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Background

e |n machine translation, conventional
approach is to use a seg2seq
encoder-decoder network.

e Sequential data modelled using RNNs or
LSTMs, as seen in class.

However, this has limitations!

Difficult to take into account long term
dependencies:

e Makes the model hard to parallelize.
(inefficient)

e Efficiency and performance drops for
longer sentences (sequences).
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“Classic” attention - was shown in lecture

e Neural Machine translation by Jointly learning to align and translate

Attention intuition: Think of it as a weighted sum of inputs, where the weights are
learnt through a simple neural network.

e When decoding, we take a weighted sum of all the encoder inputs so far, and
pass it into the decoder hidden state.

e This lets us selectively use past state information, and helps utilize long term
dependencies.



More on the “classic”

Classic Encoder-Decoder:
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attention approach

Classic attention:
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Notice, we have c_i now:
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Equations from Neural Machine Translation by Jointly learning to align and

translate, (Bahdanau et al), ICLR 2015



“Classic” attention - diagram from lecture 9 slides
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Diagram from lecture 9 slides CPSC 5328, originally from
https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/




Previous work, non-attention based

e Previous work has tried to address the challenges mentioned previously
regarding long-term dependencies.

e Bytenet (Kalchbrenner et al, 2017)

e Conv32S (Gehring et al, 2017)

Both of these models use CNN’s for encoding and decoding, eliminating the need
for recurrence (RNN, LSTM)

e Enables parallelization
e Intuitively, similar to attention
e Still hard to take into account long term dependencies



Transformer Intuition

e In classic attention, during the decoding process, we weight all the encoder
hidden states. Can this be extended? Turns out it can.

e We can eliminate recurrence altogether.

e In seq2seq, we “unrolled” a recurrent network. When we started to decode,
the “last hidden state of the encoder” included information about the
long-term dependencies in the sequence. (this was passed through the
recurrent encoder)

e Now, instead of using recurrent hidden states, we use attention. The crucial
difference is that each output prediction word is its own “prediction problem”



More intuition

e Didn’t the old network also use attention alongside recurrence?
e Yes - but this paper introduces a more sophisticated attention mechanism -
multi-headed attention: the idea that we have multiple passes of attention,

and then combine them.

Andreas will now talk about these in detail



Architecture - The Transformer
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e Similar to the encoder-decoder

network (SUTSKEVER, llya; VINYALS, Oriol; LE, Quoc
V. Sequence to sequence learning with neural networks. In:
Advances in neural information processing systems. 2014. p.
3104-3112)

e Encoder-decoder is a mapping:
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The transformer (Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural
Information Processing Systems. 2017.
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 9 oy )



Scaled Dot-Product Attention

Mask (opt.)
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Vaswani, Ashish, et al. "Attention is all you need." Advances in
Neural Information Processing Systems. 2017.
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We choose the dimensions q, k, and v. | is
the number of elements to attend to.



Dot product attention

Attention(Q, K,V) = softmax (QTI]:) |4

e Weighted sum over elements to
attend to

e Scaling to counteract saturating the
softmax function, leading to small
gradients.

Multi-Head Attention

MultiHead(Q, K,V) = Concat(heady, . .., head), )W?

head; = Attention(QWS ,WEK,VWY)

Projection into smaller

dimensions instead of the d,,,,3e; = 512
dimensional output from previous
layers

We can consider these as
intermediate embeddings

They choose h = 8 parallel

attention layers

k=0 = dpoder /h = 64



Positional encoding

e Sum the input/output encoding and
positional encoding
®  PE(,2) = sin(pos/ 100002/ @modet )

PE 5 i11) = cos(pos /10000 4mode )
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The transformer (Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural
Information Processing Systems. 2017.)



Why self-attention

nis sequence length, d is representation dimension, ¥ convolution kernel size, and

T is size of neighborhood in restricted attention

Layers Type Complexity per Sequential Operations
Layer

Self-Attention O(n?d) 0(1)

Recurrent O(nd?) O(n)

Convolutional O(knd?) 0(1)

Self-Attention O(rnd) o)

(restricted)




Why self-attention

e Computational complexity (when sequence length is smaller than

representation dimension)
o Restricted self-attention

e Parallelization
e Long term dependencies
e Interpretability



Experiments

e The model was tested on the WMT english to german and english to french

translation tasks.
o English to German consists of 4.5M sentence pairs
o English to French consists of 36M sentence pairs

e The model was also tested on english constituency parsing.
o 40K sequences from the WSJ portion of the Penn Treebank dataset.



WMT EtoG and EtoF

e BLEU score used as a metric.
e Sentence to sentence translation.
e Uses label smoothing to get better BLEU scores at the cost of perplexity

Sample sentences: “| declare resumed the session of the European Parliament
adjourned on Friday 17 December 1999, and | would like once again to wish you a
happy new year in the hope that you enjoyed a pleasant festive period.”

Target Translation: “Je déclare reprise la session du Parlement européen qui avait
été interrompue le vendredi 17 décembre dernier et je vous renouvelle tous mes
VUX en espérant que vous avez passé de bonnes vacances.”



English Constituency Parsing

e Was tested to see how the Santence (5)
architecture performs on other
domains I |

e F1 score used to measure houn €H) Verb:Phrase.CVE)
performance (EVALB) Fahe

e Unclear from the paper how the | |
parse tree is generated vern (¥ Nounr (KD



Ablations/Model Variations

e FEvaluated on WMT EtoG

train | PPL  BLEU params

e Paper tries out various N wg  dnr b d dv Parop €@ gop | (ev) (dev) x108
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Vaswani et al. 2017



Results: WMT

e < BLEU Training Cost (FLOPs)
2 EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 2375

Deep-Att + PosUnk [39] 39.2 1.0.10%
GNMT + RL [38] 24 .6 39.92 23710 14102
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.10%
MoE [32] 26.03 40.56 2010 1.2+10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8:10%2° 1.1.10%
ConvS2S Ensemble [9] 26.36 41.29 T2 A0 1.2.-10%
Transformer (base model) 273 38.1 3310
Transformer (big) 284 41.8 2.3.10'*

Vaswani et al. 2017



Results: Constituency Parsing

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] | WSJ only, discriminative 88.3
Petrov et al. (2006) [29] WSJ only, discriminative 90.4
Zhu et al. (2013) [40] WSIJ only, discriminative 90.4
Dyer et al. (2016) [8] WSJ only, discriminative 91.7
Transformer (4 layers) WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 91.3
Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 92.1
Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7
Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 93.3

Vaswani et al. 2017
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