
Meta Learning



Introduction

● Meta Learning: Learning to learn
● Big picture: 

○ we want our learning algorithms to get better at 
learning with experience

● Towards AGI goal: 
○ cannot just memorize task after task and start from 

scratch each time 

Then no *wonder* I can catch up with you so fast after you've had four years of biology." They 
had wasted all their time memorizing stuff like that, when it could be looked up in fifteen 
minutes.” 
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● Weight Initialization?
● Network Regularization?
● Learning rate?
● Optimizer?
● Policy Gradient?

○ Advantage Baselines?

● Q-learning?

Needs to be fast, yet general.

Tasks
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Approaches
● Parameterize the Learner Algorithm 

with some parameters X
● Meta Learner must optimize the 

learner with respect to X
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Meta Learning Variants
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Method Learner X Meta Learner

MAML SGD Initial Weights SGD

L to L by GD by 
GD

LSTM Weight 
Updater

Weights of LSTM SGD

L Transf. 
Architectures

SGD Architecture RNN Controller 
with RL

DNN 
ModelWeights parameterizeoptimize



Applications
Learning to Learn X:

● Learning to do Fewshot Learning
● Learning Algorithms for Active Learning (Bachman et. al, 2017)
● Meta Learning Shared Hierarchies (Frans et. al, 2017)
● One-shot visual imitation learning via meta-learning (Finn et. al, 2017)
● Deep Online Learning Via Meta-Learning (Nagabandi et. al, 2019)

Learning Algorithm for 
challenging problem that you 
don’t want to design

Meta Learning 
Algorithm

searches 
for youYou
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Meta-Learning problem set-up
● We have a model f with parameters θ
● It maps x to a: f(x) → a
● We have a distribution over tasks: p(T)
● Formal definition of each task:

● K-shot learning setting: p(T) → Ti → qi → K samples → LTi → training
● Meta-Training error: the test error on sampled tasks Ti
● Meta-Test error: the test error on tasks that were held out during training
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Actual algorithm 
1. Randomly initialize θ
2. Sample task Ti from p(T)
3. Draw K examples from qi 
4. Evaluate ▽θLTi(fθ) with respect to K examples
5. Compute adapted parameters: 

...

6. After sampling several tasks:  

meta-objective
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Experiments - Regression
● Draw K examples from qi - data points x(j), y(j)

● Loss function LTi(fθ) with respect to K examples:
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Experiments - Regression
● Tasks - regress from the input to the output of a sine wave;
● p(T) - continuous over sinusoids;
● Amplitude [0.1,0.5]
● Phase [0, π]
● K points are sampled from [-5.0, 5.0]
● The regressor - neural network, 2 hidden layers with 40 units, ReLU
● Training with MAML with K = 10;
● For comparison:

○ Baseline (pretrained on all possible sine wave tasks)
○ Oracle 
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Experiments - Classification
● N-way image classification with K shots

○ Trained with only K examples from each of the N classes
● p(T): distribution over all possible N-way tasks

○ Sample N classes
○ Sample K instances from each class

● Loss function

● Datasets
○ Omniglot
○ MiniImageNet
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Experiments - Few-Shot Image Recognition
● Omniglot: 1623 characters with 20 instances each
● Randomly sample 1200 characters for training MAML, 

and use the rest for evaluation
● N = 5, 20
● K = 1, 5
● A CNN-based classifier

Source: One shot learning of simple visual concepts (Lake et al.)
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Experiments - Few-Shot Image Recognition
● MiniImagenet

○ 64 training classes
○ 12 validation classes
○ 24 test classes
○ 600 samples of 84x84 colour images per class

● N = 5
● K = 1, 5
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Experiments - Reinforcement Learning
● Enable an agent to quickly acquire a new policy for a new task through a 

small amount of interactions
● Each task is an MDP with horizon H

○ qi(x1): initial state distribution
○ q(xt+1 | xt, at): transition probabilities
○ Task-specific loss corresponds to the negative reward function

● K-shot: sample K rollouts from the current policy for each task
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Experiments - Reinforcement Learning
● Policy: MLP with 2 hidden layers of size 100 with ReLU non-linearities
● Update: REINFORCE
● Meta-update: TRPO
● Baselines models for comparisons

○ pretrained: pretrained on all tasks, fine-tuned on the specific task
○ random: training a policy from randomly initialized weights
○ oracle: an oracle policy which receives the parameters of the task as input



● 2D navigation
○ Observation: current 2D coordinates
○ Goal: navigate to a target location
○ Reward: negative squared distance to the target location

Experiments - Reinforcement Learning
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● Continuous control tasks in MuJoCo
○ Agent: ant, half cheetah
○ Observation: torques
○ Goal: run in a particular direction or at a particular velocity
○ Reward: 

■ The magnitude of the velocity 
■ The negative absolute value between the current 

velocity of the agent and a goal

Experiments - Reinforcement Learning



Experiments - Reinforcement Learning

Video results can be found at https://sites.google.com/view/maml

https://sites.google.com/view/maml


PAML - Proactive and Adaptive meta-learning.
● L.-Y. Gui et al modified the MAML algorithm in their paper: Few-Shot Human Motion Prediction via 

Meta-learning

● The paper combined the MAML algorithm with a model regression network (MRN) to predict 

outcomes of human motion in with only a few examples.

● PAML was developed out of the need to develop a more flexible meta-learning algorithm to learn a 

more complicated tasks quickly.

Figure from L.-Y. Gui et al.  where the top is the ground truth of motion, the pink are the baseline predictions and the 
bottom is the prediction form PAML.
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PAML - Algorithm changes
● The main difference is using a feed forward 

network to perform the parameter update for 
the k shot learning.

● We also must solve for parameters from many 
shot learning before hand and use it in the 
regularization term.

● We then update two sets of parameters: the 
learners parameters, and the meta learners 
parameters.

● The idea is the meta-network will learn how to 
adjust parameters to allow it to generalize well.

Figures from L.-Y. Gui et al.  



Experimental results - sanity check.

● L.-Y Gui et al performed a sanity check using 1-shot and 5-shot learning on classification tasks on 
mini-ImageNet.

● Results showed their accuracy to be the best. 
 

● I don’t think this should be surprising.  It’s more flexible method and there is no shortage of data.

Table from L.-Y. Gui et al.  



Experimental results - Human motion prediction
● Dataset is human 3.6M, which is 

benchmarked often.

● Used 5 shot learning.

● Training was done on 11 action 
classes:  directions, greeting, 
phoning, posing, purchases, sitting, 
sitting down, taking photo, waiting, 
walking dog, and walking together

● Testing was done on the four shown 
here.

● The numbers correspond to mean 
angle error, so lower is better.

Figures from L.-Y. Gui et al.  



Discussion - MAML
Positives

● MAML is a simple way to get a 
good network initialization.

● It is also Model agnostic, so it is 
easy to implement.

● It is great for building pretrained 
models for others to use without 
having to spend weeks of training 
time.

Negatives

● My not be flexible enough for 
other certain applications, but is a 
great start.



Discussion - PAML
Positives

● Adds more flexibility to the MAML 
architecture.

● Trained model can learn more 
complex tasks in a few shots.

● Needed when an agent needs to 
learn from few examples.

● L.-Y. Gui et al. found would be 
useful for robots to learn 
interactions with humans quickly.

Negatives

● We need to train a second 
network which adds time and 
complexity.

● Does appear to outperform MAML, 
but we need to train more hyper 
parameters with also adds more 
time for cross validation. 

● A lot of hyper parameters mean 
we have to be careful to not overfit 
the validation set.



Conclusion
● Meta Learning is learning how to learn.
● Main goal: we want our learning algorithms to get better at learning with 

experience
● We presented two major meta learning frameworks.
● Maml to find a good parameter initialization
● PAML which adds more flexibility to learn in less examples, with the trade off 

of more training time and more hyper parameter tuning.
● Thank you for listening, Questions?


