2A Deep Compositional Question Answering With Neural Module Networks

GHAZAL SAHEBZAMANI, DELARAM BEHNAMI, PARDISS DANAEI, GOLARA JAVADI 19 MARCH 2019

Introduction

- Visual question answering based on neural module networks (NMNs)
- Understanding of both visual scenes and natural language

Acknowledgement

► PAPER 1

- Andreas J, Rohrbach M, Darrell T, Klein D. Neural module networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 39-48).
- Andreas J, Rohrbach M, Darrell T, Klein D. Learning to compose neural networks for question answering. 2016. PowerPoint Presentation.

PAPER 2

Wu Q, Teney D, Wang P, Shen C, Dick A, van den Hengel A. Visual question answering: A survey of methods and datasets. Computer Vision and Image Understanding. 2017 Oct 1;163:21-40.

PAPER 3

Hu R, Andreas J, Darrell T, Saenko K. Explainable neural computation via stack neural module networks. In Proceedings of the European Conference on Computer Vision (ECCV) 2018 (pp. 53-69). NMN: Assemble a network on the fly from a collection of jointly-learned modulesAnalyze question with semantic parserDetermine computational units based on the analysisGround the

- Neural networks representation
 - Represent question as bags of words
 - Represent question using a recurrent neural network
 - ► Train a simple classifier on the encoded question and image

Semantic Parsers

NMN: Assemble a network on the fly from a collection of jointly-learned modules

Common to initialize systems for vision tasks with a prefix of a network trained

proach

network on the fly from a collection of jointly-learned modules

- ► No single "best network" for all tasks
- Question answering is a highly-multitask learning setting

Ground the question on the image Represent images with visual features and attention Messages passed between modules may be raw image features, attentions,

- Ground the question on the image
 - Neural nets learn lexical groundings

Is there a red shape above a circle?

▶ Use a recurrent network (LSTM) to read the question for final answer

- Ground the question on the image
 - Neural nets learn lexical groundings

Is there a red shape above a cir<mark>cle?</mark>

Yes

▶ Use a recurrent network (LSTM) to read the question for final answer

each module has a set of parameters, and a Network layout predictor

Instantiate network based on network predictor

Neural Module Networks (NMNs)

- Model is a collection of modules
- Training datum
 - Natural language question
 - ► Image
 - Answer
- Classifier

VQA System

Compositional VQA with NMNs

Single-layer (1024)

What Are the Building Blocks of Questions in VQA?

1. The **attend** Module for Attention to Predicates

2. The **re-attend** Module for Relationships

3. The **combine** Module for Logical Operations

4. The **measure** Module

5. The classify Module

Training NMNs

Is there a red shape above a circle?

Training NMNs

- Learning parameters for individual module
- Supervised learning problem to maximize probability of output

VQA Dataset

What color is the necktie?

yellow

[Antol et al. 2015]

SHAPES Dataset - Novel

Experiment Results - VQA

	test-dev				test
	Yes/No	Number	Other	All	All
LSTM [2]	78.20	35.7	26.6	48.8	_
VIS+LSTM [2]	78.9	35.2	36.4	53.7	54.1
NMN	69.38	30.7	22.7	42.7	_
NMN+LSTM	77.7	37.2	39.3	54.8	55.1

What color is she wearing?

color wear

10

Experiment Results - SHAPES

- Size: number of modules needed to instantiate NMN
- NMN (easy): modified training set with no size-6 questions

	size 4	size 5	size 6	All
Majority	64.4	62.5	61.7	63.0
VIS+LSTM	71.9	62.5	61.7	65.3
NMN	89.7	92.4	85.2	90.6
NMN (easy)	97.7	91.1	89.7	90.8

Discussion

<pre>what color is the vase? classify[color](attend[vase])</pre>	<pre>is the bus full of passen- gers?</pre> measure[is](combine[and](attend[bus], attend[full])	<pre>is there a red shape above a circle?</pre> measure[is](combine[and](attend[red], re-attend[above](attend[circle])))	what material are the boxes made of?	is this a clock?	is a red shape blue?
green (green)	yes (yes)	no (no)	classify[material](attend[box])	<pre>measure[is](attend[clock])</pre>	<pre>measure[is](combine[and](attend[red], attend[blue]))</pre>
			leather (cardboard)	yes (no)	yes (no)

Pros:

- Combines advantages of:
 - Representation learning (like a neural net)
 - Compositionality (like a semantic parser)

Cons:

Limited to produce arbitrary forms

Pros:

- Combines advantages of:
 - Representation learning (like a neural net)
 - Compositionality (like a semantic parser)

Cons:

- Limited to produce arbitrary forms
- Structure selection

Pros:

- Combines advantages of:
 - Representation learning (like a neural net)
 - Compositionality (like a semantic parser)

Cons:

- Limited to produce arbitrary forms
- Structure selection
- Potential error in generated model

Pros:

- Combines advantages of:
 - Representation learning (like a neural net)
 - Compositionality (like a semantic parser)

Cons:

- Limited to produce arbitrary forms
- Structure selection
- Potential error in generated model
- End-2-End structure learning

Learning to Reason: End-to-End Module Networks for Visual Question Answering

Explainable Neural Computation via Stack Neural Module Networks

Answer visual questions

Ground referential expressions

Bibliography

- Andreas J, Rohrbach M, Darrell T, Klein D. Neural module networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 39-48).
- Andreas J, Rohrbach M, Darrell T, Klein D. Learning to compose neural networks for question answering. 2016. PowerPoint Presentation.
- Chen L, Tang S. Visual Question Answering. 2016. PowerPoint Presentation.
- Wu Q, Teney D, Wang P, Shen C, Dick A, van den Hengel A. Visual question answering: A survey of methods and datasets. Computer Vision and Image Understanding. 2017 Oct 1;163:21-40.
- Hu R, Andreas J, Darrell T, Saenko K. Explainable neural computation via stack neural module networks. In Proceedings of the European Conference on Computer Vision (ECCV) 2018 (pp. 53-69).

Thank You and Happy Spring