Audio-Visual Scene Analysis with
Self-Supervised Multisensory
Features

Eric Semeniuc, Jan Hansen, Yuan Yao, Yuchi Zhang



Cross-Modality
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Goal: Use the multiple modalities of an event as
a learning signal

Image source: CC and University of Utah



Sound Localization
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Action Recognition

“Cutting in kitchen”
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Stream separation
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Predicted on-screen sound
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Related work

e Audio-visual scene analysis

o McGurk effect VIDEO
e Self-supervised learning (no human labeling)

o Image and audio source coherency (de Sa, Arandjelovic)
e Audio-visual alignment

o Lip reading (Chung et al)
e Sound localization

o Associate motion and audio, sound of pixels (...et al.), Zhou
e Blind source/Audio-Visual separation

o Cocktail party problem
o Face detection and beam forming

Keep your eyes closed.
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https://youtu.be/jtsfidRq2tw?t=5
http://www.youtube.com/watch?v=jtsfidRq2tw

Learn a multisensory representation

Key idea: train a model to predict whether video’s audio and visual streams are
synchronized.




Align sight with sound

Input: video clips, half of the data are synchronized, the others are shifted.
Output: y = {0,1} means whether the audio and video are synchronized.

Model: pg(y | I, A) , I'is visual stream, 4 is audio stream

Objective: (Maximize log-likelihood)

L) = 50 ll08(paly = 1] T, A0)) +log(po(y = 0 | 1, A))]



Fused audio-visual network

[ fc & sigmoid ]
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Experiment

Data:

- Input 4.2 sec. videos, randomly shifted by 2.0 to 5.8 seconds
- 750,000 videos sampled from AudioSet

- 29.97 Hz

- Random crop + flipping

Performance:;

- 59.9% accuracy
- User study 66.6% accuracy



Visualizing sound sources

Zhou et al. 2015;

- convolutional units of CNN'’s are object detectors in an unsupervised setting
- This is lost when the final fully connected layer is used for classification.

At the same time GooglLeNet was trying to avoid the final fully connected
layer to minimize the number of parameters



Zhou et al. 2015 - Class Activation Mapping

GAP - Global Average Pooling
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Visualizing sound sources - Class Activation Mapping

( fc & sigmoid ) p(y I I:I:7 A:E) = U(wa(Ixy A:I:))
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Video frames ] Waveform
Hypothesis: A good audio-visual representation (early fusion) will pay special
attention to visual sound sources




Visualizing sound sources
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Visualizing sound sources

Kinetics sound dataset: no speech

Choppmg wood

Playing clarinet
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Action recognition

1. We've seen that the representation localizes sound sources
2. Can it also be used in an unsupervised recognition task?

UCF-101 dataset Results

Model Acc.

Multisensory (full) 82.1%
Multisensory (spectrogram) 81.1%
Multisensory (random pairing [16]) 78.7%
Multisensory (vision only) 77.6%
Multisensory (scratch) 68.1%
I3D-RGB (scratch) [56] 68.1%
O3N [19]* 60.3%
Purushwalkam et al. [61]* 55.4%
C3D [62,56]* 51.6%
Shuffle [ 1 7]* 50.9%
Wang et al. [63,61]* 41.5%
I3D-RGB + ImageNet [56] 84.2%
I3D-RGB + ImageNet + Kinetics [56] 94.5%




Application: on/off-screen source separation
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Creating training data

On-screen Off-screen
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Model

On-screen Off-screen

Multisensory net

N

Video + mixed audio Mixed spectrogram
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Adapted from Owens and Efros (2018)



Training

e 4 sec. videos from VoxCeleb + AudioSet
e L1-Loss on log spectrograms
e No labels or face detection



Self-supervised init.

L, error (lower = better)

Single video frame

I3D CNN (Carreira 2017)
with Kinetics initialization

Randch init. 148
11.4
Full Scratch [3D+Kinetics Static

“Blind” separation with permutation

Signal-to-distortion ratio

invariant training (Yu et al. 2017)

7.6

With video Audio onl

Adapted frdm Owens and Efros (2018)



On-screen

Input video prediction
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Adapted from Owens and Efros (2018) p red ICt I O n


http://drive.google.com/file/d/1qFDVwCdGeKZW2iTnKl88CE3AZddKN5iu/view
http://drive.google.com/file/d/1cS2_w4I6IoMy79LE4jR8PAjsG4fleJLn/view
http://drive.google.com/file/d/17rWDkaglH_RRNafMHsyEdF-HJBFtdOU4/view

Multiple on screen sound
sources

Mask one side of the screen

Adapted from Owens and Efros (2018)


http://drive.google.com/file/d/1Gtl_1uPPu08tOFx68IIaipU1_lMKfvIT/view
http://drive.google.com/file/d/1HJY4ui17lchFIEN4XJi_-7Js6IAK_ic9/view
http://drive.google.com/file/d/1Uol7UkhtaEOaXG8zG_nMEmeBz_Ebzoj3/view

Discussion

e Pros
o Multisensory feature learned with self-supervision
o Three potential applications
m  Sound localization
m Action recognition
m Audio-visual source separation

e Cons
o Action recognition unclear
o Issue with shot cuts
o Sound localization, ventriloquist
m Not for multiple on-screen sound sources
m Sound localization + source separation? => Sound of Pixels
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http://drive.google.com/file/d/1oEahRi05uhDEfAaAGthRDmhLMTyVWwMU/view
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http://drive.google.com/file/d/1l3SZk0MfIYAFaY_NLJJeqdGOdHDqNhQY/view

Sound of Pixels
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Concurrent work

The Sound of Pixels

(Zhao, Gan, et al.)

Audio-visual
sounds source
separai on

Learning to Separate
Object Sounds by
Watching Unlabeled
Video
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(Gao, Feris, Grauman)



