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Applications
- Assist visually impaired 

users
- Analyze surveillance data
- Interact naturally with AI 

assistants (incl. robots)
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Questioner
- Sees only a caption, image pool
- Asks questions, guesses image

Answerer
- Sees the image
- Answers questions

Reward based on error/distance metric of 
prediction to ground truth

Reinforcement Learning!
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Challenges:

- Q-BOT: Interpret language, identify possible 
images, ask discerning questions

- A-BOT: Model of understanding, answer with 
precision and concision  

Importance of Language:
- Interpretability
- Prevent cheating
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Contributions
First instance of goal-driven training for visual question answering and dialog 
agents

Experimental results:
1) Automatic emergence of grounded language + communication protocol
2) RL fine-tuned bots > supervised bots
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Cooperative Image Guessing Game - Agents

A questioner bot (Q-bot)
Primed with a 1-sentence description i.e. “Two zebras are walking 
around their pen at the zoo”
Does not see the image

An answerer bot (A-bot)
Sees the image
Sees the caption



Cooperative Image Guessing Game - Turn and 
Episode

Any people in the 
shot?

No, there aren’t any.Are they facing each 
other?

They aren’t.…. ….



Cooperative Image Guessing Game - Objective

  



State-Action Space
Action

Discrete token vocabulary V  common between both agents, i.e. English tokens

State
Each agent has a different state due to information asymmetry
Q-Bot: state at round t is the caption and dialog history so far

A-Bot: state at round t includes the image as well



Policy 



Environment and Reward

Common reward for both agents:

Image as the environment

Total Reward:



Policy Networks



Q-Bot



A-Bot
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Based on REINFORCE algorithm:

- Update policy parameters                    
- in response to experienced rewards
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Joint Training with Policy Gradients
Based on REINFORCE algorithm:

- Update policy parameters                    
- in response to experienced rewards

- Estimate the expectation with sample averages
- Sample a question from Q-BOT
- Sample its answer from A-BOT
- Compute the scalar reward for this round
- Multiply that scalar reward to gradient of log-probability of this exchange
- Propagate backward to compute gradients w.r.t. all parameters 
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- A-BOT needs to ground language in visual perception to answer questions
- Q-BOT must learn to predict plausible image representations
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Challenges to succeed in the image guessing:
- Learning a common language

- Understand the difference between words for color and words for poses.
- develop mappings between symbols and image representations

- How it looks likes when someone is standing up in a picture.
- A-BOT needs to ground language in visual perception to answer questions
- Q-BOT must learn to predict plausible image representations

These challenges need to be handled in an end-to-end manner
- From a distant reward function

A sanity check is needed to see if it is really possible!



Emergence of Grounded Dialog

A simple setup:
- Images with 4 shapes, 4 colors, 4 styles

- For a total of 64 unique images
- A-BOT has perfect perception
- Q-BOT is to deduce two attributes of image 

- In a particular order
Vocabulary:

- Vocabulary size is crucial
- For a non-trivial ‘non-cheating’ behavior

- If for the A-BOT vocabulary VA , 
- A-BOT conveys the entire image in 

- a single token
- E.g. 1 = (red, square,filled)

- VA={1,2,3,4}
- VQ={X,Y,Z}



Emergence of Grounded Dialog

Policy Learning:
- The state-action space is discrete and small
- Both bots are fully specified tables of Q-values

- Q: [state, action] -> future reward estimate
- Learn the policies by Q-learning with Monte Carlo estimation over 10k episodes

- Updates are done alternately where one bot is frozen while the other is updated
- Ensure enough exploration 

- by randomly choosing actions not aligned with the learned policy
Results:

- The two invent their own communication protocol
- Q-BOT

- X -> color, Y -> shape, Z -> style
- A-BOT

- 1 -> purple, 2 -> green, 3 -> blue, 4 -> red
- 1 -> triangle, 2 -> square, 3 -> circle, 4 -> star



Experiments
‘Sanity Check’ Experiment

Model Experiments on VisDial*
- Supervised Learning pretrained model (no RL)
- Frozen-Q or -A: Fix Q- or A-bot to SL-pretrained train active agent (and regression network) with RL
- Freeze regression network and train both agents with RL
- Agents and Regression trained with RL (after SL-pretrain)

*VisDial is dataset: 680k QA-pairs (10 QA-pairs for each of 68k COCO  images)



Experiment Evaluation

Guessing Game
- Image retrieval experiment based on test split of VisDial
- Agents presented with image + automatically generated caption
- Look at distance between Q-Bot representations and all images in test set

Emulating Human Dialogs
- Log-likelihood of A-Bot answer v. 100 candidate responses of VisDial

Human Study
- Human interpretability shows that  interpretability of bots’ dialogs and image-discriminative language 

are both successful and best with the RL-full-QAf model



Discussion and Future Work
Strengths:

- Use of RL makes less labeling necessary
- Simplicity of model’s parts to build a complex network

Weaknesses:

- Network forgetfulness e.g. asking the same question over and over again
- Network inconsistency e.g. different answers for same/similar questions
- Use of vector evaluation with Euclidean distance seems simplistic (?)
- Could try to incorporate attention for both the image and question/answer



Thank You!


