
Meta Learning

Introduction

● Meta Learning: Learning to learn
● Big picture:

○ we want our learning algorithms to get better at
learning with experience

● Towards AGI goal:
○ cannot just memorize task after task and start from

scratch each time

Then no *wonder* I can catch up with you so fast after you've had four years of biology." They
had wasted all their time memorizing stuff like that, when it could be looked up in fifteen
minutes.”

Designing a Task Solver

You

Task i

Models

feedback

design

Task j Do it again?

Problem Solved, right?

Learning
Algorithm

Task i

Models

feedback

search

Task j Do it again.

Problem Solved, right?

Task i

ModelsLearning
Algorithms

feedback

search

● Weight Initialization?
● Network Regularization?
● Learning rate?
● Optimizer?
● Policy Gradient?

○ Advantage Baselines?

● Q-learning?

Needs to be fast, yet general.

Tasks

Designing a Tasks Learner

Task i

ModelsLearning
Algorithms

feedback

search

All the papers.

Tasks

You
design

Learning a Tasks Learner

Task i

ModelsLearning
Algorithms

feedback

search

Tasks

Meta
Learner

search

feedback

Designing a Tasks Learner Learner

Task i

ModelsLearning
Algorithms

feedback

create

Tasks

Meta
Learner

search

feedback

You

Approaches
● Parameterize the Learner Algorithm

with some parameters X
● Meta Learner must optimize the

learner with respect to X

DNN ModelWeights

Learner

parameterizes

optimizes

LearnerX?

Meta Learner

parameterizes

optimizes

Normal ML

Meta Learning

Meta Learning Variants

LearnerX?

Meta Learner

parameterize

optimize

Method Learner X Meta Learner

MAML SGD Initial Weights SGD

L to L by GD by
GD

LSTM Weight
Updater

Weights of LSTM SGD

L Transf.
Architectures

SGD Architecture RNN Controller
with RL

DNN
ModelWeights parameterizeoptimize

Applications
Learning to Learn X:

● Learning to do Fewshot Learning
● Learning Algorithms for Active Learning (Bachman et. al, 2017)
● Meta Learning Shared Hierarchies (Frans et. al, 2017)
● One-shot visual imitation learning via meta-learning (Finn et. al, 2017)
● Deep Online Learning Via Meta-Learning (Nagabandi et. al, 2019)

Learning Algorithm for
challenging problem that you
don’t want to design

Meta Learning
Algorithm

searches
for youYou

Meta-Learning problem set-up
● We have a model f with parameters θ

Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a

Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a
● We have a distribution over tasks: p(T)

Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a
● We have a distribution over tasks: p(T)
● Formal definition of each task:

Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a
● We have a distribution over tasks: p(T)
● Formal definition of each task:

● K-shot learning setting: p(T) → Ti → qi → K samples → LTi → training

Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a
● We have a distribution over tasks: p(T)
● Formal definition of each task:

● K-shot learning setting: p(T) → Ti → qi → K samples → LTi → training
● Meta-Training error: the test error on sampled tasks Ti

Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a
● We have a distribution over tasks: p(T)
● Formal definition of each task:

● K-shot learning setting: p(T) → Ti → qi → K samples → LTi → training
● Meta-Training error: the test error on sampled tasks Ti
● Meta-Test error: the test error on tasks that were held out during training

General idea

θ

General idea

θ

*θ3

*θ1 *θ2

General idea

θ

*θ3

*θ1 *θ2

▽L1

▽L3

▽L2

General idea

θ

*θ3

*θ1 *θ2

MAML

General idea

θ

*θ3

*θ1 *θ2

▽L1

▽L3

▽L2

MAML

Actual algorithm
1. Randomly initialize θ

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi
4. Evaluate ▽θLTi(fθ) with respect to K examples

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi
4. Evaluate ▽θLTi(fθ) with respect to K examples
5. Compute adapted parameters:

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi
4. Evaluate ▽θLTi(fθ) with respect to K examples
5. Compute adapted parameters:

...

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi
4. Evaluate ▽θLTi(fθ) with respect to K examples
5. Compute adapted parameters:

...

6. After sampling several tasks:

Actual algorithm
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi
4. Evaluate ▽θLTi(fθ) with respect to K examples
5. Compute adapted parameters:

...

6. After sampling several tasks:

meta-objective

Experiments - Regression
● Draw K examples from qi - data points x(j), y(j)

Experiments - Regression
● Draw K examples from qi - data points x(j), y(j)

● Loss function LTi(fθ) with respect to K examples:

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]
● K points are sampled from [-5.0, 5.0]

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]
● K points are sampled from [-5.0, 5.0]
● The regressor - neural network, 2 hidden layers with 40 units, ReLU

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]
● K points are sampled from [-5.0, 5.0]
● The regressor - neural network, 2 hidden layers with 40 units, ReLU
● Training with MAML with K = 10;

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]
● K points are sampled from [-5.0, 5.0]
● The regressor - neural network, 2 hidden layers with 40 units, ReLU
● Training with MAML with K = 10;
● For comparison:

○ Baseline (pretrained on all possible sine wave tasks)

Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]
● K points are sampled from [-5.0, 5.0]
● The regressor - neural network, 2 hidden layers with 40 units, ReLU
● Training with MAML with K = 10;
● For comparison:

○ Baseline (pretrained on all possible sine wave tasks)
○ Oracle

Experiments - Regression
MAML

K=5

Experiments - Regression
MAML Pretrained

K=5

Experiments - Regression
MAML Pretrained

K=5

K=10

Experiments - Regression
MAML Pretrained

K=5

K=10

Experiments - Regression

Experiments - Classification
● N-way image classification with K shots

○ Trained with only K examples from each of the N classes

Experiments - Classification
● N-way image classification with K shots

○ Trained with only K examples from each of the N classes
● p(T): distribution over all possible N-way tasks

○ Sample N classes
○ Sample K instances from each class

Experiments - Classification
● N-way image classification with K shots

○ Trained with only K examples from each of the N classes
● p(T): distribution over all possible N-way tasks

○ Sample N classes
○ Sample K instances from each class

● Loss function

Experiments - Classification
● N-way image classification with K shots

○ Trained with only K examples from each of the N classes
● p(T): distribution over all possible N-way tasks

○ Sample N classes
○ Sample K instances from each class

● Loss function

● Datasets
○ Omniglot
○ MiniImageNet

Experiments - Few-Shot Image Recognition
● Omniglot: 1623 characters with 20 instances each

Source: One shot learning of simple visual concepts (Lake et al.)

Experiments - Few-Shot Image Recognition
● Omniglot: 1623 characters with 20 instances each
● Randomly sample 1200 characters for training MAML,

and use the rest for evaluation

Source: One shot learning of simple visual concepts (Lake et al.)

Experiments - Few-Shot Image Recognition
● Omniglot: 1623 characters with 20 instances each
● Randomly sample 1200 characters for training MAML,

and use the rest for evaluation
● N = 5, 20
● K = 1, 5

Source: One shot learning of simple visual concepts (Lake et al.)

Experiments - Few-Shot Image Recognition
● Omniglot: 1623 characters with 20 instances each
● Randomly sample 1200 characters for training MAML,

and use the rest for evaluation
● N = 5, 20
● K = 1, 5
● A CNN-based classifier

Source: One shot learning of simple visual concepts (Lake et al.)

Experiments - Few-Shot Image Recognition

Experiments - Few-Shot Image Recognition
● MiniImagenet

○ 64 training classes
○ 12 validation classes
○ 24 test classes
○ 600 samples of 84x84 colour images per class

Experiments - Few-Shot Image Recognition
● MiniImagenet

○ 64 training classes
○ 12 validation classes
○ 24 test classes
○ 600 samples of 84x84 colour images per class

● N = 5
● K = 1, 5

Experiments - Few-Shot Image Recognition

Experiments - Reinforcement Learning
● Enable an agent to quickly acquire a new policy for a new task through a

small amount of interactions

Experiments - Reinforcement Learning
● Enable an agent to quickly acquire a new policy for a new task through a

small amount of interactions
● Each task is an MDP with horizon H

○ qi(x1): initial state distribution
○ q(xt+1 | xt, at): transition probabilities
○ Task-specific loss corresponds to the negative reward function

Experiments - Reinforcement Learning
● Enable an agent to quickly acquire a new policy for a new task through a

small amount of interactions
● Each task is an MDP with horizon H

○ qi(x1): initial state distribution
○ q(xt+1 | xt, at): transition probabilities
○ Task-specific loss corresponds to the negative reward function

● K-shot: sample K rollouts from the current policy for each task

Experiments - Reinforcement Learning
● Policy: MLP with 2 hidden layers of size 100 with ReLU non-linearities
● Update: REINFORCE
● Meta-update: TRPO

Experiments - Reinforcement Learning
● Policy: MLP with 2 hidden layers of size 100 with ReLU non-linearities
● Update: REINFORCE
● Meta-update: TRPO
● Baselines models for comparisons

○ pretrained: pretrained on all tasks, fine-tuned on the specific task
○ random: training a policy from randomly initialized weights
○ oracle: an oracle policy which receives the parameters of the task as input

● 2D navigation
○ Observation: current 2D coordinates
○ Goal: navigate to a target location
○ Reward: negative squared distance to the target location

Experiments - Reinforcement Learning

Experiments - Reinforcement Learning

● Continuous control tasks in MuJoCo
○ Agent: ant, half cheetah
○ Observation: torques
○ Goal: run in a particular direction or at a particular velocity
○ Reward:

■ The magnitude of the velocity
■ The negative absolute value between the current

velocity of the agent and a goal

Experiments - Reinforcement Learning

Experiments - Reinforcement Learning

Video results can be found at https://sites.google.com/view/maml

https://sites.google.com/view/maml

PAML - Proactive and Adaptive meta-learning.
● L.-Y. Gui et al modified the MAML algorithm in their paper: Few-Shot Human Motion Prediction via

Meta-learning

● The paper combined the MAML algorithm with a model regression network (MRN) to predict

outcomes of human motion in with only a few examples.

● PAML was developed out of the need to develop a more flexible meta-learning algorithm to learn a

more complicated tasks quickly.

Figure from L.-Y. Gui et al. where the top is the ground truth of motion, the pink are the baseline predictions and the
bottom is the prediction form PAML.

General idea - PAML vs MAML

θ

*θ3

*θ1 *θ2

▽L1

▽L3

▽L2

MAML

*θTestPAML

PAML - Algorithm changes
● The main difference is using a feed forward

network to perform the parameter update for
the k shot learning.

● We also must solve for parameters from many
shot learning before hand and use it in the
regularization term.

● We then update two sets of parameters: the
learners parameters, and the meta learners
parameters.

● The idea is the meta-network will learn how to
adjust parameters to allow it to generalize well.

Figures from L.-Y. Gui et al.

Experimental results - sanity check.

● L.-Y Gui et al performed a sanity check using 1-shot and 5-shot learning on classification tasks on
mini-ImageNet.

● Results showed their accuracy to be the best.

● I don’t think this should be surprising. It’s more flexible method and there is no shortage of data.

Table from L.-Y. Gui et al.

Experimental results - Human motion prediction
● Dataset is human 3.6M, which is

benchmarked often.

● Used 5 shot learning.

● Training was done on 11 action
classes: directions, greeting,
phoning, posing, purchases, sitting,
sitting down, taking photo, waiting,
walking dog, and walking together

● Testing was done on the four shown
here.

● The numbers correspond to mean
angle error, so lower is better.

Figures from L.-Y. Gui et al.

Discussion - MAML
Positives

● MAML is a simple way to get a
good network initialization.

● It is also Model agnostic, so it is
easy to implement.

● It is great for building pretrained
models for others to use without
having to spend weeks of training
time.

Negatives

● My not be flexible enough for
other certain applications, but is a
great start.

Discussion - PAML
Positives

● Adds more flexibility to the MAML
architecture.

● Trained model can learn more
complex tasks in a few shots.

● Needed when an agent needs to
learn from few examples.

● L.-Y. Gui et al. found would be
useful for robots to learn
interactions with humans quickly.

Negatives

● We need to train a second
network which adds time and
complexity.

● Does appear to outperform MAML,
but we need to train more hyper
parameters with also adds more
time for cross validation.

● A lot of hyper parameters mean
we have to be careful to not overfit
the validation set.

Conclusion
● Meta Learning is learning how to learn.
● Main goal: we want our learning algorithms to get better at learning with

experience
● We presented two major meta learning frameworks.
● Maml to find a good parameter initialization
● PAML which adds more flexibility to learn in less examples, with the trade off

of more training time and more hyper parameter tuning.
● Thank you for listening, Questions?

