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Introduction

Scalable method to optimize CNNs
- Relatively low compute
- Easily generalizable

Neural Architecture search (NAS)

- Reinforcement learning to optimize network architectures
- Expensive on large dataset (ImageNet)
Introduce constraints

- Train on proxy dataset (CIFAR-10)
- Smaller = Reduced compute time

- Architecture complexity independent of network depth and image size
- Architecture cells have same structure but different weights

Constraints accelerate search speed on CIFAR-10 by a factor of 7x



Related Work

- Hyperparameter optimization
- Neural Fabrics : A “fabric” that embeds an exponentially large number of architectures
- DiffRNN: Gradient descent on the number of neurons
- MetaQNN: Build CNN via reinforcement learning
- DeepArchitecture: Develop tree-structured search spaces over network architectures and
hyperparameters
- Evolutionary algorithms: Not much success at large scale

- Search Space

- Much inspiration from LSTMs

- NAS: Use RNN trained via RL to generate neural networks
- Transfer learning

- Xie and Yuille: Transfer learning between CIFAR-10 and ImageNet but performance is
normally below state-of-the-art



Related Work

- Meta-learning
- Much attention in recent years but most approaches have not been scaled to large problems
like ImageNet
- Recent work by Wichrowska et. al. has had some success in learning an optimizer for
ImageNet classification that achieved notable improvements
- Modular Structure of Convolutional Cell
- VGG
- Inception
-  ResNet
- Xception/MobileNet



Proposed Method

e Use a search method to find appropriate CNN architecture on a dataset.
e The main contribution of the paper is to define the search space.
e Motivation of search space definition:
e Most state-of-the-art networks repeat a certain pattern of architecture.



The search space

Define predetermined set of operations / architectures.
Compose and combine them to form a “convolutional cell”.

Stack the “convolutional cells”, each having different weights.

Two types of convolutional cells:
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Search Method

e Used Network Architecture Search (NAS) (Zoph and Le, ICLR 2017).
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Experiments

In this section, we describe our experiments with the
method described above to learn convolutional cells. In
summary, all architecture searches are performed using the
CIFAR-10 classification task [31]]. The controller RNN was
trained using Proximal Policy Optimization (PPO) [51] by
employing a global workqueue system for generating a pool
of child networks controlled by the RNN. In our experi-
ments, the pool of workers in the workqueue consisted of
500 GPUs.

The result of this search process over 4 days yields sev-
eral candidate convolutional cells. We note that this search
procedure is almost 7 X faster than previous approaches [[71]]
that took 28 daysﬂ Additionally, we demonstrate below that
the resulting architecture is superior in accuracy.

We call the three

networks constructed from the best three searches NASNet-
A, NASNet-B and NASNet-C.

We demonstrate the utility of the convolutional cells by
employing this learned architecture on CIFAR-10 and a
family of ImageNet classification tasks. The latter family of
tasks is explored across a few orders of magnitude in com-
putational budget. After having learned the convolutional
cells, several hyper-parameters may be explored to build a
final network for a given task: (1) the number of cell repeats
N and (2) the number of filters in the initial convolutional
cell. After selecting the number of initial filters, we use a
common heuristic to double the number of filters whenever
the stride is 2. Finally, we define a simple notation, e.g.,
4 @ 64, to indicate these two parameters in all networks,
where 4 and 64 indicate the number of cell repeats and the
number of filters in the penultimate layer of the network,
respectively.




"Best Architecture": NASNet-A
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Figure 4. Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified with CIFAR-10 . The input (white) is the
hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting
branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a
combination operation (green). Note that colors correspond to operations in Figure|3)]



CIFAR-10 Classification Benchmark

model | depth  # params | error rate (%)
DenseNet (L = 40,k = 12) [26] 40 1.0M 5.24
DenseNet(L = 100, k = 12) [26] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [26] 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) [26] 190 25.6M 3.46
Shake-Shake 26 2x32d [18]] 26 2.9M 3.55 .
Shake-Shake 26 2x96d [[18] 2%  262M 2.86 | previous best
Shake-Shake 26 2x96d + cutout [[12]] 26 26.2M 2.56
NAS v3 [71] 39 7.1M 4.47
NAS v3 [71]] 39 37.4M 3.65
NASNet-A (6 @ 768) - 3.3M 341
NASNet-A (6 @ 768) + cutout - 3.3M 2.65
NASNet-A (7 @ 2304) - 27.6M 2.97
NASNet-A (7 @ 2304) + cutout - 27.6M 2.40 new best
NASNet-B (4 @ 1152) - 2.6M 373
NASNet-C (4 @ 640) - 3. 1M 3.59

Table 1. Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10. All results for NASNet are the mean
accuracy across 5 runs.



ImageNet Classification Benchmark

NASNet-A beats all other models with fewer parameters! Learned on CIFAR-10
Model imaé\e\\{ize | # parameters Mult-Adds | Top 1 Acc. (%) Top 5 Age. (%)
Inception V2 [29] 224 2\ 11.2M 1.94B 74.8 92.2
NASNet-A (5 @ 1538) 2992 10.9M 2.35B 78.6 4.2
Inception V3 [60] 299 %299 3.8M 5.72B 78.8 94.4
Xception [9] 299 %299 228 M 8.38B 79.0 94.5
Inception ResNet V2 [58]] 299 %299 55.8M 13.2B 80.1 95.1
NASNet-A (7 @ 1920) 299 <299 22.6 M 4.93B 80.8 95.3
ResNeXt-101 (64 x 4d) [68]  320x320 3.6M 31.5B 80.9 95.6
PolyNet [69] 331x331 2M 34.7B 81.3 95.8
DPN-131 [8] 320%320 N 32.0B 81.5 95.8
SENet [25] 320x320 145.8M 42.3B 82.7 96.2
NASNet-A (6 @ 4032) 331x331 88.9M 23.8B 82.7 96.2

/
Table 2. Performance of architecture search and other published state-of-the-art models on ImageNet classification. Mult-Adds indicate
the number of composite multiply-accumulate operations for a single image. Note that the composite multiple-accumulate operations are
calculated for the image size reported in the table. Model size for [23] calculated from open-source implementation.



ImageNet Classification Benchmark

NASNet-A beats all other models with fewer-ish operations!

Model | # parameters__ Mult-Adds | Top 1 Acc. (%) Top 5 Acc. (%)

Inception V1 [39] 6.6M 1,448 M 69.8 T 89.9
MobileNet-224 [24] 42M 569 M 70.6 89.5
ShuffleNet (2x) [70) ~ 5M 24M 70.9 89.8
NASNet-A (4 @ 1056) 53M 564 M 74.0 91.6
NASNet-B (4 @ 1536) 5.3M 488 M 728 91.3
NASNet-C (3 @ 960) 4.9M 558 M 72.5 91.0

Table 3. Performance on ImageNet classification on a subset of models operating in a constrained computational setting, i.e., < 1.5B
multiply-accumulate operations per image. All models use 224x224 images. T indicates top-1 accuracy not reported in [59] but from
open-source implementation.



COCO Object Detection Benchmark

NASNet-A beats all other models

Model resolution | mAP (mini-val) mAP (test-dev)
MobileNet-224 [24] 600 x 600 19.8% -

600 x 600 24.5%" .
NASNet-A (4 @ 1056) 600 x 600 29.6 % -
ResNet-101-FPN [36] 800 (short side) - 36.2%
Inception-ResNet-v2 (G-RMI) (28] 600 x 600 35.7% 35.6%
Inception-ResNet-v2 (TDM) [52]] 600 x 1000 37.3% 36.8%
NASNet-A (6 @ 4032) 800 x 800 41.3% 40.7%
NASNet-A (6 @ 4032) 1200 x 1200 43.2% 43.1%
ResNet-101-FPN (RetinaNet) [37]] 800 (short side) | - 39.1%

Table 4. Object detection performance on COCO on mini-val and test-dev datasets across a variety of image featurizations. All results
are with the Faster-RCNN object detection framework [47] from a single crop of an image. Top rows highlight mobile-optimized image
featurizations, while bottom rows indicate computationally heavy image featurizations geared towards achieving best results. All mini-val
results employ the same 8K subset of validation images in [28]].



Discussion: Pros & Cons

High impact paper - less of grad
student/researcher descent

Thorough evaluations and comparisons to
appropriate baselines

Architecture transferability to other tasks
Inspired many impactful future works

Cons/Questions

Block composition is manually determined
Still expensive
Faster than NAS...but at what cost?

o Assume a block can be learned on

smaller dataset

o Restricted operations
Gap between RL and Random is small
(although section 4.4 address this)
Why does ScheduledDropPath work better?



Discussion: Future work

Efficient Neural Architecture Search via Parameter Sharing (16 hrs on 1080ti)

e Key Idea: Don’t retrain weights during the search - share them!
e 2.89% test error vs 2.65% test error

N2N LEARNING: NETWORK TO NETWORK COMPRESSION VIA POLICY GRADIENT
REINFORCEMENT LEARNING (? hrs 4 Titan X)

e RNN to select: Stage 1) layers to remove Stage 2) channels to remove

ResNet-34  Teacher 92.05% 21.28M — —
Student (Stagel) 9354% 3.87TM  +1.49% 5.5x
Student (Stage1+Stage2) 92.35% 2.07TM  +0.30% 10.2x




Discussion: Future work

AMC: AutoML for Model Compression and Acceleration on Mobile Devices (fastest is
1 hr on Titan Xp)

NAS NT N2N AMC

optimize for accuracy v v v
optimize for latency

simple, non-RNN controller

fast exploration with few GPUs v v
continuous action space

T LT L

ResNet-50

07 Parame ,
(93.53%) AMC (Rparam) 60% Params 93.64 93.55
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