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Introduction

e \What is data augmentation?

e Purpose of data augmentation
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Introduction

e What is data augmentation?

e Purpose of data augmentation

e Network Architectures can have Invariance baked in them
o CNN
o Physics Models



Motivation

e Data augmentation is very hand engineered



Motivation

e Data augmentation is very hand engineered

e Augmentation techniques by Krizhevsky et al, (2012)



Data Augmentation:

Horizontal flips Random crops & scales Color Jitter

**Adapted from Leonid Sigal 532S-W2 (2018) * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Training: sample random crops and scales

Testing: average a fix set of crops

e Predictions are averaged

* fi Leonid Sigal 532S-W2 (201
Adapted from Leonid Sigal 5328 (2018) * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Random perturbations in
contrast and brightness

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
**Adapted from Leonid Sigal 532S-W2 (2018)



Motivation

e Data augmentation is very hand engineered

e Translations & Horizontal flipping, RGB Intensities ( Krizhevsky et al, 2012)
e Augmentation techniques do not inherently translate

e Need for automatically learned optimal data augmentation approach



Goal

Automate the process of finding an effective data
augmentation policy, that is transferable across datasets
and architectures



Related Work

e |Inspired by recent advances in the realm of AutoML using Reinforcement
Learning e.g. NASNet



Neural Architecture Search (NAS)

A 4

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

to update the controller
1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

Fig: Commonly used blocks for an image recognition network
Zoph et al. (2018)



GANSs for Data Augmentations

e C(lass dependant Vs. Class independent data generation
e Style based Augmentations

e Using GANs to train augmentation neural net



Smart Augmentation

e |earning to merge two or more samples in one class.

Lemly et al. (2017)



Smart Augmentation

e Use network A to learn the best data augmentation to train network B.
e End-to-end training
e Error propagated back to network A
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Deep Learned Augmentation

| Enhance | Cezanne | Monet | Ukiyoe | Vangogh | Winter |

Output from a style transfer network

Peres et al. (2017)



Peres et al. (2017)
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Deep Learned Augmentation

| Enhance | Cezanne | Monet | Ukiyoe | Vangogh | Winter |
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Output from a style transfer network

First Source Second Source Augmented Image
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Output from a style transfer network
Peres et al. (2017)



Domain-Specific Transformations

e Augmentative transformations are sequences of incremental black-box
operations



Domain-Specific Transformations

e Augmentative transformations are sequences of incremental black-box
operations
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Domain-Specific Transformations

e Learn a generative sequence model that produces realistic, class-preserving
augmentations

TF sequences

Unlabeled o h |laws| R [
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(1) Adversarial training of generator

Ratner et al. (2017)



Domain-Specific Transformations

e Learn a generative sequence model that produces realistic, class-preserving
augmentations
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(1) Adversarial training of generator (2) End model training with data
augmentation

Ratner et al. (2017)



AutoAugment

e Discrete search problem.
e 5 sub-policies, 2 image operations.
e 2 hyperparameters: probability, magnitude.



Search Space

Operations from PIL.

2 other augmentation techniques: Cutout, SamplePairing.
Discretize range of magnitudes (uniform spacing).
Discretize the probability (uniform spacing).

Each sub-policy: (16 x 10 x 11)?

Goal: 5 sub-policies to increase diversity.
Total possibilities: (16 x 10 x 11)!% ~ 2.9 x 10



Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy 4  Sub-policy 5

Batch 1

Batch 2

Batch 3

ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 0.9, 4 Invert, 0.9, 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 0.4, 8 AutoContrast, 0.8, 3 Equalize, 0.6,3 AutoContrast, 0.7, 3




Operation Name Description Range of
magnitudes

ShearX(Y) Shear the image along the horizontal (vertical) axis with rate  [-0.3,0.3]
magnitude.

TranslateX(Y) Translate the image in the horizontal (vertical) direction by mag-  [-150,150]
nitude number of pixels.

Rotate Rotate the image magnitude degrees. [-30,30]

AutoContrast Maximize the the image contrast, by making the darkest pixel
black and lightest pixel white.

Invert Invert the pixels of the image.

Equalize Equalize the image histogram.

Solarize Invert all pixels above a threshold value of magnitude. [0,256]

Posterize Reduce the number of bits for each pixel to magnitude bits. [4.8]

Contrast Control the contrast of the image. A magnitude=0 gives a gray  [0.1,1.9]
image, whereas magnitude=1 gives the original image.

Color Adjust the color balance of the image, in a manner similar to  [0.1,1.9]
the controls on a colour TV set. A magnitude=0 gives a black &
white image, whereas magnitude=1 gives the original image.

Brightness Adjust the brightness of the image. A magnitude=0 gives ablack  [0.1,1.9]
image, whereas magnitude=1 gives the original image.

Sharpness Adjust the sharpness of the image. A magnitude=0 gives a  [0.1,1.9]
blurred image, whereas magnitude=1 gives the original image.

Cutout [25, 73] Set a random square patch of side-length magnitude pixels to  [0,60]
gray.

Sample Pairing [51,74] Linearly add the image with another image (selected at ran- [0, 0.4]

dom from the same mini-batch) with weight magnitude, without
changing the label.

Table 7: List of all image transformations that the controller could choose from during the search.
Additionally, the values of magnitude that can be predicted by the controller during the search for
each operation at shown in the third column (for image size 331x331). Some transformations do not
use the magnitude information (e.g. Invert and Equalize).



Search Algorithm

e RL to search for a policy; similar to NASNet.
e 2 components:



Search Algorithm

e RL to search for a policy; similar to NASNet.

e 2 components:

e Controller: RNN

o Predicts a decision produced by softmax; 30 softmax predictions.
o The decision is fed to controller's next step as input.
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Search Algorithm

RL to search for a policy; similar to NASNet.
2 components:
Controller: RNN

©)

Predicts a decision produced by softmax over decision.

o The decision is fed to controller's next step as input.
Training: PPO algorithm

©)

©)

“Child model” is trained with the current data augmentation policy.

For each image in the mini-batch, one of the 5 sub-policies chosen
randomly to augment the image.

Validation set to measure generalization of child model.

Accuracy — reward signal and the weights of RNN controller are updated

using PPO.



Proximal Policy Optimization

e For the vanilla policy gradients:
LP%(9) = E, {log o (ay | st){t]

e But.. high variance.
e TRPO methods:

YTf)(('It | .s't)

CPI(p\ _ T il —m (o i
LCPI(g) = E, l%d ™ Ht)At] — E, [rt(H)At].

e But.. if r(9) is very high? KL divergence constraints.
e Constraints are difficult to model, modify objective function? PPO!

LCUIP(g) = E, [lllill('l't(ﬁ)fit' clip(r(#),1 — e, 1+ F)'it)]



PPO Algorithm

Algorithm 1 PPO, Actor-Critic Style

for iteration=1.2.... do
for actor=1.2..... N do
Run policy mp,_,, in environment for 7' tlmesteps

Compute advantage estimates Ar. ... Ap
end for
Optimize surrogate L wrt #, with ' epochs and minibatch size M < NT
ola < 0
end for

Source: https://arxiv.org/pdf/1707.06347 .pdf



Search Algorithm

e The controller samples about 15,000 policies for each dataset.
e Concatenate 5 best policies into 1; 25 sub-policies.
e This final policy is used to train the models for each dataset.



Experiments



Experiments

Benchmark Data Augmentation techniques:

e Baseline pre-processing:
o Standardizing data, horizontal flips with 0.5 probability, zero padding and
random crops.



Experiments

Benchmark Data Augmentation Techniques:

e Baseline pre-processing:
o Standardizing data, horizontal flips with 0.5 probability, zero padding and

random crops.
1
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Image taken from http://nealan.vettivelu.com/wp-content/uploads/2017/07/Report-1.pdf
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Experiments

Benchmark Data Augmentation Techniques:

e Baseline pre-processing:
o Standardizing data, horizontal flips with 0.5 probability, zero padding and
random crops.
e Cutout:
o Randomly masking 16 x 16 regions in input during training.



Figure 1: Cutout applied to images from the CIFAR-10
dataset.

Image taken from
https://arxiv.org/pdf/1708.04552.pdf



Experiments

e Dataset: CIFAR-10 and CIFAR-100

#Training images @ #Test images Resolution #Classes
CIFAR-10 50k 10k 32 x 32 10
CIFAR-100 50k 10k 32 x 32 100

e Best policy search on reduced CIFAR-10 -- 4k random samples.
e Train child model on Wide-ResNet-40-2, 120 epochs.
e Small Wide-ResNet for computational efficiency.




Experiments

e Concatenate 5 best policies.
e Train final models on CIFAR-10 and CIFAR-100 using the best policy.
e Process of AutoAugment:

o Baseline methods

o AutoAugment Policy

o Cutout with 16 x 16 pixels.



Results

CIFAR-10:

e Mostly color-based transformations.



Operation 1 Operation 2
Sub-policy 0 (Invert,0.1,7) (Contrast,0.2,6)
Sub-policy 1 (Rotate,0.7.2) (TranslateX,0.3.9)
Sub-policy 2 (Sharpness,0.8,1) (Sharpness,0.9.3)
Sub-policy 3 (ShearY.,0.5.8) (TranslateY,0.7,9)
Sub-policy 4 (AutoContrast,0.5,8) (Equalize,0.9,2)
Sub-policy 5 (ShearY.,0.2,7) (Posterize,0.3,7)
Sub-policy 6 (Color,0.4.3) (Brightness,0.6.,7)
Sub-policy 7 (Sharpness,0.3,9) (Brightness,0.7.9)
Sub-policy 8 (Equalize,0.6.5) (Equalize,0.5,1)
Sub-policy 9 (Contrast,0.6,7) (Sharpness,0.6,5)
Sub-policy 10 (Color,0.7,7) (TranslateX,0.5.8)
Sub-policy 11 (Equalize,0.3.7) (AutoContrast,0.4.8)
Sub-policy 12 (TranslateY.,0.4,3) (Sharpness,0.2.,6)
Sub-policy 13 (Brightness,0.9,6) (Color,0.2,8)
Sub-policy 14  (Solarize,0.5,2) (Invert,0.0,3)
Sub-policy 15  (Equalize,0.2,0) (AutoContrast,0.6,0)
Sub-policy 16  (Equalize,0.2.8) (Equalize,0.6,4)
Sub-policy 17  (Color,0.9.9) (Equalize,0.6,6)
Sub-policy 18  (AutoContrast,0.8,4) (Solarize,0.2,8)
Sub-policy 19  (Brightness,0.1,3) (Color,0.7,0)
Sub-policy 20  (Solarize,0.4,5) (AutoContrast,0.9,3)
Sub-policy 21  (TranslateY.,0.9,9) (TranslateY,0.7,9)
Sub-policy 22 (AutoContrast,0.9,2)  (Solarize,0.8,3)
Sub-policy 23 (Equalize,0.8.8) (Invert,0.1,3)

Sub-policy 24

(TranslateY,0.7.9)

(AutoContrast,0.9,1)

Table 8: AutoAugment policy found on reduced CIFAR-10.



Results

CIFAR-10:

e Mostly color-based transformations.
e Test error:

Model Baseline  Cutout [25] AutoAugment
Wide-ResNet-28-10 [57] 3.87 3.08 2.68
Shake-Shake (26 2x32d) [59] 3.55 3.02 2.47
Shake-Shake (26 2x96d) [59] 2.86 2.56 1.99
Shake-Shake (26 2x112d) [59] 2.82 2.57 1.89
AmoebaNet-B (6,128) [21] 2.98 2.13 1.75

PyramidNet+ShakeDrop [60] 2.67 2.31 1.48




Results

e Error of 1.48% with ShakeDrop model, 0.65% better than state-of-the-art.
e Replicated results match the previously reported; except one.

Model Baseline  Cutout [25] AutoAugment
Wide-ResNet-28-10 [57] 3.87 3.08 2.68
Shake-Shake (26 2x32d) [59] 3.55 3.02 2.47
Shake-Shake (26 2x96d) [59] 2.86 2.56 1.99
Shake-Shake (26 2x112d) [59] 2.82 2.57 1.89
AmoebaNet-B (6,128) [21] 2.98 2.13 1.75

PyramidNet+ShakeDrop [60] 2.67 2.31 1.48




Results

e Evaluated on recently prepared CIFAR-10 test set.

Model Error Rate Error Rate relative to original test set
Shake-Shake(26 2x64d) + Cutout 7.0% 4.1%
PyramidNet + ShakeDrop 7.7% 4.6%

PyramidNet + ShakeDrop + AutoAugment 4.4% 2.9%



Experiments and Results

CIFAR-100:

e Train on same AutoAugment policy found on reduced CIFAR-10.

e Test Error;

Model Baseline  Cutout [25] AutoAugment
Wide-ResNet-28-10 [57] 18.80 18.41
Shake-Shake (26 2x96d) [59] 17.05 16.00
PyramidNet+ShakeDrop [60] 13.99 12.19

e Results are replicated, matched.



Experiments and Results

Reduced CIFAR-10:

e Same dataset used for training as was used for finding the best policy.
e TestError:

Model Baseline  Cutout [25] AutoAugment
Wide-ResNet-28-10 [57] 18.84 16.50 14.13
Shake-Shake (26 2x96d) [59] 17.05 13.40 10.04

e The improvement is more significant on reduced dataset than full dataset.



Experiments

Dataset: SVHN



SVHN Dataset

The image is taken from
http://ufldl.stanford.edu/housenumbers/



Experiments:

Dataset: SVHN

#Training images | #Test images Resolution #Classes
SVHN 73,257 + 531,131 26032 32x32 10
Reduced SVHN 1k 32x32 10

e AutoAugment on reduced SVHN to find best policy.
e The policies picked are different from the transformations in CIFAR-10.




Operation 1 Operation 2
Sub-policy 0 (ShearX,0.9.4) (Invert,0.2,3)
Sub-policy 1 (ShearY,0.9.,8) (Invert,0.7.5)
Sub-policy 2 (Equalize,0.6,5) (Solarize,0.6,6)
Sub-policy 3 (Invert,0.9.,3) (Equalize,0.6,3)
Sub-policy 4 (Equalize,0.6,1) (Rotate,0.9,3)
Sub-policy 5 (ShearX,0.9.4) (AutoContrast,0.8,3)
Sub-policy 6 (ShearY,0.9.,8) (Invert,0.4.5)
Sub-policy 7 (ShearY,0.9.,5) (Solarize,0.2,6)
Sub-policy 8 (Invert,0.9.,6) (AutoContrast,0.8,1)
Sub-policy 9 (Equalize,0.6,3) (Rotate,0.9,3)
Sub-policy 10 (ShearX,0.9.4) (Solarize,0.3,3)
Sub-policy 11 (ShearY,0.8,8) (Invert,0.7.4)
Sub-policy 12 (Equalize,0.9,5) (TranslateY,0.6,6)
Sub-policy 13 (Invert,0.9.4) (Equalize,0.6,7)
Sub-policy 14  (Contrast,0.3,3)  (Rotate,0.8.4)
Sub-policy 15  (Invert,0.8,5) (Translate Y,0.0,2)
Sub-policy 16  (ShearY,0.7,6) (Solarize,0.4.8)
Sub-policy 17  (Invert,0.6,4) (Rotate,0.8,4)
Sub-policy 18  (ShearY,0.3,7) (TranslateX,0.9.3)
Sub-policy 19  (ShearX,0.1,6) (Invert,0.6,5)
Sub-policy 20  (Solarize,0.7,2)  (TranslateY,0.6.7)
Sub-policy 21  (ShearY,0.8.4) (Invert,0.8.8)
Sub-policy 22 (ShearX,0.7,9) (Translate Y,0.8.3)
Sub-policy 23 (ShearY,0.8,5) (AutoContrast,0.7.3)

Sub-policy 24

(ShearX,0.7.,2)

(Invert,0.1.,5)

Table 9: AutoAugment policy found on reduced SVHN.



Experiments

SVHN:

Concatenate the best 5 policies into 1.
For full training, Wide-ResNet architecture using core and the extra data.
Validation set to tune the hyperparameters.
Trained Shake-Shake model for 160 epochs.
Baseline, cutout - 20 x 20 pixels.
AutoAugment:
o Baseline pre-processing
o AutoAugment policy
=t



Results

Model Reduced SVHN Dataset SVHN Dataset
Baseline Cutout [25] AA | Baseline Cutout AA

Wide-ResNet-28-10 [57] 13.21 32.5 8.15 1.50 1.30 1.07

Shake-Shake (26 2x96d) [59] 12.32 24.22 5.92 1.40 1.20 1.02

e Results replicated on Wide-Resnet replicated and matched.
e No previous results reported on Shake-Shake model for SVHN.



Experiment

ImageNet

Data Augmentation Model
Reduced 6000 Baseline Wide-
ImageNet | samples with augmentation ResNet 40-2

120 classes
Full Full Baseline ResNet 50
ImageNet augmentation ResNet 200
+

policies learned

Baseline augmentation: standard Inception-style pre-processing

- scaling pixel values to [-1,1]
= horizontal flips with 50% probability

=> random distortions of colors

Epoch
200

270

Learning Rate

0.1 with weight decay of 1e-4

1.6 with weight decay by 10-
fold at epochs 90, 180, 240



Results

e The best policies found on imagenet are similar to those found on CIFAR-10

o Color-based transformations

e One difference: a geometric transformation, Rotate, is commonly used
Sub-policy 5

.fr

- - |
G

Equalize, 0.4,4  Solarize, 0.6,3  Posterize, 0.8, 5 Rotate, 0.2, 3 Equalize, 0.6, 8
Rotate, 0.8, 8 Equalize, 0.6, 7  Equalize, 1.0,2  Solarize, 0.6, 8  Posterize, 0.4, 6

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy 4

Batch 1

Batch 2

Batch 3




Results

Validation set Top-1 / Top-5 error rates (%) on ImageNet

Model Baseline Inception Pre-processing [14] AutoAugment
ResNet-50 [15] 24.70/7.80 23.69/6.92 22.377/6.18
ResNet-200 [15] - 21.52/5.85 20.00/4.99
AmoebaNet-B (6,190) [21] - 17.80/3.97 17.25/3.78

AmoebaNet-C (6,228) [21] - 16.90/3.90 16.46 / 3.52




Experiment

Fine Grained Visual Classification Datasets

Oxford 102 Flowers

FGVC Aircraft Stanford Cars

Small set of training examples with
Large amount of classes



Experiment

Fine Grained Visual Classification Datasets

e Use the same policy learned on ImageNet

Dataset Image size model epoch Learning rate

5 FGVC datasets 448*448 InceptionV4 1000 Cosine learning
rate decay



Result

Fine Grained Visual Classification Datasets

e The policies found on imagenet improve the generalization accuracy of all 5
FGVCD datasets significantly

e The lowest error rate achieved on Stanford Cars dataset although training

from the scratch

Dataset Train Size  Classes  Inception Pre-processing [14]  AutoAugment
Oxford 102 Flowers [69] 2,040 102 6.69 4.64
Caltech-101 [70] 3,060 102 19.35 13.07
Oxford-IIIT Pets [71] 3,680 37 13.46 11.02
FGVC Aircraft [29] 6,667 100 9.09 7.33

Stanford Cars [28] 8,144 196 6.35 5.19




Discussion



Discussion

How many iterations are required before the model can fully benefit from all of the

sub-policies?



Discussion

Requirement for stochastic application of sub-policies to be effective

e Search place
o Each sub-policy needs a certain number of epochs
o Child model with 5 sub-policies: 80 - 100 epochs
m 120 epochs are chosen
e The full model is trained for longer
o 270 epochs for ResNet-50 on ImageNet
o 1800 epochs for Shake-shake on CIFAR-10



Discussion

How would the number of sub-policies affect the generalization accuracy?



Discussion

How would the number of sub-policies affect the generalization accuracy?

e Hypothesis:
o number of sub-policies — diversity — generalization accuracy
o Test:
o randomly select sub-policies sets from 500 good sub-policies
o train the Wide-ResNet-28-10 model for 200 epochs on CIFAR-10



Discussion

How would the number of sub-policies affect the generalization accuracy?

e Hypothesis:

o number of sub-policies — diversity — generalization accuracy

e Test: 3.4

Validation Error
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Number of sub-policies



Strength and Weakness

Strength

* Automatically learned data-
augmentation

* Transferability across datasets and
architectures



Strength and Weakness

Strength Weakness
* Automatically learned data- < Computationally expensive and time
augmentation .
consuming
* Transferability across datasets and % Not use a different discrete search

architectures :
algorithm



Extension

Algorithm and architectures in Neural architecture search(NAS)



Extension

“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

Initialized with models with random architectures

population

evolution



Extension

“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

parent

Model with the highest validation fitness population

at each cycle

evolution



Extension

“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

parent

population

. evolution
child

A new architecture with mutation from parent



Extension

“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

parent mutation
population
evolution é

child




Extension

“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm

parent

population

Remove the oldest model

. evolution
child

mutation



Extension

“Regularized Evolution for Image Classifier Architecture Search”(2018)

Regularized(aging) Evolution Algorithm
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Extension

“Efficient Neural Architecture Search via Parameter Sharing”(2018)

Efficient Neural Architecture Search

e forcing all child models to share weights

e eschew training each child model from scratch to convergence.




Extension

“Efficient Neural Architecture Search via Parameter Sharing”(2018)

Efficient Neural Architecture Search

Times Params Error

Method GPUs (days) (million) (%)
Hierarchical NAS (Liu et al., 2018) 200 1.5 61.3 3.63
Micro NAS + Q-Learning (Zhong et al., 2018) 32 3 — 3.60
Progressive NAS (Liu et al., 2017) 100 1.5 3.2 3.63
NASNet-A (Zoph et al., 2018) 450 3-4 3.3 3.41
NASNet-A + CutOut (Zoph et al., 2018) 450 3-4 3.3 2.65
ENAS + micro search space 1 0.45 4.6 3.54

ENAS + micro search space + CutOut 1 0.45 4.6 2.89
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