Learning Transferable Architectures
for Scalable Image Recognition

Zoph et al., CVPR ‘18
Presented By: Kyle Leeners, Mir Rayat Imtiaz Hossain, Nam Hee Kim, Chris Yoon

Table of Contents

Introduction
Related Work
Methods
Experiments

Pros and Cons
Future extensions

Questions

Introduction

Scalable method to optimize CNNs
- Relatively low compute
- Easily generalizable

Neural Architecture search (NAS)

- Reinforcement learning to optimize network architectures
- Expensive on large dataset (ImageNet)
Introduce constraints

- Train on proxy dataset (CIFAR-10)
- Smaller = Reduced compute time

- Architecture complexity independent of network depth and image size
- Architecture cells have same structure but different weights

Constraints accelerate search speed on CIFAR-10 by a factor of 7x

Related Work

- Hyperparameter optimization
- Neural Fabrics : A “fabric” that embeds an exponentially large number of architectures
- DiffRNN: Gradient descent on the number of neurons
- MetaQNN: Build CNN via reinforcement learning
- DeepArchitecture: Develop tree-structured search spaces over network architectures and
hyperparameters
- Evolutionary algorithms: Not much success at large scale

- Search Space

- Much inspiration from LSTMs

- NAS: Use RNN trained via RL to generate neural networks
- Transfer learning

- Xie and Yuille: Transfer learning between CIFAR-10 and ImageNet but performance is
normally below state-of-the-art

Related Work

- Meta-learning
- Much attention in recent years but most approaches have not been scaled to large problems
like ImageNet
- Recent work by Wichrowska et. al. has had some success in learning an optimizer for
ImageNet classification that achieved notable improvements
- Modular Structure of Convolutional Cell
- VGG
- Inception
- ResNet
- Xception/MobileNet

Proposed Method

e Use a search method to find appropriate CNN architecture on a dataset.
e The main contribution of the paper is to define the search space.
e Motivation of search space definition:
e Most state-of-the-art networks repeat a certain pattern of architecture.

The search space

Define predetermined set of operations / architectures.
Compose and combine them to form a “convolutional cell”.

Stack the “convolutional cells”, each having different weights.

Two types of convolutional cells:

O

O

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

Ix1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

Normal Cell: Same feature dimension as input
Reduction Cell: Reduce the feature size by 2.

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

Softmax

=zl
K=zl

xN

CIFAR10
Architecture

Softmax

xN

Reduction Cell

==l
==zl

xN

ImageNet
Architecture

Search Method

e Used Network Architecture Search (NAS) (Zoph and Le, ICLR 2017).

(Sample architecture A]

L with probability p J l

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

T (Scale gradient of p by Fn

Lto update the controllerJ

Search Method

softmax

controller
hidden layer

layer

Select one Select second Select operation for Select operation for Select method to
hidden state N hidden state first hidden state [second hidden state [combine hidden state
A \ A \ A \ 7 \ A
\ \ \ \
> > > s ——
\ \ \
| 7| A |
7 \ 7 \ 7 v 7 \
-~ ~ -~ ~ -~
"
repeat B times

hidden state set

hidden state set

hidden state set

|
\

.
=
.

!
\/

blocks

Experiments

In this section, we describe our experiments with the
method described above to learn convolutional cells. In
summary, all architecture searches are performed using the
CIFAR-10 classification task [31]]. The controller RNN was
trained using Proximal Policy Optimization (PPO) [51] by
employing a global workqueue system for generating a pool
of child networks controlled by the RNN. In our experi-
ments, the pool of workers in the workqueue consisted of
500 GPUs.

The result of this search process over 4 days yields sev-
eral candidate convolutional cells. We note that this search
procedure is almost 7 X faster than previous approaches [[71]]
that took 28 daysﬂ Additionally, we demonstrate below that
the resulting architecture is superior in accuracy.

We call the three

networks constructed from the best three searches NASNet-
A, NASNet-B and NASNet-C.

We demonstrate the utility of the convolutional cells by
employing this learned architecture on CIFAR-10 and a
family of ImageNet classification tasks. The latter family of
tasks is explored across a few orders of magnitude in com-
putational budget. After having learned the convolutional
cells, several hyper-parameters may be explored to build a
final network for a given task: (1) the number of cell repeats
N and (2) the number of filters in the initial convolutional
cell. After selecting the number of initial filters, we use a
common heuristic to double the number of filters whenever
the stride is 2. Finally, we define a simple notation, e.g.,
4 @ 64, to indicate these two parameters in all networks,
where 4 and 64 indicate the number of cell repeats and the
number of filters in the penultimate layer of the network,
respectively.

"Best Architecture": NASNet-A

b 7 0

iden avg| |avg sep | | sep
tity 3x3 | |3x3 5x5| | 3x3

Normal Cell Reduction Cell

Figure 4. Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified with CIFAR-10 . The input (white) is the
hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting
branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a
combination operation (green). Note that colors correspond to operations in Figure|3)]

CIFAR-10 Classification Benchmark

model | depth # params | error rate (%)
DenseNet (L = 40,k = 12) [26] 40 1.0M 5.24
DenseNet(L = 100, k = 12) [26] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [26] 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) [26] 190 25.6M 3.46
Shake-Shake 26 2x32d [18]] 26 2.9M 3.55 .
Shake-Shake 26 2x96d [[18] 2% 262M 2.86 | previous best
Shake-Shake 26 2x96d + cutout [[12]] 26 26.2M 2.56
NAS v3 [71] 39 7.1M 4.47
NAS v3 [71]] 39 37.4M 3.65
NASNet-A (6 @ 768) - 3.3M 341
NASNet-A (6 @ 768) + cutout - 3.3M 2.65
NASNet-A (7 @ 2304) - 27.6M 2.97
NASNet-A (7 @ 2304) + cutout - 27.6M 2.40 new best
NASNet-B (4 @ 1152) - 2.6M 373
NASNet-C (4 @ 640) - 3. 1M 3.59

Table 1. Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10. All results for NASNet are the mean
accuracy across 5 runs.

ImageNet Classification Benchmark

NASNet-A beats all other models with fewer parameters! Learned on CIFAR-10
Model imaé\e\\{ize | # parameters Mult-Adds | Top 1 Acc. (%) Top 5 Age. (%)
Inception V2 [29] 224 2\ 11.2M 1.94B 74.8 92.2
NASNet-A (5 @ 1538) 2992 10.9M 2.35B 78.6 4.2
Inception V3 [60] 299 %299 3.8M 5.72B 78.8 94.4
Xception [9] 299 %299 228 M 8.38B 79.0 94.5
Inception ResNet V2 [58]] 299 %299 55.8M 13.2B 80.1 95.1
NASNet-A (7 @ 1920) 299 <299 22.6 M 4.93B 80.8 95.3
ResNeXt-101 (64 x 4d) [68] 320x320 3.6M 31.5B 80.9 95.6
PolyNet [69] 331x331 2M 34.7B 81.3 95.8
DPN-131 [8] 320%320 N 32.0B 81.5 95.8
SENet [25] 320x320 145.8M 42.3B 82.7 96.2
NASNet-A (6 @ 4032) 331x331 88.9M 23.8B 82.7 96.2

/
Table 2. Performance of architecture search and other published state-of-the-art models on ImageNet classification. Mult-Adds indicate
the number of composite multiply-accumulate operations for a single image. Note that the composite multiple-accumulate operations are
calculated for the image size reported in the table. Model size for [23] calculated from open-source implementation.

ImageNet Classification Benchmark

NASNet-A beats all other models with fewer-ish operations!

Model | # parameters__ Mult-Adds | Top 1 Acc. (%) Top 5 Acc. (%)

Inception V1 [39] 6.6M 1,448 M 69.8 T 89.9
MobileNet-224 [24] 42M 569 M 70.6 89.5
ShuffleNet (2x) [70) ~ 5M 24M 70.9 89.8
NASNet-A (4 @ 1056) 53M 564 M 74.0 91.6
NASNet-B (4 @ 1536) 5.3M 488 M 728 91.3
NASNet-C (3 @ 960) 4.9M 558 M 72.5 91.0

Table 3. Performance on ImageNet classification on a subset of models operating in a constrained computational setting, i.e., < 1.5B
multiply-accumulate operations per image. All models use 224x224 images. T indicates top-1 accuracy not reported in [59] but from
open-source implementation.

COCO Object Detection Benchmark

NASNet-A beats all other models

Model resolution | mAP (mini-val) mAP (test-dev)
MobileNet-224 [24] 600 x 600 19.8% -

600 x 600 24.5%" .
NASNet-A (4 @ 1056) 600 x 600 29.6 % -
ResNet-101-FPN [36] 800 (short side) - 36.2%
Inception-ResNet-v2 (G-RMI) (28] 600 x 600 35.7% 35.6%
Inception-ResNet-v2 (TDM) [52]] 600 x 1000 37.3% 36.8%
NASNet-A (6 @ 4032) 800 x 800 41.3% 40.7%
NASNet-A (6 @ 4032) 1200 x 1200 43.2% 43.1%
ResNet-101-FPN (RetinaNet) [37]] 800 (short side) | - 39.1%

Table 4. Object detection performance on COCO on mini-val and test-dev datasets across a variety of image featurizations. All results
are with the Faster-RCNN object detection framework [47] from a single crop of an image. Top rows highlight mobile-optimized image
featurizations, while bottom rows indicate computationally heavy image featurizations geared towards achieving best results. All mini-val
results employ the same 8K subset of validation images in [28]].

Discussion: Pros & Cons

High impact paper - less of grad
student/researcher descent

Thorough evaluations and comparisons to
appropriate baselines

Architecture transferability to other tasks
Inspired many impactful future works

Cons/Questions

Block composition is manually determined
Still expensive
Faster than NAS...but at what cost?

o Assume a block can be learned on

smaller dataset

o Restricted operations
Gap between RL and Random is small
(although section 4.4 address this)
Why does ScheduledDropPath work better?

Discussion: Future work

Efficient Neural Architecture Search via Parameter Sharing (16 hrs on 1080ti)

e Key Idea: Don’t retrain weights during the search - share them!
e 2.89% test error vs 2.65% test error

N2N LEARNING: NETWORK TO NETWORK COMPRESSION VIA POLICY GRADIENT
REINFORCEMENT LEARNING (? hrs 4 Titan X)

e RNN to select: Stage 1) layers to remove Stage 2) channels to remove

ResNet-34 Teacher 92.05% 21.28M — —
Student (Stagel) 9354% 3.87TM +1.49% 5.5x
Student (Stage1+Stage2) 92.35% 2.07TM +0.30% 10.2x

Discussion: Future work

AMC: AutoML for Model Compression and Acceleration on Mobile Devices (fastest is
1 hr on Titan Xp)

NAS NT N2N AMC

optimize for accuracy v v v
optimize for latency

simple, non-RNN controller

fast exploration with few GPUs v v
continuous action space

T LT L

ResNet-50

07 Parame ,
(93.53%) AMC (Rparam) 60% Params 93.64 93.55

Thank you

