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Given n detected objects, a fully connected graph has n? edges.

Many of these edges are probably between unrelated objects.
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Contributions

e RePN

o Relation Proposal Network
e aGCN

o attentional Graph Convolutional Networks.
e SGGEN+

o Modified evaluation metric for scene graphs that gives more realistic results.

e Graph RCNN framework

o Generates scene graph for a given image.
o Provides node features for downstream tasks.
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Object Region Proposal

Given an image /, extract the following quantities with Faster-RCNN:

e Bounding boxes: Roc Rnx4 o classifier
e Feature vectors: Xoc Rnxd ”mmg
e Label distributions: Poc R*xIC] 2 o

proposals Y4 . /
A

Region Proposal Network

feature maps
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Relationship Proposal (RePN)

Learn a relatedness function:
(7, ;) = (P(p]), ¥ (p3)),i # j

e Binary classification:
o Score of relatedness: [0, 1]
o {edge, not_edge}

e Non-maximal suppression

o ktop-scored edges
o m edges with least overlaps with others.
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Conventional GCN

Recap on Graph Convolutional Network (GCN):

e Given a graph represented by:
o Feature matrix: Zin N x D, .
o Adjacency matrix: alpha in N x N.
o Dimension map: W

e Propagation rule:

L) _ (z(l) N Z OfijWZ(l)> ng_l) — O <WZ(l)ai)

i J
JEN (@)

e Interpretation:
o Representation of each node at the next layer is aggregated by the equally-weighted average
of its neighbours and itself.




Attentional GCN (aGCN)

aGCN: “.. eguaty-weighted average of its neighbours”

(I+1) (1) (1)
z; =0 |z + Z aijwzj
JEN(3)
Uij = ’LU;O'(Wa [zz‘(l)a Z](l)])

a; = softmax(u;),

Qi = 1 and aij = OV] §é N(Z)




Graph Formation
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Graph Labeling

“Two multi-class cross entropy losses are used for object classification and
predicate classification.”
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Metric: SGGen

The ground truth scene graph: <subject, relationship, object>

E.g.: <boy, wear, shirt>, <boy, use, helmet>, <boy, has, band> ...

helmet
SGGen counts one match when:

1. all three elements have been
correctly labeled

2. both object and subject nodes
have been properly localized (i.e.,
bounding box loU > 0.5).
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helmet

Problem of SGGen

It only counts exact matches.
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“A More Comprehensive Metric”: SGGen+

SGGen+ = C(O) + C(P) + C(T)
C(O): the number of object nodes correctly localized and recognized
C(P): the number of predicates correctly localized and recognized

C(T): the number of matched triples, which is SGGen
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Comparing of SGGen and SGGen+

Assign random incorrect labels to objects perturbing objects

Perturb Type  none w /o relationship w/ relationship both
Perturb Ratio 0% 20% 50% 100% 20% 50% 100% 20% 50% 100%
SGGen 100.0 100.0 100.0 100.0 54.1 22.1 0.0 62.2 24.2 0.0
SGGen+ 100.0 94.5 89.1 76.8 843 69.6 479 80.1 56.6 228

Table 1. Comparisons between SGGen and SGGen+ under different perturbations.

SGGen is completely insensitive to the perturbation of objects without relationships.
SGGen is overly sensitive to label errors on objects with relationships.

100% perturbation: the object localizations and relationships are still correct such that SGGen+

provides a non-zero score.
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Less robust to objects that are used in varied contexts (person), trading performance for small

objects that are used in relatively few contexts (racket).

Use P to learn relatedness between two boxes.

o Better solution:

m learn feature representation of a class s.t. closer labels are closer in feature space.
m e.g. D(car, wheel) < D(car, noodles)
m Use this distance as a score instead.

The choice of the new metric might be biased toward their model.

Choosing m for remaining object pairs is not clear, and depends on the image.

Only top 150 classes and top 50 relations; real world has more labels.

Use similarity instead of count, e.g. Similarity(boy, man) = 0.8
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