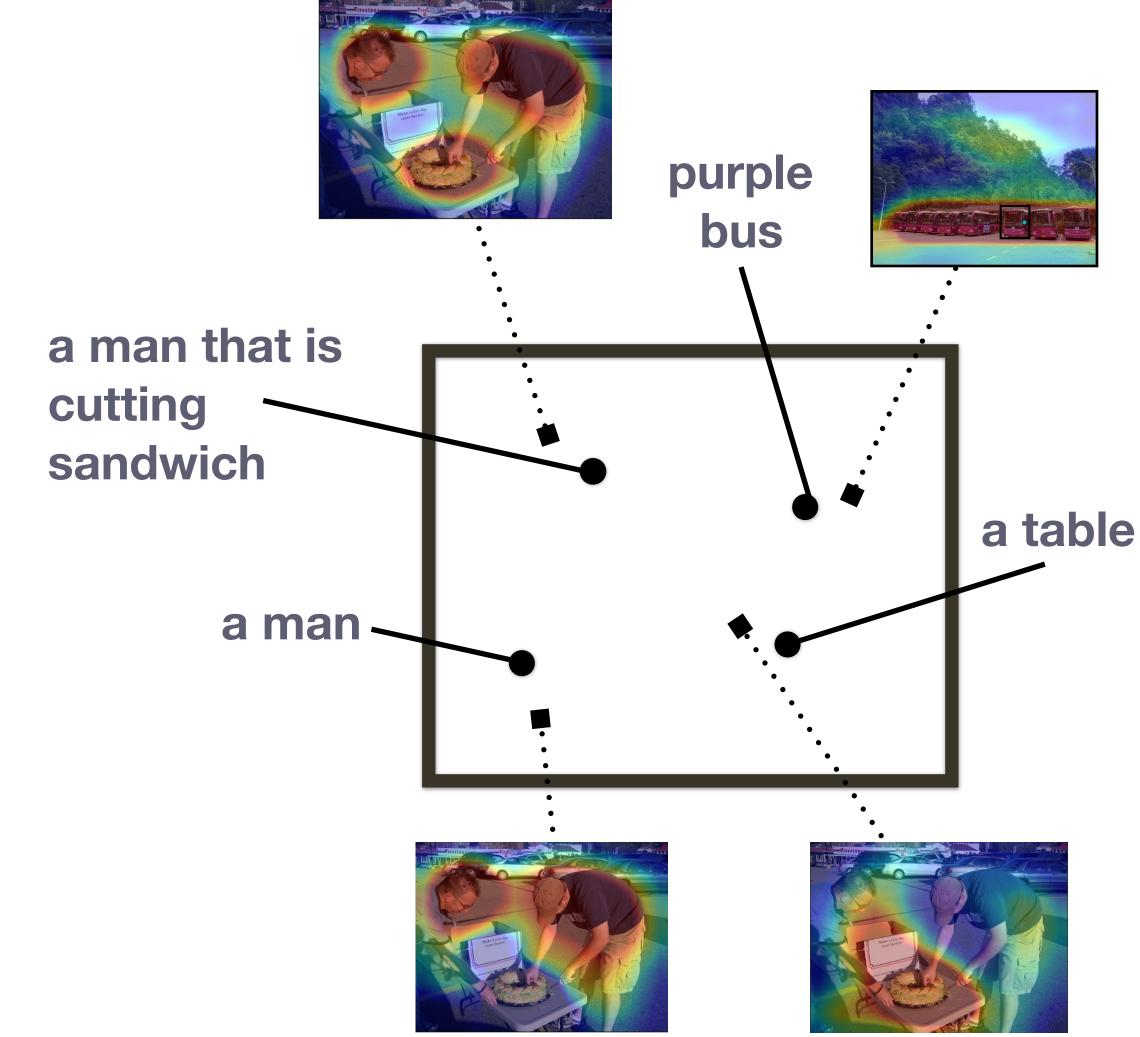
Label Embedding Output Description:

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:



Combination of previous discriminative similarity and linguistic regularization

[Xiao et al., 2017]

Image Embedding

Label Embedding Output Description:

 $\Psi_L(phrase_i) = \mathbf{u}_i$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

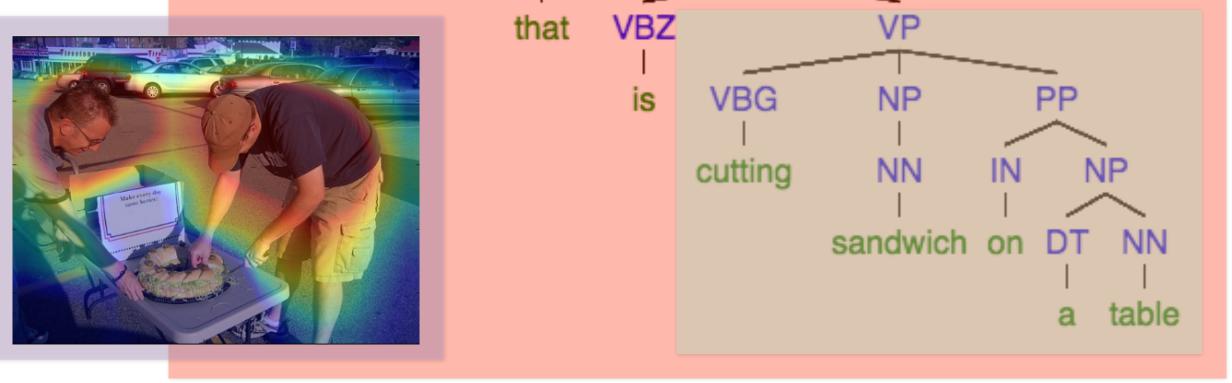
Objective Function:

For noun phrases:

siblings should have disjoin

parents should be union of



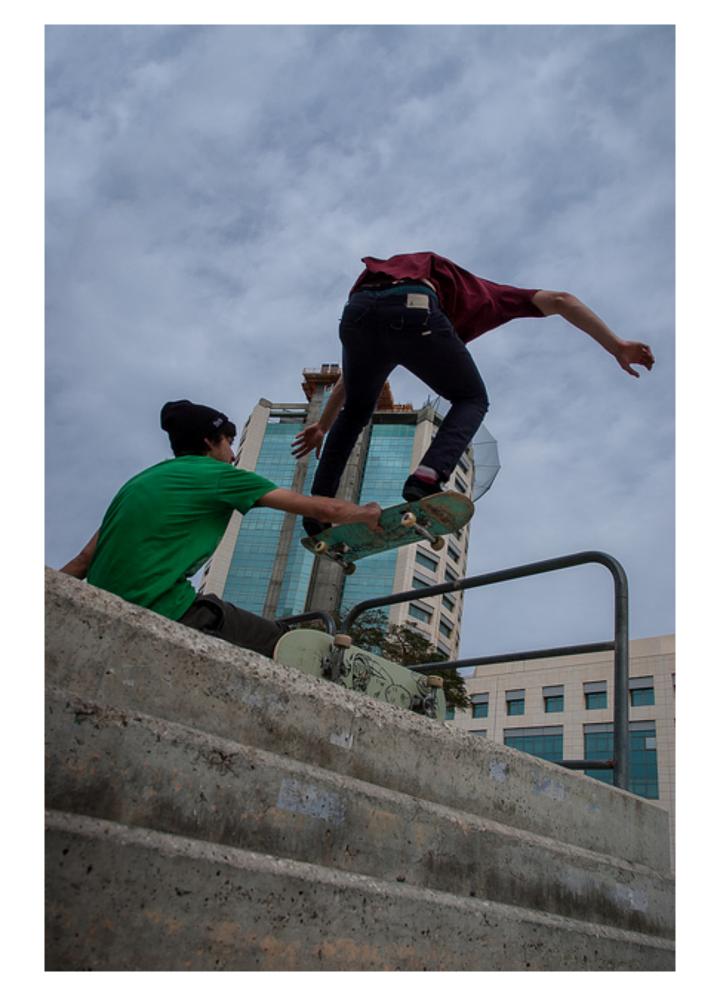


WDT

Combination of previous discriminative similarity and linguistic regularization

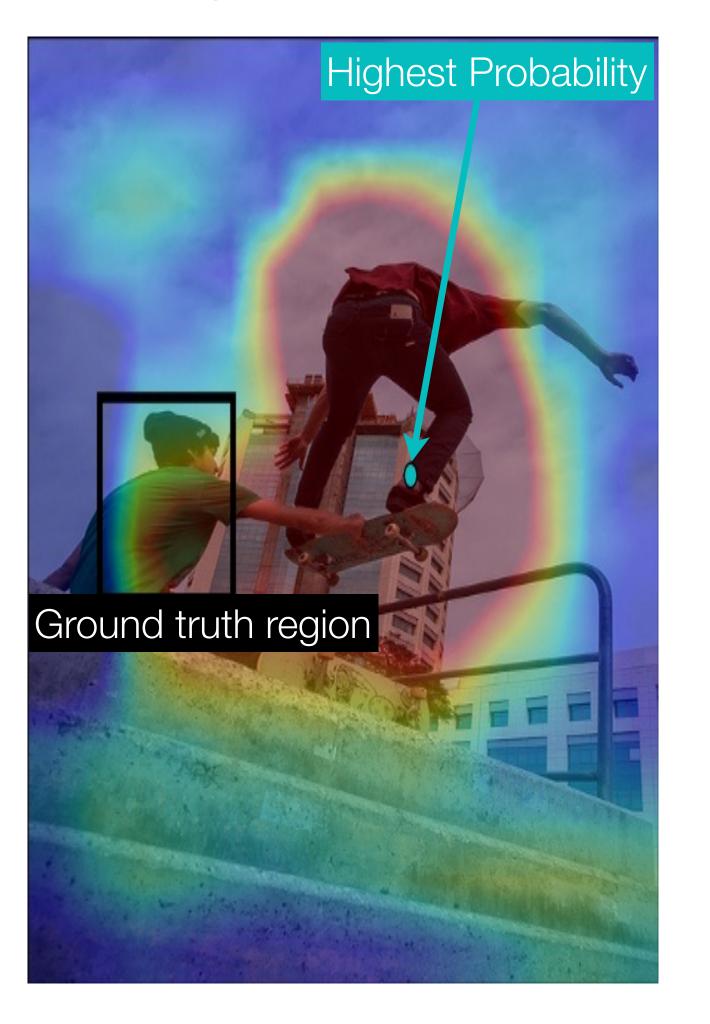
Qualitative Results

Input:

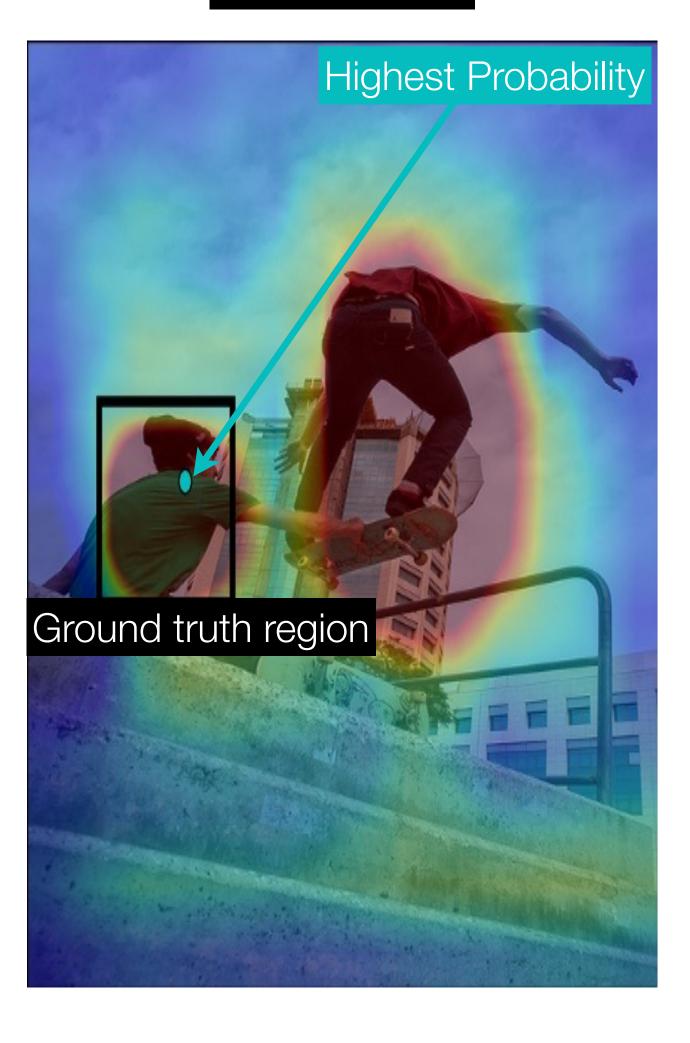


guy in green t-shirt holding skateboard

NO linguistic constraints



Our Model

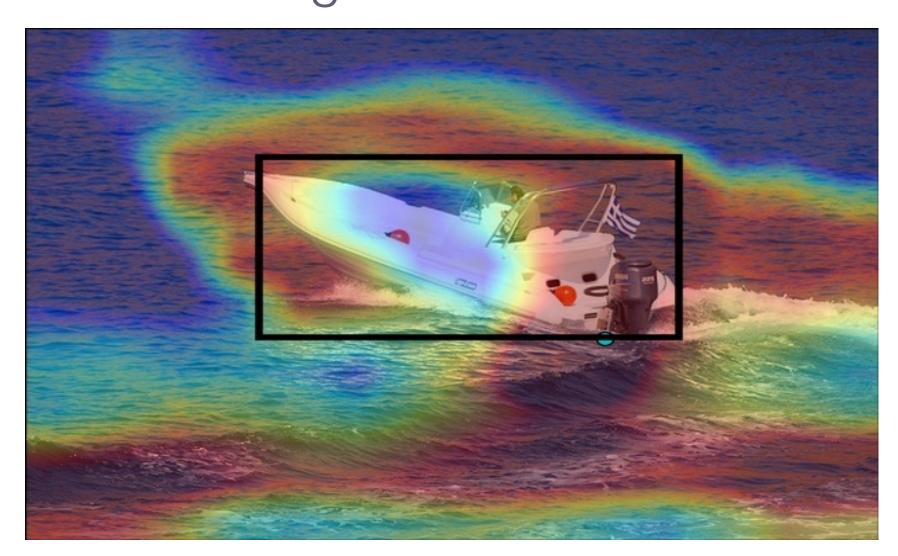


[Xiao et al., 2017]

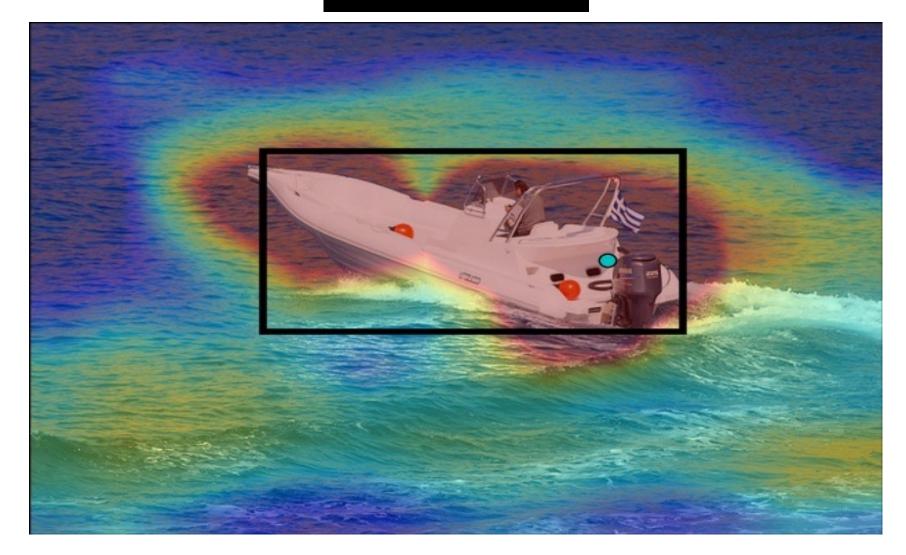
NO linguistic constraints

Input:

Qualitative Results



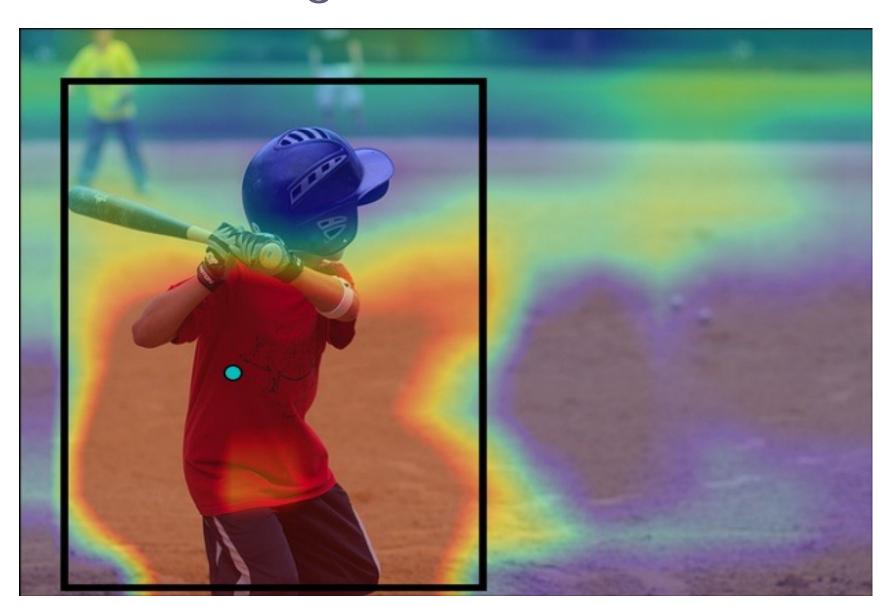
Our Model



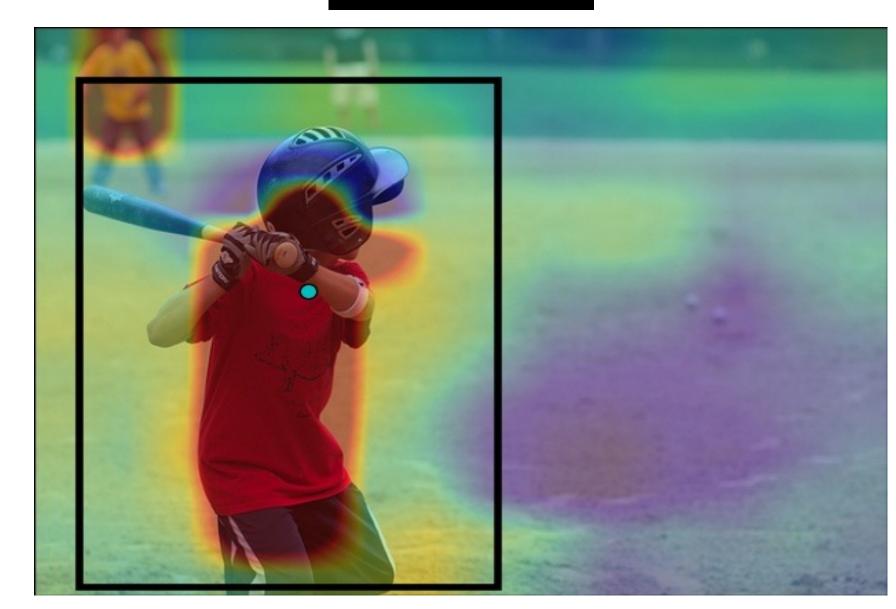
Qualitative Results

NO linguistic constraints [Xiao et al., 2017]

Input:



Our Model



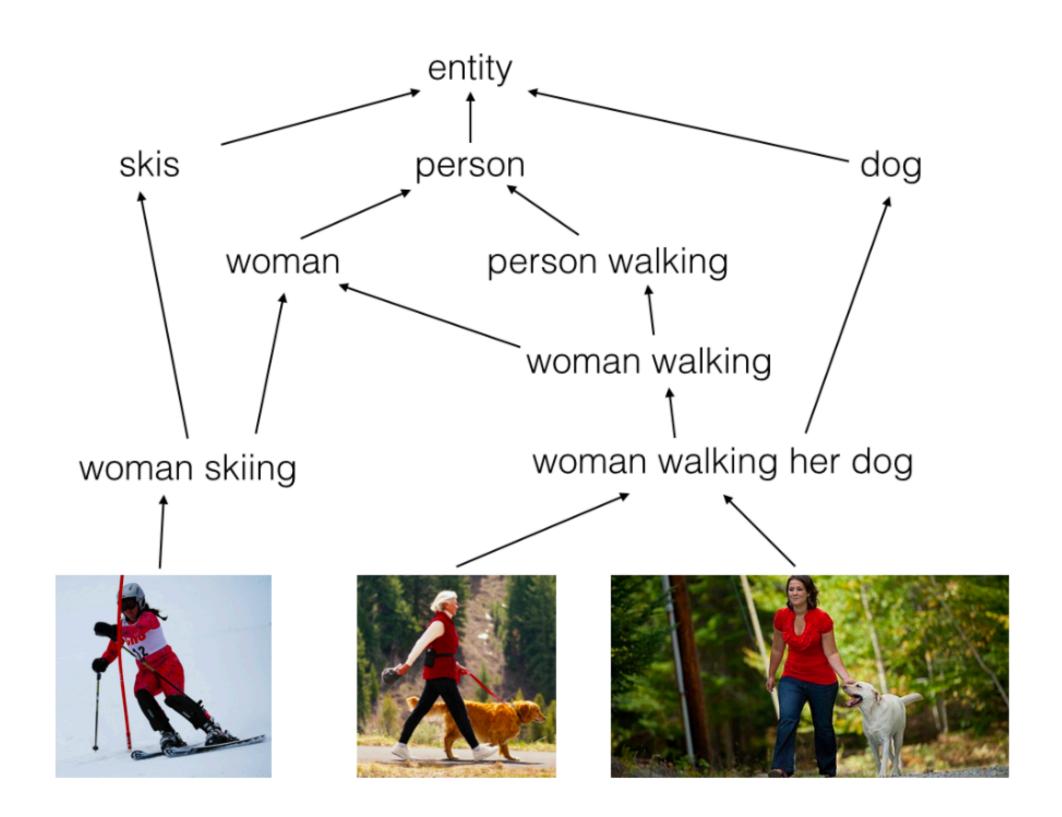
Quantitative Results

Segmentation performance on COCO dataset

[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

	loU@0.3	loU@0.4	loU@0.5	Avg mAP
Non-strcutred	0.302	0.199	0.110	0.203
Parent-Child	0.327	0.213	0.118	0.219
Sibling	0.316	0.203	0.114	0.211
Ours	0.347	0.246	0.159	0.251

Order Embeddings

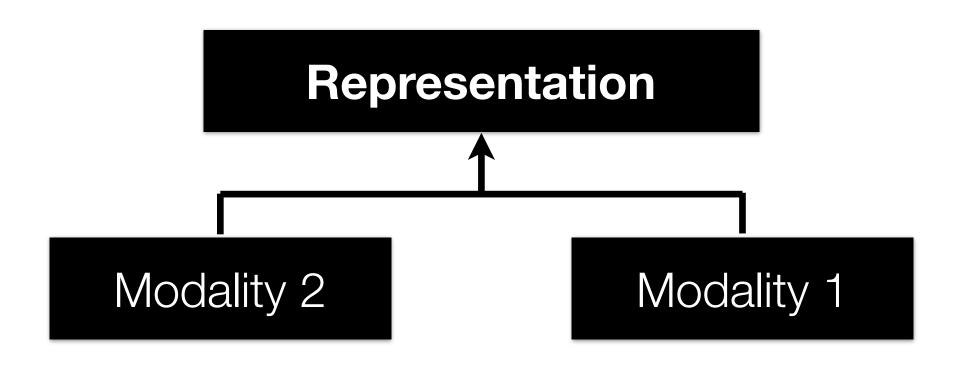


[Vendrov et al., 2016]



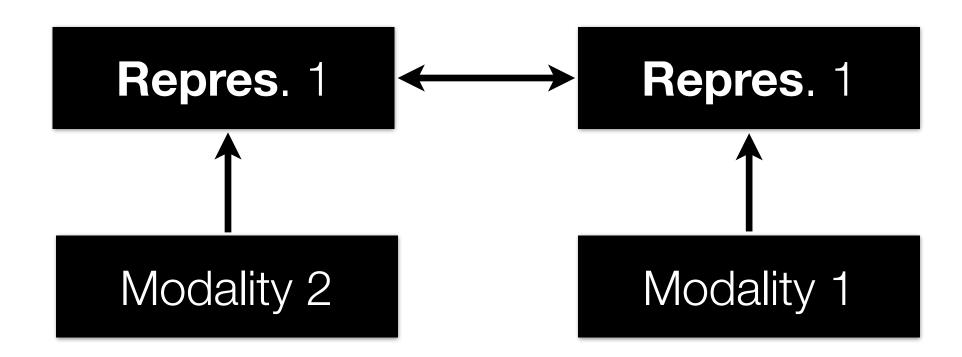
Multimodal Representation Types

Joint representations:



- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

Coordinated representations:



- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

Final Words ...

Joint representations

- Project modalities to the same space
- Use when all the modalities are present during test time
- Suitable for multi-model fusion

Coordinated representations

- Project modalities to their own coordinated spaces
- Use when only one of the modalities is present during test-time
- Suitable for multimodal translation
- Good for multimodal retrieval