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Lecture 10: Unsupervised Learning, Autoencoders



Unsupervised [earning

\We have access to {x1,X2,X3, -, X5} but not {y1,y2,¥3, -, yn}

*slide from Louis-Philippe Morency



Unsupervised [earning

\We have access to {x1,Xs,X3,- -, Xy} but not{y1,y2,¥3, -, yn}

Why would we want to tackle such a task:

1. Extracting interesting information from data
— Clustering

— Discovering interesting trend
— Data compression

2. Learn better representations
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Unsupervised Representation Learning

Force our representations to better model input distribution
— Not just extracting features for classification

— Asking the model to be good at representing the data and not overtitting to a
particu\ar task (we get this with ImageNet, but maybe we can do better)

— Potentially allowing for better generalization

Use for initialization of supervised task, especially when we have a lot of
unlabeled data and much less labeled examples
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Restricted Boltzmann Machines i one sige)

Model the joint probability of hidden state and observation

exp(—E(x, h; 6))

Z ® o o Hidden layer
Z = ¥x Ypexp(—E(x, h; 6))  (Ginany)
E=-xWh —b'x —a'h e oo ( Visible layer
E=—X;X;w xihj —X;bix; — X;a p (binary)
Interaction term Bias terms

Objective, maximize likelihood of the data
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Autoencoders
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Autoencoders

Self (i.e. self-encoding)
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Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to

| Input L Output L
reproduce the input nput Layer utput Layer

— Encoder/Decoder architecture
—ncoder: f = o(Wx)
Decoder: 9 = c(W h)
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Autoencoders

Self (i.e. self-encoding)

— Feed forward network intended to

| Input L Output L
reproduce the input nput Layer utput Layer

— Encoder/Decoder architecture
—ncoder: f = o(Wx)
Decoder: 9 = c(W h)

— Score function
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Autoencoders

A standard neural network architecture (linear layer followed by non-linearity)

— Activation depends on type of data

| | | | Output Layer
(e.g., sigmoid for binary; linear for real valued) Input Hayer put Lay

— Often use tied weights

W' =W
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Autoencoders

Assignment 3 can be interpreted as a language autoencoder
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Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to

PCA (under certain data normalization)
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Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to

PCA (under certain data normalization)

Side note, this is useful for anomaly detection
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Autoencoders: Hidden Layer Dimensionality

Smaller than the input

— Will compress the data, reconstruction of the data far from the training
distribution will be difficult

— Linear-linear encoder-decoder with Euclidian loss is actually equivalent to
PCA (under certain data normalization)

Larger than the input

— No compression needed

— Can trivially learn to just copy, no structure is learned (unless you regularize)

— Does not encourage learning of meaningful features (unless you regularize)
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