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Introduction

e Motivation: transferability among visual tasks
o Are visual tasks related? Should we learn a task from scratch every time?
o Saving time and data: reducing supervision and computation
o Efficient learning of comprehensive perception models

e Taskonomy (task taxonomy): a structure that describes efficient task transfers
o Directed hypergraph
o Nodes: tasks
o Edges: transfers



Taskonomy: Task Taxonomy
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Related Work

e Self-supervised learning: learning from labels derived directly from the input data
e Multi-task learning: learning representations for multiple tasks
e Domain adaptation: robustness to different input domains

e Meta-learning: similar motivations; higher-level understanding of the learning process



Method - Overview
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Method - Overview

(I) Task-specific Modeling (II) Transfer Modeling
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Method - Stage |: Task-Specific Modelling

e Use an encoder-decoder architecture homogeneous across all tasks.

e Encoder: A fully convolutional ResNet-50 without pooling and extract powerful representations.

e Decoder: Different architecture depending on tasks, but smaller than encoder.



Method - Stage |l: Task-Specific Modelling

e Transfer network learns a small transfer/readout function (D__)).

e D_  isparameterized by 8, minimizing the loss L
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Method - Stage |l: Task-Specific Modelling

e Learn areadout function (D__).

e D_ ,is parameterized by 8 minimizing the loss L,

Dy := arg ngn Erep [Lt (De (Es(D)), ft(I)>]
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Method - Stage |l: Task-Specific Modelling

e Learn areadout function (D_ ).

e D_ , is parameterized by 6 minimizing the loss L

By sp =02p meinIEmp {Lt (Ds (ES(I))a ft(I)>:|

e Include higher-order transfers to receive multiple representations in the input.
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Method - Stage |l: Task-Specific Modelling

e Learn areadout function (D ).

e D_ ,is parameterized by 6, minimizing the loss L
D, i= argminErep [Lt (Dg (EL(I)), ft(I)>]

e Include higher-order transfers to receive multiple representations in the input.
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Method - Stage |l: Task-Specific Modelling

(I) Task-specific Modeling (II) Transfer Modeling
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Method - Stage lll: Ordinal Normalization using AHP

e A naive normalization can apply to linearly rescale each row of the matrix to the range [0, 1]. But this
approach fails when the actual output quality increases at different speeds w.r.t. the loss.

e Apply ordinal normalization derived from Analytic Hierarchy Process (AHP).



Method - Stage lll: Ordinal Normalization using AHP

Ordinal Normalization using AHP :

Construct a pairwise tournament matrix W,.

Take win-lose ratio between transfer S, and sj.
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Take the 1st principle component (normalized to sum to 1) of the matrix.

Create the final matrix by stacking the 1st principle components for all t.



Method - Stage lll: Ordinal Normalization using AHP

(I) Task-specific Modeling (II) Transfer Modeling (III) Task Affinity

Layout Normals Reshading Ldyoul \lonmla Reshading Normalization

3D Keypoints|  2.5D Segm 2D Segm. 3D Keypoints ~ 2.5D Segm

AHP task affinities

—» Task-specific
3 Order
> Frozen




Step IV: Computing the Global Taxonomy
(Boolean Integer Programing (BIP))

Maximize collective performance

E—

Minimize supervision (sources)

Post Analytic Hierarchy Process Post Boolean Integer Programing



Problem formulation
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Experiments

* Total tasks in dictionary: 26

 Source only tasks: 4 (colorization, jigsaw puzzle, in-painting,
random projection)

e Total transfer functions: ~3000
 GPU hours: 47,886



Network Architecture

* Encoder: Fully connected ResNet-50 without pooling

— Pixel-to-pixel tasks: 15 layer full convolution network

* Decoders: —

— Low dimensional tasks: 2-3 FC layers

* Transfer: 2 convolution layers
» Same hyperparameters as well as architecture across different tasks.



Data splits

eDataset: 4 million images

*Training: 120k

*Validation: 16k

*Test: 17k

*Task specific network (Training dataset)

*Transfer network (validation dataset, ranging from 1k — 16K)



Experiments | - Evaluation of Gomputed Taxonomies
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tasks, and thus, only participate in the taxonomy if found worthwhile by the BIP optimization to be one of the sources.



Experiments | - Evaluation of Computed Taxonomies
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Experiments Il - Generalization to Novel Tasks

Carefully transferring policies
depending on the target is superior to
fixed transfers

Although taxonomy transfer policies
lose to fully supervised networks, in
most cases results get close to the
gold standard with win rate at 40%
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Figure 10: Generalization to Novel Tasks. Each row shows a novel
test task. Left: Gain and Quality values using the devised “all-for-one™
transfer policies for novel tasks for orders 1-4. Right: Win rates (%) of the
transfer policy over various self-supervised methods, ImageNet features,
and scratch are shown in the colored rows. Note the large margin of win
by taxonomy. The uncolored rows show corresponding loss values.




Experiments Ill - Significance Test of the Structure

Outperforms all other
randomly assigned
connective networks,
indicating the
significant and
existence of an
underlying connective
structure between the
tasks
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Figure 11: Structure Significance. Our taxonomy compared with ran-
dom transfer policies (random feasible taxonomies that use the maximum
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is the supervision budget. Green and gray represent our taxonomy and ran-
dom connectivities, respectively. Error bars denote 5¢7-95t" percentiles.



Experiments IV - Evaluation on MIT Places & ImageNet

Transferring to ImageNet Transfernng to MIT Places
(Spearman’s correlation = 0.823) (Spearman’s correlation = 0.857)
e Spearman’s rho ol e : S
between taxonomy o l " s ‘
u g * 4 a
ranking and the Top-1 i ” i
ranking is 0.857 on '
Places and 0.823 on 0 ‘
. : /_/,/#,c/: ‘ 4‘,,/‘///‘//\’2; ‘;4.44( (/ r//’J( / ."
ImageNet showing a 7Y R /A

notable correlation . )
Figure 12: Evaluating the discovered structure on other datasets:

ImageNet [75] (left) for object classification and MIT Places [101]
(right) for scene classification. Y-axis shows accuracy on the external
benchmark while bars on x-axis are ordered by taxonomy’s predicted per-
formance based on our dataset. A monotonically decreasing plot corre-
sponds to preserving identical orders and perfect generalization.



Experiments V - Universality of the Structure

System choices

I. Architecture of Task-Specific Networks
Il. Architecture of Transfer Function Networks
lll. Amount of Data Available for Training Networks
IV. Datasets
V. Data Splits
VI. Choice of Dictionary

Remarkably stable leading to almost no change in the output taxonomy



Experiments VI - Task Similarity Tree

Task Similarity Tree Based on Transfering-Out
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Figure 13: Task Similarity Tree. Agglomerative clustering of tasks
based on their transferring-out patterns (i.e. using columns of normalized
affinity matrix as task features). 3D, 2D, low dimensional geometric, and
semantic tasks clustered together using a fully computational approach.



Limitations and Discussion

e Model and data specific
o Taxonomy is computed w.r.t. a particular model and dataset

e Compositionality
o Tasks as composition of subtasks

e Non-visual tasks
o Does this method apply to non-visual tasks?

e Lifelong/Continuous learning
o Expanding the taxonomy after computing it



Thank You

e We’re happy to answer any questions :)



