CPSC 532s Paper Reading 5a

Diverse Image-to-Image Translation via Disentangled Representations

Image to Image Translation (I2I)

Learn mapping between two visual domains:

Many vision and graphic problems can formulated as Image to Image translation

I2I (colourization)

I2I (Image Synthesis)

I2I (domain adaptation)

Challenges of Image to Image Translation

• The absence or difficulty of collecting aligned training pairs

Not Exist

• Multiple possible outputs from the single image

Related work (Pix2pix: Isola et al. 2017)

Assuming to have image pairs, a model can learn mapping function between them:

Train model with GAN so discriminator can distinguish fake or real pairs.

Comparison of unsupervised I2I translation Models

One to One mapping Models:

A straightforward approach to handle multimodality

 take random noise vectors along with the conditional contexts as inputs, where the contexts determine the main content and noise vectors are responsible for variations.

BicycleGan Approach:

Many to many mapping model with paired images:

Problem Statement

Problem:

• Idea is to create a disentangled representation to generate <u>*diverse*</u> outputs with <u>unpaired training data</u>.

Methods

Disentangled Representations

- Content space Shared
- Attribute space Domain-specific

Introducing Diversity

Randomly sampled from attribute space

Strategies of Representation Disentanglement

• Weight sharing

Strategies of Representation Disentanglement

- Weight sharing
- Content discriminator

$$\begin{split} L_{\text{adv}}^{\text{content}}(E_{\mathcal{X}}^{c}, E_{\mathcal{Y}}^{c}, D^{c}) &= \mathbb{E}_{x}[\frac{1}{2}\log D^{c}(E_{\mathcal{X}}^{c}(x)) + \frac{1}{2}\log\left(1 - D^{c}(E_{\mathcal{X}}^{c}(x))\right)] \\ &+ \mathbb{E}_{y}[\frac{1}{2}\log D^{c}(E_{\mathcal{Y}}^{c}(y)) + \frac{1}{2}\log\left(1 - D^{c}(E_{\mathcal{Y}}^{c}(y))\right)] \end{split}$$

Cross-Cycle Consistency Loss

Cross-Cycle Consistency Loss

- An image from each domain is decomposed into attribute and content representations
- The content vectors are then swapped with each other
- The new content-attribute pairs are then fed into the generator corresponding to their attribute representations

Cross-Cycle Consistency Loss

The process is the repeated on the generated images:

- The content and attribute vectors are encoded
- The content vectors are swapped
- The new content-attribute representation pairs are fed into their generators

The generators should produce something similar to the original images

Domain Adversarial Loss

- Domain specific generators and discriminators are trained using this loss
- Discriminators must distinguish real images from generated images
- Attribute representations are pulled from a standard normal distribution
- A KL loss is used to coerce the attribute space to follow a standard normal distribution

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

Self-Reconstruction Loss

- The process of encoding and immediately decoding an image should produce the initial image
- Ensures that image information is preserved through the encoding and decoding phases

$$\hat{x} = G_{\mathcal{X}}(E^c_{\mathcal{X}}(x), E^a_{\mathcal{X}}(x))$$
$$\hat{y} = G_{\mathcal{Y}}(E^c_{\mathcal{Y}}(y), E^a_{\mathcal{Y}}(y))$$

Latent Regression Loss

• Encourages an invertible mapping between the attribute space and images

$$\hat{x} = G_{\mathcal{X}}(E^c_{\mathcal{X}}(x), E^a_{\mathcal{X}}(x))$$
$$\hat{y} = G_{\mathcal{Y}}(E^c_{\mathcal{Y}}(y), E^a_{\mathcal{Y}}(y))$$

Key Implementation Details

Input image size: 216*216

Content encoder E^{C} : 3 conv + 4 residual blocks

```
Attribute encoder E^a: 4 conv + FCs
```

Generator G: 4 residual blocks + 3 fractionally strided conv

Evaluation

Datasets:

- Yosemite
- Artworks
- Edge-to-shoes
- Photo-to-portrait (WikiArt)
- CelebA

Compare DRIT with methods of:

- DRIT w/o Dc
- CycleGAN, UNIT, BicycleGAN
- Cycle/Bicycle (Baseline)

Domain adaptation:

- MNIST to MNIST-M

-

Synthetic Cropped LineMod to Cropped LineMod

Evaluation

- Qualitative evaluation
- Quantitative evaluation

We want to show:

- Diverse translation results with randomly sampled attributes
- Example guided translation with transferred attribute vectors from existing images

Qualitative Evaluation - Diversity

Images generated by random vectors in the attribute space

Qualitative Evaluation - Diversity

Linear interpolation between two attributes

- Verifies the continuity in the attribute space
- Model can generalize in the distribution

Qualitative Evaluation - Attribute Transfer

☐ Content space
☐ is shared

Quantitative Evaluation - Realism

Dataset: winter-summer translation with Yosemite dataset

Realism:

- User study using pairwise comparison -
- Low realism score: UNIT -
- High realism score: CycleGAN -

Quantitative Evaluation - Diversity

Diversity:

- LPIPS metric to measure similarity among images
- Compute distance between 1000 pairs of random images translated from 100 real images

Method	Diversity	
real images	$.448 \pm .012$	
DRIT	$.424 \pm .010$	
DRIT w/o D^c	$.410\pm.016$	
UNIT [27]	$.406\pm.022$	Highest in realism, but
CycleGAN [48]	$.413 \pm .008$	limited diversity
Cycle/Bicycle	$.399 \pm .009$	Constrained by data
		generated by CycleGAN

Quantitative Evaluation - Reconstruction Ability

Dataset: edge-to-shoes dataset

Test: given a paired data, measure the reconstruction errors of y with

 $\hat{y} = G_y(E^a_X(x), E^a_Y(y))$

Compare performance:

Domain Adaptation

I2I translation scheme -- domain adaptation

- Train labeled source images to the target domain
- Treat the generated labeled images as training data
- Train the classifiers of each task in the target domain

Tasks

Compare with

- MINIST to MINIST-M
- Synthetic Cropped LineMod to Cropped LineMod
- CycleGAN
- PixelDA
- DANN
- DSN

Domain Adaptation

(c) MNIST \rightarrow MNIST-M

(d) Synthetic \rightarrow Real Cropped LineMod

Domain Adaptation

		Model	Classification Accuracy (%)	Model	Classification Accuracy (%)	Mean Angle Error (°)
Ge sim deç	enerates image with nilar appearances,	Source-only	56.6	Source-only	42.9(47.33)	73.7(89.2)
	egrading the erformance of the dapted classifiers	\rangle CycleGAN [46]	74.5	CycleGAN [46]	68.18	47.45
pe		\bigvee Ours, $\times 1$	86.93	Ours, $\times 1$	95.91	42.06
au		Ours, $\times 3$	90.21	Ours, $\times 3$	97.04	37.35
		\rightarrow Ours, $\times 5$	91.54	Ours, $\times 5$	98.12	34.4
		DANN [13]	77.4	DANN [13]	99.9	56.58
	Leverage label info during training	DSN [4]	83.2	DSN [4]	100	53.27
		PixelDA [3]	95.9	PixelDA [3]	99.98	23.5
		Target-only	96.5	Target-only	100	12.3(6.47)

(a) MNIST-M

(b) Cropped LineMod

Conclusion

Positive Points	Negative Points	
A novel disentangled representation framework embeds images into domain-invariant content features and domain-specific attribute vectors	Additional components make these methods less generalizable and incur extra computational loads on training	
The content discriminator is described to to facilitate the representation disentanglement and outputs be more diverse and realistic	Strong assumptions or regularizations including: shared latent spaces, loss on KL divergence from simple Gaussians	
Propose a cross-cycle consistency loss for cyclic reconstruction of unpaired training data	 Work limitations: Attribute space is not fully exploited Difficult when domain characteristics differ significantly 	

Future Works

- How to make generator/discriminator more aware of difference and capture high-level statistics of domains
- Video to Video translations

Thanks for Listening

Questions?