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Lecture 11: Coordinated Representations and Joint Embeddings



Multimodal Representations

What is a good multimodal representation”

— Similarity in the representation (somehow)

implies similarity in corresponding concepts
(we saw this in word2vec)

— Useful for various discriminative tasks
(retrieval, mapping, fusion, etc.)

— Possible to obtain in absence of one or
mere modalities

— Hill In missing modalities given others
(Mmap or translate between modalities)

Modality 1

Prediction

Fancy
representation

Modality 3

Modality 2

representation
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Multimodal Representation Types

Joint representations:

Representation

| | — (Can be learned supervised or unsupervised
Modality 2 Modality 1

— Simplest version: modality concatenation (early fusion)
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Multimodal Representation Types

Joint representations:

Representation

, , — (Can be learned supervised or unsupervised
Coordinated representations:

s N e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — Examples: CCA, joint embeddings

*slide from Louis-Philippe Morency

— Simplest version: modality concatenation (early fusion)

— Similarity-based methods (e.g., cosine distance)

Modality 2




Multimodal Representation Types

Joint representations:

Representation

| | — (Can be learned supervised or unsupervised
Modality 2 Modality 1

— Simplest version: modality concatenation (early fusion)
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Joint Representation: Deep Multimodal Autoencoders

Each modality can be pre-trained
— using denoising autoencoder

To train the model, reconstruct both

modalities using
— both Audio & Video
— just Audio
— Jjust Video

[ Ngiam et al., 2011 |
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Multimodal Research: Historical Perspective

The McGurk Effect

McGurk Effect (19/6)
—_— ; S ————————
1970 1980 1990 2000 2010

* video credit: OK Science * Adopted from slides by Louis-Philippe Morency



Joint Representation: Deep Multimodal Autoencoders

[ Ngiam et al., 2011 |

Audio Reconstruction Video Reconstruction
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Joint Representation: Deep Multimodal Autoencoders

[ Ngiam et al., 2011 |

Audio Reconstruction Video Reconstruction

Useful when you know you may only be (00 ¢+ 00] (0O ++- OO

conditioning on one moadality at test time @0 T 00| (oo T 00)
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Multimodal Representation Types

Joint representations:

Representation

, , — (Can be learned supervised or unsupervised
Coordinated representations:

s o M e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — CCA (unsupervised), joint embeddings (supervised)
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— Simplest version: modality concatenation (early fusion)

— Similarity-based methods (e.g., cosine distance)

Modality 2
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Joint representations:
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Joint Representation: Deep Multimodal Autoencoders

Each modality can be pre-trained
— using denoising autoencoder

To train the model, reconstruct both

modalities using
— both Audio & Video
— just Audio
— Jjust Video

[ Ngiam et al., 2011 |
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Multimodal Representation Types

Coordinated representations:

s o M e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — CCA (unsupervised), joint embeddings (supervised)
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— Similarity-based methods (e.g., cosine distance)

Modality 2




Data with Multiple Views

demographic properties responses to survey

Becee- - —— o o

audio features at time ¢ video features at time 1

*slide from Andrew, Arora, Bilmes, Livescu



Correlated Representations

Goal: Find representations fi(x1), f2(x2) for each view that maximize correlation:

corr(f1(x1), fa(x2)) = cov(f1(x1), f2(x2))
(f( )7f( )) \/Var(fl(X1))'VaF(f2(X2))
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Correlated Representations

Goal: Find representations fi(x1), f2(x2) for each view that maximize correlation:

corr(f1(x1), fa(x2)) = cov(f1(x1), f2(x2))
(f( )7f( )) \/Var(fl(X1))'VaF(f2(X2))

FInding correlated representations can be useful for
— Gaining insights into the data

— Detecting of asynchrony in test data

— Removing noise uncorrelated across views
— [ranslation or retrieval across views
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Correlated Representations

Goal: Find representations fi(x1), f2(x2) for each view that maximize correlation:

corr(f1(x1), fa(x2)) = cov(f1(x1), f2(x2))
(f( )7f( )) \/Var(fl(Xl))’Var(fQ(X2))

FInding correlated representations can be useful for
— Gaining insights into the data

— Detecting of asynchrony in test data

— Removing noise uncorrelated across views
— [ranslation or retrieval across views

Has been applied widely to problems in computer vision, speech, NLP,
medicine, chemometrics, metrology, neurology, etc.

*slide from Andrew, Arora, Bilmes, Livescu



CCA: Canonical Correlation Analysis

Classical technigue to find linear correlated representations, 1.e.,

f1 (Xl) — W?Xl W1 - Rlek
where
fa(x2) = W3 X W, € R42xkK
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CCA: Canonical Correlation Analysis

Classical technigue to find linear correlated representations, 1.e.,

f1 (Xl) — W?Xl W1 - Rlek
where
fa(x2) = W3 X W, € R42xkK

The first columns (w1 .1, we .1) of the matrices W1 and W, are found to
maximize the correlation of the projections:

(Wl,:la W2711) — arg 1nax COI‘I‘(WflljﬂXl, WTQZ:&XQ)
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CCA: Canonical Correlation Analysis

Classical technigue to find linear correlated representations, 1.e.,

f1 (Xl) — W?Xl W1 - Rlek
where
fa(x2) = W3 X W, € R42xkK

The first columns (w1 .1, we .1) of the matrices W1 and W, are found to
maximize the correlation of the projections:

(Wl,:la W2711) — arg 1nax COI‘I‘(WflljﬂXl, WTQZ:&XQ)

Subsequent pairs are constrained to be uncorrelated with previous
components (i.e., for 7 <)

corr(wfin, Wf:le) — corr(w%::ng, Wg’:ng) =0

*slide from Andrew, Arora, Bilmes, Livescu



CCA lllustration

f1(X1) = wi X4 <m f2(Xs2) = wi X

AN AN

1 f2

X, € R? X, € R?

Two views of each instance have the same color
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CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
S = oy ) —x)6d) —x)T e nl S = s S w6 -
R R
TN ;(X@ x1)06” —%2)" 22 = i;(x;” %2) (x5 — %2)" + ]

*slide from Andrew, Arora, Bilmes, Livescu



CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
1 i) i 1 N N
211 = N_li;(xﬁ)—x )(Xg)—X1)T+T1I 2119 = N—1;(Xg)_x )(Xg)_x2)T
— —
Si2 = 7 () — X)) — %) Sap = = () = 50) () — %) + 7o

- - . —1/2 —1/2 . .
2. Form normalized covariance matrix;: T = >4 / 21122199 / and Its singular

value decomposition T = UDV*
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CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
1 i) i 1 N N
211 = N_li;(xﬁ)—x )(Xg)—X1)T+T1I 2119 = N—1;(Xg)_x )(Xg)_x2)T
— —
Si2 = 7 () — X)) — %) Sap = = () = 50) () — %) + 7o

- - . —1/2 —1/2 . .
2. Form normalized covariance matrix;: T = >4 / 21122199 / and Its singular

value decomposition T = UDV*

k
3. Total correlation at k is ) Da
1—=1
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CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
1 i) i) - 1 ) i)
Y1 = T ;(Xg) — X )(Xg) — x4+ I Yo = N ;(xg) — X )(Xé) — %ot
- -
Si2 = 7 () — X)) — %) Sap = = () = 50) () — %) + 7o

—1 2
2. Form normalized covariance matrix: T = 2., / 21

value decomposition T = IiDVT
3. Total correlation at & is Z;Dm-
4. The optimal projection matri—ces are: W7 = 2_1/ ZUk
5 = 2_1/2Vk

where Uy is the first k columns of U,
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KCCA: Kernel CCA

There maybe non-linear functions fi(x1), f2(x2) that produce more highly
correlated (better) representations than linear projections

Kernel CCA is a principal method for finding such function

— Learns functions from any reproducing kernel Hiloert space
— May use different kernels for each view

Using RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that
form clusters in both views

*slide from Andrew, Arora, Bilmes, Livescu



KCCA vs. CCA

Pros:
— More complex function space of KCCA can yield dramatically higher correlations

Cons:
— KCCA is slower to train
— For KCCA training set must be stored and referenced at test time
— KCCA model is more difficult to interpret

*slide from Andrew, Arora, Bilmes, Livescu



[Canonical Correlation Analysis]

0 0

View 1 View 2
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Benefits of Deep CCA

Pros:
— Better suited for natural, real-world data

— Parametric model
— The training set can be disregarded once the model is learned
— Computational speed at test time Is fast

*slide from Andrew, Arora, Bilmes, Livescu



Deep CCA: Training

Training a Deep CCA model:
1. Pretrain the layers of each side individually

2. Jointly fine-tune all parameters to maximize
the total correlation of the output layers.
Requires computing correlation gradient:

— Forward propagate activations on both sides.
— Compute correlation and its gradient w.r.t. output layers.

— Backpropagate gradient on both sides.

[Canonical Correlation Analysis]

0 0

View 1 View 2
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Deep CCA: Training

Training a Deep CCA model:
1. Pretrain the layers of each side individually

2. Jointly fine-tune all parameters to maximize
the total correlation of the output layers.
Requires computing correlation gradient:

— Forward propagate activations on both sides.
— Compute correlation and its gradient w.r.t. output layers.

— Backpropagate gradient on both sides.

Correlation is a population objective, so instead
of one instance (or minibatch) training, requires
L-BFGS second-order method (with full-batch)

[Canonical Correlation Analysis]
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Multimodal Representation Types

Coordinated representations:

s o M e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — CCA (unsupervised), joint embeddings (supervised)
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— Similarity-based methods (e.g., cosine distance)

Modality 2




Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations fi(x1), f2(x2) for each view
that maximize correlation:

corr(f1(x1), fa(x2)) = cov(fi(x1), f2(x2))
(f( )af( )) \/VE1r(f1(X1))'VaI‘(f2(X2))

Joint Embeddings: Models that minimize distance between ground truth pairs
of samples:

ming, ,D (fl (Xﬁi)), f2(Xg)))



Object Classification

Category Prediction

Dog No
Cat No
Y Couch No
Flowers NO
Leopard Yes

Problem: For each image predict which category it belongs to out of a fixed set



Object Classification

Category Prediction

§ Dog No

| Cat No

— Couch No

Flowers NO
Leopard Yes

Problem: For each image predict which category it belongs to out of a fixed set



Object Classification

Category Prediction

H Dog B

| Cat —
— Couch B
Flowers

Leopard m—

0
Probability

Problem: For each image predict which category it belongs to out of a fixed set



Discriminative Embeddings

Images and class labels are embedded into the same space



Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Feature Extractor

j_iﬂ D —_— qjl([z) .....

CNN

CNN(I; ©)




Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding R

U(I;) =W -CNN(I;;®): R — R
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Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding R

U(I;) =W -CNN(I;;®): R — R
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Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];




Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

u u’

Duu) = — .
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Discriminative Embeddings

Image Categorization / Annotation
which object category does image belong to?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];




Discriminative Embeddings

Image Categorization / Annotation
which object category does image belong to?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Distance can be interpreted as probability



Discriminative Embeddings
Search by Image

most similar image to a query?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];




Discriminative Embeddings
Search by Label

most representative image for a label?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];




Discriminative Embeddings

Image Embedding R

U(I;) =W - -CNN(I;;®): R® — R

Label Embedding
U (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:

N
min ch(w, U, L, vi) + M||W||% + X[ |U||% [ Bengio et al.,, NIPS'10 ]
w,uU i [ Weinberger, Chapelle, NIPS’09 |



Discriminative Embeddings

Image Embedding R

U(I;) =W - -CNN(I;;®): R® — R

Label Embedding
U (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

u u’

Duu') = — .
S e TR

Objective Function:

N
min ch(w, U, L, vi) + M||W||% + X[ |U||% [ Bengio et al.,, NIPS'10 ]
w,uU i [ Weinberger, Chapelle, NIPS’09 |



Discriminative Embeddings

This is a very convenient model

Inducing semantics on
the embedding space




Semantic Embeddings

Why adding semantics is useful”

— Allows for transference ot knowledge from classes that have a lot of data to those that have
few (or no labeled instances)

— (Can serve as additional regularization, so can be more efficient for learning.



Long Tail of Categories

Few most frequent categories contain most of the samples, most of the
categories contain few samples

- As granularity of categories increases, the amount

Person of data per category decreases

Car

Bus

[ o

eebra Climbing

7



Inspiration from Human Structured Semantics  [Hwangetal, 2014]
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nspiration from Human Structured Semantics  [Hwangetal, 2014]
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Unified Semantic Embedding

big cat
Adding regularization from ontology / taxonomy over labels ﬁger/ .\
Image Embedding I —ach sample is closer to the parent
U, (I;) =W -CNN(I): RP - R category than to a sibling category o

Label Embedding
U (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:

min Z Lo(W, U, I, y:) + Bs|(W B AL R EA(W, U, I, y:) + R(U, B)



Unified Semantic Embedding o onomics: B

Adding regularization from ontology / taxonomy over labels tiger/ |\

Image Embedding R

LsW.U,ziy)) = > Y [1+[Wa; —u3 — [[Wa; — ulf3]-
U, (I;) =W -CNN(I) : RP — R Py, (CO,  — —

Label Embedding
U (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:

N
Win Z Lo(W, U, L, yi)+Ls (W, U, L, i) +La(W, U, L y) + M| [WE + XU



Unified Semantic Em bedd”’]g Attributes : has(zebra, Stripes)

Attributes embedded as (basis) vectors in the semantic space

Image Embedding R

U;(;)=W-CNN(L):RP - R?

Label Embedding CXEK]

U (word;) =u; : {1,...., L} — RY

Attribute Embedding

U4 (attr;) = a; : {1,..., A} - R% st ||a;]|* < 1

Similarity in Embedding Space

Wi ammalia

D(u,u’) = [Ju—u’|[3

N
min 3" Lo(W. U Lyi) + Ls(W. U, Ly) + La(W. U, Lyg) + R(UB) + A [[W][+ Aol [U]J3




Unified Semantic Embedding Hwang et al., 2014]

C
R(U,B) =) _|luc—u, —U"Bc|5 + 72(18: + B3

Image Embedding [ each category is a parent + sparse

U, (I;) =W -CNN(L): RP - R? subset of attribute bases o

Label Embedding CXEK]

U, (word;) =w; : {1,...,L} — R“ uzeb%

Attribute Embedding

U4 (attr;) = a; : {1,..., A} - R% st ||a;]|* < 1
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Unified Semantic Embedding Hwang et al., 2014]

Image Embedding [TIL] Alternating optimization

U;(;)=W-CNN(L):RP - R?

Label Embedding CXEK]
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min 3" Lo(W U Ly) + Ls(W. U, L y) + La(W, U, L, y) + R(U. B) + M [[W][% + Aol [U] 3




Experiments: Animals with Attributes (AwA) Dataset

(we assume no association between classes and attributes)

L abeled Images

30,475 Images

50 Animal Classes

Semantic Attributes

blue
brown
gray
orange
red
yellow
patches

Paws
longlegs
longneck

tall
chew teeth
meat teeth
buck teeth
horns
claws
tusks

85 Attributes

Class Ontology

WordNet ,
A lexical database for English

50 Animal Classes
are Leaves

| Lampert, Nickisch, Harmeling, CVPR’09 |



Experiments [ Hwang et al., 2014 ]

Results with AWA (with latent attributes)

flippers
furry

Musteline Mammal

ungulate
lean
active

Odd-toed ungulate

longneck
vellow

Animal

Deer

muscle \

Primate
hands arctic
bipedal stripes

black




Experiments [ Hwang et al., 2014 ]

Results with AWA (with latent attributes)

b &0 N S
Sios SR Ao S

- uadr “ |
Model benefits: Mioners

furry

Musteline Mammal

* highly interpretable

e efficient In learning

ungulate
lean
active

Odd-toed ungulate

longneck

vellow
Deer hooves

Animal

Primate

hands
bipedal

arctic
stripes
black



Experiments

Results with AWA (with latent attributes)

Model benefits:
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alternative attribute-based representations
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Experiments

Results with AWA (with latent attributes)

Flat hit @ k (%) Hierarchical precision @ k (%)
Method 1 2 S 2 S

No Ridge Regression 38.39 4= 1.48 48.61 £ 1.29 62.12 = 1.20 38.51 = 0.61 41.73 == 0.54
semantics NCM [1] 4349 +1.23 5745091 7548 £0.58 | 45.25+£0.52  50.32 =047
LME 4476 = 1.77 58.08 £2.05 75.11 =£1.48 | 44.84 =098 49.87 = 0.39
LMTE |2] 3892 £1.12 4997+ 1.16 6335138 | 38.67 046 41.72 1+ 0.45
Implicit ALE [3] 36.40 = 1.03 5043 +£192 7025197 | 4252+ 1.17 52.46 + 0.37
semantics HLE |31 33.566 =1.64 4593 256 64.66 =1.77 | 46.11 4= 2.65 56.79 + 2.05
AHLE |[3] 38.01 £1.69 5207 +1.19 7153 +1.41 | 44.43 + 0.66 54.39 4+ 0.55

Explicit LME-MTL-S
semantics LME-MTL-A 4555 =171 58.60x=1.76 7497 £ 1.15 | 44.23 £ 0.95 48.52 == 0.29
USE USE-No Reg. 4593 x=1.76 5937 1.32 7497 = 1.15 47.13 = 0.62 51.04 &= 0.46
USE—Reg. 4642 = 1.33 5954 = 0.73 76.62 = 1.45 47.39 £ 0.82 53.35 = 0.30

Variants of our Unified Semantic
Embedding (USE) model:

Ontology

Attributes

Parent + Sparse Attributes

[1] Mensink, Varbeek, Perronnin, Csurka Chapelle, TPAMI’13

[2] Weinberger, Chapelle, NIPS’09
[3] Akata, Perronnin, Harchaoui, Schmid, CVPR’13
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with 2 samples/category
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