
AutoAugment:
Learning Augmentation

Policies from Data
Authors: Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V.

Le

Maryam Tayyab, Gorisha Agarwal, Wen Ruochen

Outline
● Introduction
● Motivation
● Goal
● Related Work
● AutoAugment -- detailed overview
● Experiments and results
● Discussion
● Strengths
● Weaknesses
● Extension

Introduction
● What is data augmentation?

Introduction
● What is data augmentation?

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

Introduction
● What is data augmentation?

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

Introduction
● What is data augmentation?

● Purpose of data augmentation

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

Introduction
● What is data augmentation?

● Purpose of data augmentation

● Network Architectures can have Invariance baked in them

○ CNN

○ Physics Models

Motivation
● Data augmentation is very hand engineered

Motivation
● Data augmentation is very hand engineered

● Augmentation techniques by Krizhevsky et al, (2012)

Data Augmentation:

**Adapted from Leonid Sigal 532S-W2 (2018)

Data Augmentation

● Predictions are averaged

**Adapted from Leonid Sigal 532S-W2 (2018)

Data Augmentation

**Adapted from Leonid Sigal 532S-W2 (2018)

Motivation
● Data augmentation is very hand engineered

● Translations & Horizontal flipping, RGB Intensities (Krizhevsky et al, 2012)

● Augmentation techniques do not inherently translate

● Need for automatically learned optimal data augmentation approach

Goal

Automate the process of finding an effective data
augmentation policy, that is transferable across datasets

and architectures

Related Work
● Inspired by recent advances in the realm of AutoML using Reinforcement
Learning e.g. NASNet

Neural Architecture Search (NAS)

Fig: Commonly used blocks for an image recognition network
Zoph et al. (2018)

GANs for Data Augmentations
● Class dependant Vs. Class independent data generation

● Style based Augmentations

● Using GANs to train augmentation neural net

Smart Augmentation
● Learning to merge two or more samples in one class.

Lemly et al. (2017)

Smart Augmentation
● Use network A to learn the best data augmentation to train network B.
● End-to-end training
● Error propagated back to network A

Lemly et al. (2017)

Deep Learned Augmentation

Output from a style transfer network

Peres et al. (2017)

Peres et al. (2017)

Deep Learned Augmentation

Output from a style transfer network

Output from a style transfer network

Peres et al. (2017)

Domain-Specific Transformations
● Augmentative transformations are sequences of incremental black-box

operations

Domain-Specific Transformations
● Augmentative transformations are sequences of incremental black-box

operations

Ratner et al. (2017)

Domain-Specific Transformations
● Learn a generative sequence model that produces realistic, class-preserving

augmentations

Ratner et al. (2017)

Domain-Specific Transformations
● Learn a generative sequence model that produces realistic, class-preserving

augmentations

Ratner et al. (2017)

AutoAugment
● Discrete search problem.
● 5 sub-policies, 2 image operations.
● 2 hyperparameters: probability, magnitude.

Search Space
● Operations from PIL.
● 2 other augmentation techniques: Cutout, SamplePairing.
● Discretize range of magnitudes (uniform spacing).
● Discretize the probability (uniform spacing).
● Each sub-policy:
● Goal: 5 sub-policies to increase diversity.
● Total possibilities:

Search Algorithm
● RL to search for a policy; similar to NASNet.
● 2 components:

Search Algorithm
● RL to search for a policy; similar to NASNet.
● 2 components:
● Controller: RNN

○ Predicts a decision produced by softmax; 30 softmax predictions.
○ The decision is fed to controller’s next step as input.

Image taken from https://arxiv.org/abs/1707.07012

Search Algorithm
● RL to search for a policy; similar to NASNet.

● 2 components:

● Controller: RNN
○ Predicts a decision produced by softmax over decision.

○ The decision is fed to controller’s next step as input.

● Training: PPO algorithm
○ “Child model” is trained with the current data augmentation policy.

○ For each image in the mini-batch, one of the 5 sub-policies chosen

randomly to augment the image.

○ Validation set to measure generalization of child model.

○ Accuracy → reward signal and the weights of RNN controller are updated

using PPO.

Proximal Policy Optimization
● For the vanilla policy gradients:

● But.. high variance.
● TRPO methods:

● But.. if r(!) is very high? KL divergence constraints.
● Constraints are difficult to model, modify objective function? PPO!

PPO Algorithm

Source: https://arxiv.org/pdf/1707.06347.pdf

Search Algorithm
● The controller samples about 15,000 policies for each dataset.
● Concatenate 5 best policies into 1; 25 sub-policies.
● This final policy is used to train the models for each dataset.

Experiments

Experiments
Benchmark Data Augmentation techniques:

● Baseline pre-processing:
○ Standardizing data, horizontal flips with 0.5 probability, zero padding and
random crops.

Experiments
Benchmark Data Augmentation Techniques:

● Baseline pre-processing:
○ Standardizing data, horizontal flips with 0.5 probability, zero padding and
random crops.

Image taken from http://nealan.vettivelu.com/wp-content/uploads/2017/07/Report-1.pdf

Experiments
Benchmark Data Augmentation Techniques:

● Baseline pre-processing:
○ Standardizing data, horizontal flips with 0.5 probability, zero padding and
random crops.

● Cutout:
○ Randomly masking 16 x 16 regions in input during training.

Image taken from
https://arxiv.org/pdf/1708.04552.pdf

Experiments
● Dataset: CIFAR-10 and CIFAR-100

● Best policy search on reduced CIFAR-10 -- 4k random samples.
● Train child model on Wide-ResNet-40-2, 120 epochs.
● Small Wide-ResNet for computational efficiency.

#Training images #Test images Resolution #Classes

CIFAR-10 50k 10k 32 x 32 10

CIFAR-100 50k 10k 32 x 32 100

Experiments
● Concatenate 5 best policies.
● Train final models on CIFAR-10 and CIFAR-100 using the best policy.
● Process of AutoAugment:

○ Baseline methods
○ AutoAugment Policy
○ Cutout with 16 x 16 pixels.

Results
CIFAR-10:

● Mostly color-based transformations.

Results
CIFAR-10:

● Mostly color-based transformations.
● Test error:

Results
● Error of 1.48% with ShakeDrop model, 0.65% better than state-of-the-art.
● Replicated results match the previously reported; except one.

Results
● Evaluated on recently prepared CIFAR-10 test set.

Model Error Rate Error Rate relative to original test set

Shake-Shake(26 2x64d) + Cutout 7.0% 4.1%

PyramidNet + ShakeDrop 7.7% 4.6%

PyramidNet + ShakeDrop + AutoAugment 4.4% 2.9%

Experiments and Results
CIFAR-100:

● Train on same AutoAugment policy found on reduced CIFAR-10.
● Test Error:

● Results are replicated, matched.

Experiments and Results
Reduced CIFAR-10:

● Same dataset used for training as was used for finding the best policy.
● Test Error:

● The improvement is more significant on reduced dataset than full dataset.

Experiments
Dataset: SVHN

SVHN Dataset
The image is taken from
http://ufldl.stanford.edu/housenumbers/

Experiments:
Dataset: SVHN

● AutoAugment on reduced SVHN to find best policy.
● The policies picked are different from the transformations in CIFAR-10.

#Training images #Test images Resolution #Classes

SVHN 73,257 + 531,131 26032 32 x 32 10

Reduced SVHN 1k -- 32 x 32 10

Experiments
SVHN:

● Concatenate the best 5 policies into 1.
● For full training, Wide-ResNet architecture using core and the extra data.
● Validation set to tune the hyperparameters.
● Trained Shake-Shake model for 160 epochs.
● Baseline, cutout - 20 x 20 pixels.
● AutoAugment:

○ Baseline pre-processing
○ AutoAugment policy
○ Cutout

Results

● Results replicated on Wide-Resnet replicated and matched.
● No previous results reported on Shake-Shake model for SVHN.

Experiment
ImageNet

Baseline augmentation: standard Inception-style pre-processing

➔ scaling pixel values to [-1,1]

➔ horizontal flips with 50% probability

➔ random distortions of colors

Data Augmentation Model Epoch Learning Rate

Reduced
ImageNet

6000
samples with
120 classes

Baseline
augmentation

Wide-
ResNet 40-2

200 0.1 with weight decay of 1e-4

Full
ImageNet

Full Baseline
augmentation

+
policies learned

ResNet 50
ResNet 200

270 1.6 with weight decay by 10-
fold at epochs 90, 180, 240

Results

● The best policies found on imagenet are similar to those found on CIFAR-10

○ Color-based transformations

● One difference: a geometric transformation, Rotate, is commonly used

Results
Validation set Top-1 / Top-5 error rates (%) on ImageNet

Experiment
Fine Grained Visual Classification Datasets

Oxford 102 Flowers Caltech-101 Oxford-IIIT Pets

FGVC Aircraft Stanford Cars

Small set of training examples with
Large amount of classes

Experiment
Fine Grained Visual Classification Datasets

● Use the same policy learned on ImageNet

Dataset Image size model epoch Learning rate

5 FGVC datasets 448*448 InceptionV4 1000 Cosine learning
rate decay

Result
Fine Grained Visual Classification Datasets

● The policies found on imagenet improve the generalization accuracy of all 5

FGVCD datasets significantly

● The lowest error rate achieved on Stanford Cars dataset although training

from the scratch

Discussion

Discussion
How many iterations are required before the model can fully benefit from all of the

sub-policies?

Discussion
Requirement for stochastic application of sub-policies to be effective

● Search place

○ Each sub-policy needs a certain number of epochs

○ Child model with 5 sub-policies: 80 - 100 epochs

■ 120 epochs are chosen

● The full model is trained for longer

○ 270 epochs for ResNet-50 on ImageNet

○ 1800 epochs for Shake-shake on CIFAR-10

Discussion
How would the number of sub-policies affect the generalization accuracy?

Discussion
How would the number of sub-policies affect the generalization accuracy?

● Hypothesis:

○ number of sub-policies → diversity → generalization accuracy

● Test:

○ randomly select sub-policies sets from 500 good sub-policies

○ train the Wide-ResNet-28-10 model for 200 epochs on CIFAR-10

Discussion
How would the number of sub-policies affect the generalization accuracy?

● Hypothesis:

○ number of sub-policies → diversity → generalization accuracy

● Test:

Strength and Weakness
Strength

★ Automatically learned data-
augmentation

★ Transferability across datasets and
architectures

Strength and Weakness
Strength

★ Automatically learned data-
augmentation

★ Transferability across datasets and
architectures

Weakness

❖ Computationally expensive and time

consuming

❖ Not use a different discrete search

algorithm

Extension

Algorithm and architectures in Neural architecture search(NAS)

Extension
“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

population

evolution

Initialized with models with random architectures

Extension
“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

population

evolution

parent

Model with the highest validation fitness
at each cycle

Extension
“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

population

evolution

parent

child

A new architecture with mutation from parent

Extension
“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

population

evolution

parent

child

mutation

Extension
“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

population

evolution

parent

child

Remove the oldest model

mutation

Extension
“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

Extension
“Efficient Neural Architecture Search via Parameter Sharing”(2018)

Efficient Neural Architecture Search

● forcing all child models to share weights

● eschew training each child model from scratch to convergence.

Extension
“Efficient Neural Architecture Search via Parameter Sharing”(2018)

Efficient Neural Architecture Search

