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Motivation

1) What is visual dialog?
2) Why is it important? Visual Question Answering
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— Answer

Appllcatlons
Assist visually impaired
users
- Analyze surveillance data
- Interact naturally with Al
assistants (incl. robots)
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Cooperative image guessing game
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Cooperative image guessing game

Questioner
- Sees only a caption, image pool
- Asks questions, guesses image

Answerer
- Sees the image
- Answers questions

Reward based on error/distance metric of
prediction to ground truth

Reinforcement Learning!

Questioner
18 (
(0}
i )
Answerer

3
)
"
~

OOQ Q1: Any people in the shot? }

‘ Al:No, therearen't any. m

-

=

(c)
Oog Q10: Are they facing each other? ]

°

[ A10: They aren't.




Problem Statement

Questioner
Answerer

Challenges: B
Two zebra are walking around their pen at the zoo.

@ Q Q1: Any people in the shot? J

Al:No, therearentany
(fo.1,-1,02..,05] ]

D
(c)
OOQ Q10: Are they facing each other? ]

( [-0501,07,.,1] ) ‘ A10: They aren't E




Problem Statement

Challenges:

- Q-BOT: Interpret language, identify possible

images, ask discerning questions
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Challenges:
- Q-BOT: Interpret language, identify possible Two zebra are walking around their pen at the zoo.

images, ask discerning questions
- A-BOT: Model of understanding, answer with
precision and concision
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Contributions

First instance of goal-driven training for visual question answering and dialog
agents



Contributions

First instance of goal-driven training for visual question answering and dialog
agents

Experimental results:
1) Automatic emergence of grounded language + communication protocol
2) RL fine-tuned bots > supervised bots
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Visual Dialog

A cat drinking water out of a coffee mug

What color is the mug?

White and red

5L

Are there any pictures on it?

0.
S

No, something is there can't tell what it is

(o

Is the mug and cat on a table?

Yes, they are

Are there other items on the table?

®
©

Yes, magazines, books, toaster and basket, and a plate

Demo: http.//demo.visualdialog.org/



Related Work

Vision and Language
- Visual Dialog [Das et al., 2017]
- GuessWhat?! Visual object discovery through multi-modal dialogue [de Vries et al., 2017]

Visual Dialog

White and red

No, something is there can't tell what it is

[®
{0

Yes, they are

Questioner

Is it a vase? Yes
Is it partially visible? No
Is it in the left corner? No
Is it the turquoise and purple one? Yes

Demo: http.//demo.visualdialog.org/
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Supervised learning

- Visual Dialog [Das et al., 2017]
GuessWhat?! Visual object discovery through multi-modal dialogue [de Vries et al., 2017]

20 Questions and Lewis Signaling Game

t, —— M t; m1 t; —— m1 t; mi
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t ma
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ma —— Qg

Figure 1.1: Lewis’s original example: the sexton’s and Revere’s admissible

contingency plans.
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Cooperative Image Guessing Game - Agents

A questioner bot (Q-bot)

Primed with a 1-sentence description i.e. “Two zebras are walking
around their pen at the zoo” o

Does not see the image grem—
iQ-BOTi

An answerer bot (A-bot) o

Sees the image [
©®

Sees the caption m
‘ o

IA-IOTI'L

Questioner

Answerer




Cooperative Image Guessing Game - Turn and
Episode

Questioner




Cooperative Image Guessing Game - Objective

Answerer

Questioner
(
§ o
— )

y - vector embedding of the image
$9t - VGG-16 features
L(y, y9') - Euclidean distance



State-Action Space

Action
Discrete token vocabulary V common between both agents, i.e. English tokens

State
Each agent has a different state due to information asymmetry
Q-Bot: state at round t is the caption and dialog history so far

Q _
St — [Ca q1,a1,.--,4t—-1, a't—l]
A-Bot: state at round t includes the image as well
A

St = [[707(]17@17"'7Qt—17at_17qt]



Policy

Stochastic policies m, (qt|s?; 6p) and ma(as|sf; 6,) learned by two separate deep neural networks
parametrized by 6, and 6,

Feature Regression network for Q-bot:
Yi = f(S?»(lt» Qt; 9f) = f(StQ+1? ef)

Goal is to learn 6, 6,4, and 6



Environment and Reward

Image as the environment

Common reward for both agents:

Tt( S? 7(Qtva't7yt)) =/ (:&t—laygt) —k (@t’ygt>
Mg s o o e ol

n DG VA
state action distance at t-1 distance at ¢

Total Reward:

4 3
Zrt (St ) qtaatayt))) :f(:g07ygt) — 4 (:&T’ygt)j

=1 W
overall improvement due to dialog




Policy Networks

Rounds of Dialog

Are there any animals?
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Decoder 3
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Encoder Embedding ay
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Feature
Regression
-BOT Network
& J
Q
St Yt

Reward |
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Q-Bot

Fact Encoder: LSTM
Final hidden state F? € R512

(qe a;) - FtQ

State/History Encoder: LSTM
(B E?) > 8¢

Question Decoder: LSTM
StQ—1 e’

Feature Regression Network
Fully connected layer

9= (s
0r

6o: combined LSTM parameter

Rounds of Dialog

,‘Q
954
B ' 2
J Question Are there any animals”
Decoder "'WI ------------------------------
b ‘ . ¢ qt
| B e by [ar]. Yes, there are two elephants.
L i —] 2 ay
Feature
> Regression
= Network
Q-BOT P
Reward
5@ Qt_[ [0.1,-2,0,..,057] }—‘ i oL



A-Bot

Question Encoder: LSTM
Final hidden state Q# € R52

Yy FyS

A
q: — Q¢ :
______ Are there any animals? Question
Fact Encoder: LSTM qt Encoder
i i A 512
Elnalhggenstatel £ B ___Yes, there are two elephants. __| e
(CIt: at) o FtA a’t Decoder
b 5
mbedding

State/History Encoder: LSTM
A

((}’:Qiquéq)'---n(}’: qu'Ftéﬂ)_’St /
Reward l
R sy

Answer Decoder: LSTM
S - a,

6,4: combined LSTM parameters



Joint Training with Policy Gradients

Based on REINFORCE algorithm:

- Update policy parameters (6, 64,0)
- in response to experlenced rewards
- The objective is to maximize the expected reward summed over all episodes

max J(04,0q,0,)

04.00.0,

T
J(QA,QQ, — Z e St ) Qtaa‘tvyt))
t=1

7TQ7TA



Joint Training with Policy Gradients

Based on REINFORCE algorithm:

- Update policy parameters (6, 64,0)
- in response to experienced rewards
- The objective is to maximize the expected reward summed over all episodes

T
Z Tt(StQ,(Qt,atayt))]

t=1

J(9A7 9Q> 99) = K

TQ,TA

- This is considering the entire dialog as a single RL episode
- Does not differentiate between individual good or bad exchanges

J(04,00,0,) = E [m(s?,(qt,auyt))}

TQ,TA



Joint Training with Policy Gradients

Based on REINFORCE algorithm:

- Update policy parameters (6, 64,0)
- in response to experienced rewards
- The objective is to maximize the expected reward

J(04,00,0,) = E [rt(s?,(qt,at,yt))}

TQ,TA

TQ,TA

- v, [Z o (o) ma (erlsf) <->]

qt,at

Y o (o) Vo g (ah) (o)

qt,at

Vool = Voo | E_[n0)]



Joint Training with Policy Gradients

Based on REINFORCE algorithm:

- Update policy parameters (6, 64,0)
- in response to experienced rewards
- The objective is to maximize the expected reward

Wi = veQ[ E [n(-)]}

TQ,TA

= Vg [Z TQ (qﬂ'g?_l) ma (aclsi) re (.)]

qt,at

— Z Q <‘1t\3?_1> Vg, log g (thfS?q) TA (a't|824) re (+)

qt,at

= E {f't (+) Vog log mg (Qt‘sgq)}

TQ,TA



Joint Training with Policy Gradients

Based on REINFORCE algorithm:

- Update policy parameters (6, 64,0)
- in response to experienced rewards

Voo = E |1 (+) Vg log mg <Qt"5'?—l)}

TTQ,TA

- Estimate the expectation with sample averages

Sample a question from Q-BOT

Sample its answer from A-BOT

Compute the scalar reward for this round

Multiply that scalar reward to gradient of log-probability of this exchanae
Propagate backward to compute gradients w.r.t. all parameters 0q,0a.



Emergence of Grounded Dialog

Challenges to succeed in the image guessing:
- Learning a common language
- Understand the difference between words for color and words for poses.
- develop mappings between symbols and image representations
- How it looks likes when someone is standing up in a picture.
- A-BOT needs to ground language in visual perception to answer questions
- Q-BOT must learn to predict plausible image representations



Emergence of Grounded Dialog

Challenges to succeed in the image guessing:

- Learning a common language

- Understand the difference between words for color and words for poses.
develop mappings between symbols and image representations

- How it looks likes when someone is standing up in a picture.
A-BOT needs to ground language in visual perception to answer questions
Q-BOT must learn to predict plausible image representations

These challenges need to be handled in an end-to-end manner
- From a distant reward function

A sanity check is needed to see if it is really possible!



Emergence of Grounded Dialog

shape A [l @ %
A simple setup: color I:l |:| D []

- Images with 4 shapes, 4 colors, 4 styles
- ) For a total of 65 unique images g style @ V¢ O
- A-BOT has perfect perception Tasks
- Q-BOT is to deduce two attributes of image (color, shape), (shape, color),
- In a particular order (style, color), (color, style),
Vocabulary: (shape, style), (style, shape)

- Vocabulary size is crucial
- For a non-trivial ‘non-cheating’ behavior

- Iffor the A-BOT vocabulary V, ,|V4| > 64 Task Image

- A-BOT conveys the entire image in (color,shape) {purple, square, filled}
s :

- asingle token

- E.g. 1= (red, square,filled) . ; Q2: 7 : ;
g — ™ == G

- VQ={X,Y,Z} TR e——— |
(Predicted: (purple, square)




Emergence of Grounded Dialog

Policy Learning:
- The state-action space is discrete and small

- Both bots are fully specified tables of Q-values
- Q: [state, action] -> future reward estimate

Learn the policies by Q-learning with Monte Carlo estimation over 10k episodes

- Updates are done alternately where one bot is frozen while the other is updated
- Ensure enough exploration

- by randomly choosing actions not aligned with the learned policy

Results: 1.0 Reward vs # Iter

- The two invent their own communication protocol -
- Q-BOT ]

- X ->color, Y -> shape, Z -> style S 00f----- N ]
- A-BOT ::

- 1->purple, 2 -> green, 3 -> blue, 4 -> red 03

- 1 ->triangle, 2 -> square, 3 -> circle, 4 -> star R .

0 100 200 300 400



Experiments

‘Sanity Check’ Experiment

shape A . . * Task + (shat
color [ J[][1[] i (color, shape) TE:;:( s $ s 'As1t.y:e) 10 Reward vs # ter
Py : (o] S Q2Z A24 Poos
style . & O N sy’ Predicted: (iriangle, filled) ‘e
: ~ 7 : PO )
Tasks I - : Task: (style, color) ~ :&
(color, shape), (shape, color), Ll s | A Q1:7 A1 1 i
(style, color), (color, style), : [Predlcted: (purple, squm)] : Q2: X A2:1 ol
(shape, style), (style, shape) : : Predicted: (solid, purple) i 1007200 300 400

# Iter

(@) : (b) : © : (d)

Figure 3: Emergence of grounded dialog: (a) Each ‘image’ has three attributes, and there are six tasks for Q-BOT (ordered pairs of
attributes). (b) Both agents interact for two rounds followed by attribute pair prediction by Q-BOT. (c¢) Example 2-round dialog where
grounding emerges: color, shape, style have been encoded as X, Y, Z respectively. (d) Improvement in reward while policy learning.

Model Experiments on VisDial*
- Supervised Learning pretrained model (no RL)

- Frozen-Q or -A: Fix Q- or A-bot to SL-pretrained train active agent (and regression network) with RL
- Freeze regression network and train both agents with RL
- Agents and Regression trained with RL (after SL-pretrain)

*VisDial is dataset: 680k QA-pairs (10 QA-pairs for each of 68k COCO images)



Experiment Evaluation
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Dialog Round
(a) Guessing Game Evaluation. (b) Visual Dialog Answerer Evaluation.

Guessing Game
- Image retrieval experiment based on test split of VisDial
- Agents presented with image + automatically generated caption

- Look at distance between Q-Bot representations and all images in test set

Emulating Human Dialogs
- Log-likelihood of A-Bot answer v. 100 candidate responses of VisDial

Human Study
- Human interpretability shows that interpretability of bots’ dialogs and image-discriminative language
are both successful and best with the RL-full-QAf model



Discussion and Future Work

Strengths:

- Use of RL makes less labeling necessary
- Simplicity of model’s parts to build a complex network

Weaknesses:

Network forgetfulness e.g. asking the same question over and over again
Network inconsistency e.g. different answers for same/similar questions
Use of vector evaluation with Euclidean distance seems simplistic (?)
Could try to incorporate attention for both the image and question/answer



Thank You!



