Graph R-CNN for Scene Graph Generation

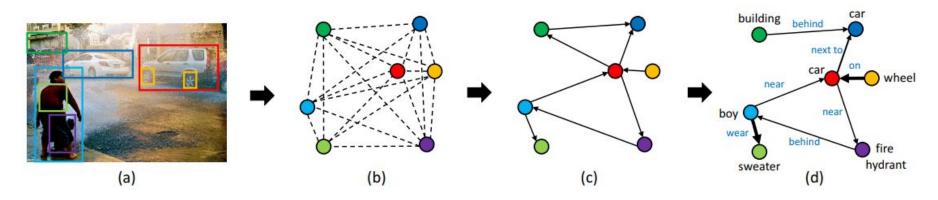
Keegan Lensink, Xiang Liu, Zicong (Alex) Fan

THE UNIVERSITY OF BRITISH COLUMBIA

- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussion

- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussions

Introduction


 Scene graphs form a structured representation of the image.

- Difficult to generate from a given image.

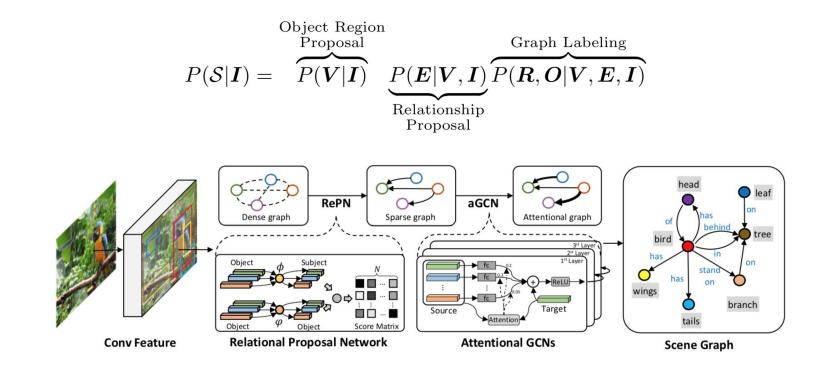
Johnson, J., Krishna, R., Stark, M., Li, L.J., Shamma, D.A., Bernstein, M., Fei-Fei, L.: Image retrieval using scene graphs. In: CVPR (2015)

Introduction

- Given *n* detected objects, a fully connected graph has n^2 edges.
- Many of these edges are probably between unrelated objects.
- How can we prune this graph?

- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussions

Contributions

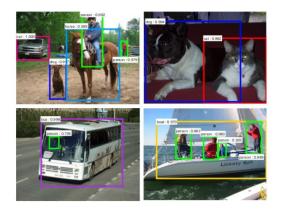

- RePN
 - Relation Proposal Network
- aGCN
 - attentional Graph Convolutional Networks.
- SGGEN+
 - Modified evaluation metric for scene graphs that gives more realistic results.
- Graph RCNN framework
 - Generates scene graph for a given image.
 - Provides node features for downstream tasks.

- Introduction
- Contributions

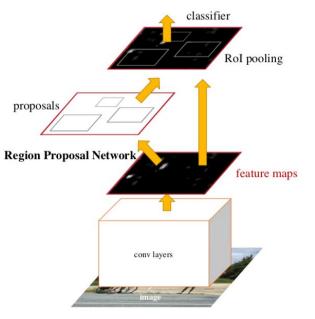
• Architecture:

- Object Proposal Network
- Relationship Proposal Network (RePN)
- Attentional GCN (aGCN)
- Metric SGGen+
- Discussions

Architecture



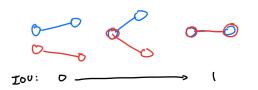
- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussions

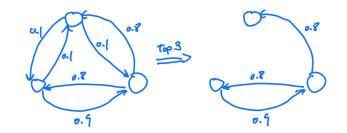

Object Region Proposal

Given an image I, extract the following quantities with Faster-RCNN:

- Bounding boxes:
- Feature vectors:
- Label distributions:

 $R^{o} \in \mathbb{R}^{n \times 4}$ $X^{o} \in \mathbb{R}^{n \times d}$ $P^{o} \in \mathbb{R}^{n \times |C|}$


- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussions


Relationship Proposal (RePN)

Learn a relatedness function:

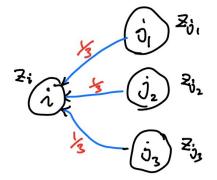
$$f(\boldsymbol{p}_{i}^{o},\boldsymbol{p}_{j}^{o})=\langle \varPhi(\boldsymbol{p}_{i}^{o}), \varPsi(\boldsymbol{p}_{j}^{o})\rangle, i\neq j$$

- Binary classification:
 - Score of relatedness: [0, 1]
 - o {edge, not_edge}
- Non-maximal suppression
 - k top-scored edges
 - m edges with least overlaps with others.

$$IoU(\{u,v\},\{p,q\}) = \frac{I(r_u^o,r_p^o) + I(r_v^o,r_q^o)}{U(r_u^o,r_p^o) + U(r_v^o,r_q^o)}$$

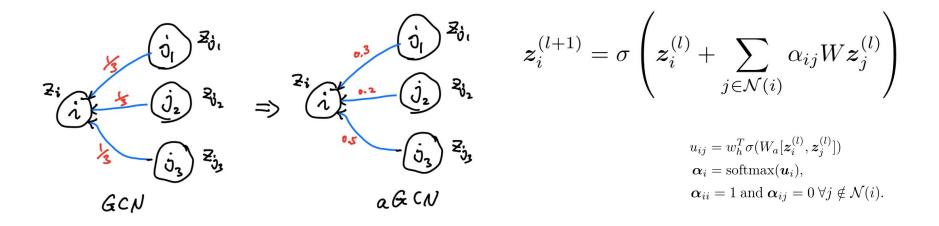
- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussions

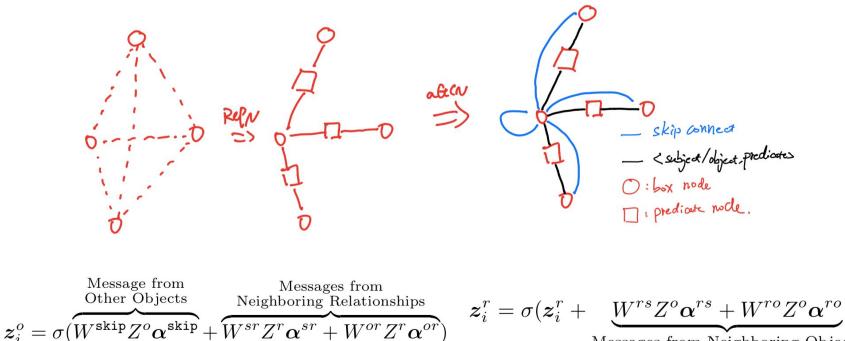
Conventional GCN


Recap on Graph Convolutional Network (GCN):

- Given a graph represented by:
 - Feature matrix: Z in N x D_1 .
 - Adjacency matrix: alpha in N x N.
 - Dimension map: W
- Propagation rule:

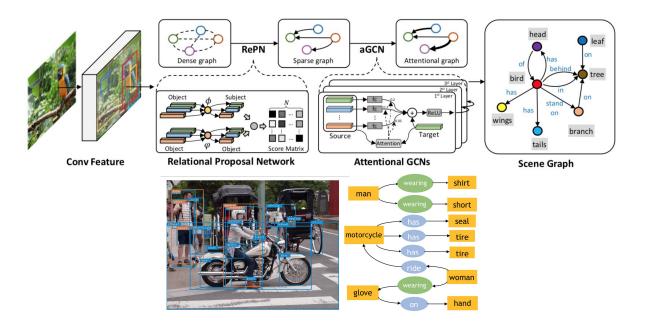
$$\boldsymbol{z}_{i}^{(l+1)} = \sigma \left(\boldsymbol{z}_{i}^{(l)} + \sum_{j \in \mathcal{N}(i)} \alpha_{ij} W \boldsymbol{z}_{j}^{(l)} \right)$$


• Representation of each node at the next layer is aggregated by the <u>equally-weighted average</u> of its neighbours and itself.


$$\boldsymbol{z}_{i}^{(l+1)} = \sigma\left(WZ^{(l)}\boldsymbol{\alpha}_{i}\right)$$

Attentional GCN (aGCN)

aGCN: ".. equally weighted average of its neighbours"

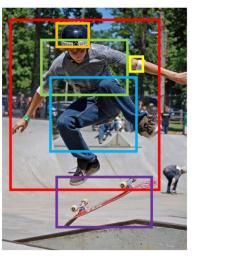

Graph Formation

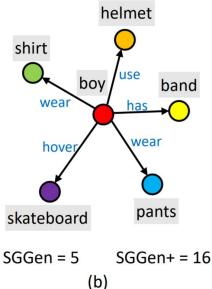
Messages from Neighboring Objects

Graph Labeling

"Two multi-class cross entropy losses are used for object classification and predicate classification."

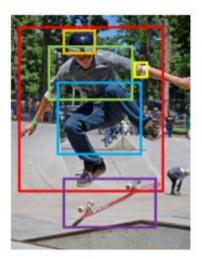
- Introduction
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussions

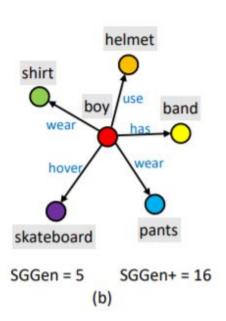

Metric: SGGen

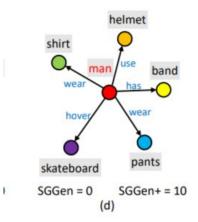

The ground truth scene graph: <subject, relationship, object>

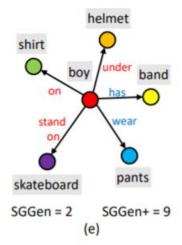
E.g.: <boy, wear, shirt>, <boy, use, helmet>, <boy, has, band> ...

SGGen counts one match when:

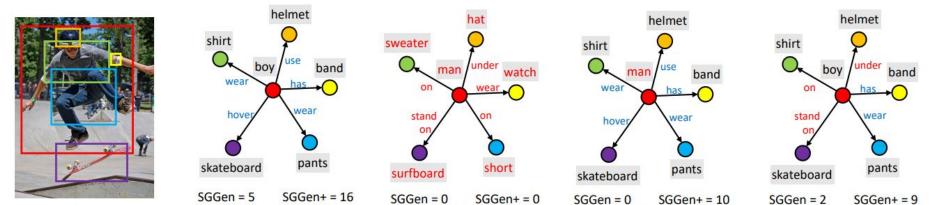

- 1. all three elements have been correctly labeled
- both object and subject nodes have been properly localized (i.e., bounding box IoU > 0.5).






Problem of SGGen

It only counts exact matches.


"A More Comprehensive Metric": SGGen+

SGGen + = C(O) + C(P) + C(T)

C(O): the number of object nodes correctly localized and recognized

C(P): the number of predicates correctly localized and recognized

C(T): the number of matched triples, which is SGGen

Comparing of SGGen and SGGen+

Assign random incorrect labels to objects perturbing objects

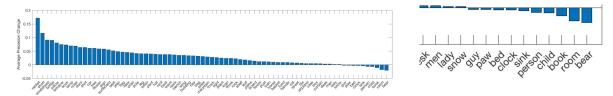
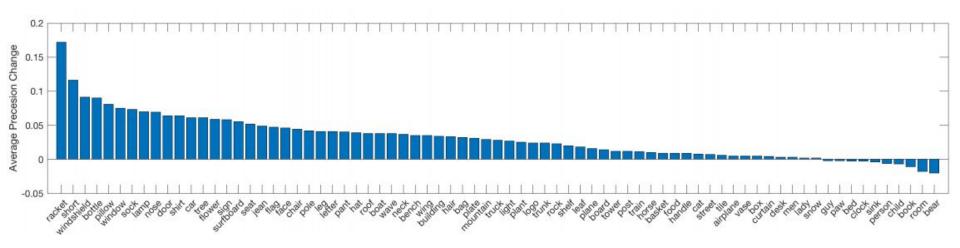

Perturb Type	none	w/o relationship			w/ relationship			both		
Perturb Ratio	0%	20%	50%	100%	20%	50%	100%	20%	50%	100%
SGGen SGGen+	100.0 100.0	$\begin{array}{c} 100.0\\94.5\end{array}$	100.0 89.1	100.0 76.8	54.1 84.3	$\begin{array}{c} 22.1 \\ 69.6 \end{array}$	$\begin{array}{c} 0.0\\ 47.9\end{array}$	$\begin{array}{c} 62.2\\ 80.1 \end{array}$	$\begin{array}{c} 24.2\\ 56.6\end{array}$	$\begin{array}{c} 0.0\\ 22.8\end{array}$

Table 1. Comparisons between SGGen and SGGen+ under different perturbations.

SGGen is completely insensitive to the perturbation of objects without relationships. SGGen is overly sensitive to label errors on objects with relationships. 100% perturbation: the object localizations and relationships are still correct such that SGGen+ provides a non-zero score.

- Problem statement
- Contributions
- Architecture:
 - Object Proposal Network
 - Relationship Proposal Network (RePN)
 - Attentional GCN (aGCN)
- Metric SGGen+
- Discussion


Discussion

- Less robust to objects that are used in varied contexts (person), trading performance for small objects that are used in relatively few contexts (racket).
- Use P to learn relatedness between two boxes.
 - Better solution:
 - learn feature representation of a class s.t. closer labels are closer in feature space.
 - e.g. D(car, wheel) < D(car, noodles)
 - Use this distance as a score instead.
- The choice of the new metric might be biased toward their model.
- Choosing *m* for remaining object pairs is not clear, and depends on the image.
- Only top 150 classes and top 50 relations; real world has more labels.
- Use similarity instead of count, e.g. Similarity(boy, man) = 0.8

References

- Yang, Jianwei, et al. "Graph r-cnn for scene graph generation." ECCV, 2018.
- Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR, 2017.
- Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS, 2015.

