Structured Prediction and Image Reasoning Paper Presentation

Neural Baby Talk

By Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh (Georgia Tech and Facebook Al)

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018

14 March 2019

Presentors: Soojin Lee, Austin Rothwell, and Shane Sims CPSC 532S UBC Department of Computer Science

Motivation

- Aid for the visually impaired
- Personal assistants
- Human robot interaction

https://www.organicauthority.com/.image/t_share/MTU5MzMwMTE3MjM5MTIxNTA0/dog-toy-cc.jpg

Current Methods

"A dog is sitting on a couch with a toy"

Current Issues

1.

2.

3.

What is covering the windows? blinds

Human Attention

SAN-2 (Yang et al.)

HieCoAtt-Q (Lu et al.)

4

Proposed Method

 Use object recognition to bolster image captioning

- 11% increase in average precision on COCO dataset in the last year
- Encourages visual grounding (i.e., associates named concepts to pixels in the image)

Source: Neural Baby Talk by Jiasen Lu et. al.

Proposed Method

Related Work

High Level Methodology

Slotted Caption Template Generation

- 1. Use CNN for object detection:
 - a. Detected objects and their bounding boxes become *candidate grounding regions*
- 2. Use CNN to generate feature map of input image (as in Assignment 3)
- 3. Use RNN to generate *caption template*
 - a. Initialize hidden state with CNN image features
 - b. Training time: each input is ground truth caption word
 - c. Inference time: each input is sampled from previous output
 - d. Slots for visual words are generated using a pointer network [give blackbox description of Ptr-Net]
 - i. Pointer networks map (point) tokens in the output sequence to tokens in the input sequence

Slotted Caption Template Generation

- 1) Obtain candidate grounding regions: cabinet, dog, tie, chair, table, cake, frame
- 2) Use a (Ptr-Net) RNN to generate caption template:
 - a) Given candidate regions, Ptr-Net "points" from a token in the caption to an associated image region.
 - **Note:** Ptr-Net can be used whenever we want to map output elements back to input elements *exactly*.

Out: A <region-2> with a <region-3> is sitting at <region-4> with a <region-5>

Pointer Networks

(Vinyals O, Fortunato M, Jaitly N. NIPS 2015)

2) Use a (Ptr-Net) RNN to generate caption template

Pointer Network

(Vinyals O, Fortunato M, Jaitly N. NIPS 2015)

2) Use a (Ptr-Net) RNN generate caption template

Ptr-Net (Neural Baby Talk example)

Filling in the Slots

In: - A <region-2> with a <region-3> is sitting at <region-4> with a <region-5> - cabinet, dog, tie, chair, table, cake, frame (coarse names from object detector)

1) Classify Plurality

2) Determine Fine Grained Category

Out: A puppy with a tie is sitting at table with a cake

Objective

Text word probability

Caption refinement prob.

Averaged target region probability

$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log \left(p(\boldsymbol{y}_t^* | \tilde{r}, \boldsymbol{y}_{1:t-1}^*) \right)$$

m

Probability of predicting the correct text word, given the sentinel features, and the previous ground truth words and probability of generating the sentinel features given ground truth caption Probability of predicting correct plurality and fine-grained name given image region features and previous ground truth words in caption

 $(p(\tilde{r}|\boldsymbol{y}_{1:t-1}^{*})\mathbb{1}_{(\boldsymbol{y}_{t}^{*}=\boldsymbol{y}^{\text{txt}})} + p(b_{t}^{*}, s_{t}^{*}|\boldsymbol{r}_{t}, \boldsymbol{y}_{1:t-1}^{*}) (\frac{1}{m}\sum p(r_{t}^{i}|\boldsymbol{y}_{1:t-1}^{*}))\mathbb{1}_{(\boldsymbol{y}_{t}^{*}=\boldsymbol{y}^{\text{vis}})})$

Probability of produced the anchored image grounding region given previous characters of ground truth caption

Training: minimize this cross-entropy loss

Datasets

Flickr30k: 31,783 images, 5 captions per image, 275,555 annotated bounding boxes COCO: 164,062 images, 5 captions per image

Object category to words

For COCO dataset. (e.g., mapping <person> to ["child", "baker", ...])

Caption pre-processing

Caption truncation (if > 16 words) Building vocabulary (9,587 words for COCO, 6,864 words for Flickr30k)

1. Standard Image Captioning

BLEU: precision METEOR: averaged precision and recall CIDEr: averaged cosine similarity SPICE: defined over scene graphs

Flickr30k dataset

Method	BLEU1	BLEU4	METEOR	CIDEr	SPICE
Hard-Attention [46]	66.9	19.9	18.5	-	-
ATT-FCN [50]	64.7	23.0	18.9	-	-
Adaptive [27]	67.7	25.1	20.4	53.1	14.5
NBT	69.0	27.1	21.7	57.5	15.6
NBT ^{oracle}	72.0	28.5	23.1	64.8	19.6

COCO dataset

Method	BLEU1	BLEU4	METEOR	CIDEr	SPICE	
Adaptive [27]	74.2	32.5	26.6	108.5	19.5	
Att2in [39]	-	31.3	26.0	101.3	-	
Up-Down [3]	74.5	33.4	26.1	105.4	19.2	
Att2in* [39]	-	33.3	26.3	111.4	-	
Up-Down [†] [3]	79.8	36.3	27.7	120.1	21.4	
NBT NBT ^{oracle}	75.5 75.9	34.7 34.9	27.1 27.4	107.2 108.9	20.1 20.4	

COCO

Flickr30k

A dog is laying in the grass with a Frisbee.

Success

A bride and groom cutting a cake together.

A little girl holding a cat in her hand.

A woman sitting on a boat in the water.

Two people are sitting on a **boat** in the water.

A cat is standing on a sign that says "UNK".

A young boy with blond-hair and a blue shirt is eating a chocolate

A band is performing on a stage.

* Different colours show a correspondence between the visual words and grounding regions. * Grey regions are the proposals not selected in the captions.

source: Neural Baby Talk by Jiasen Lu et. al.

2. Robust Image Captioning

To evaluate image captioning for novel scene compositions

Robust-COCO split

- Distribution of co-occurring objects in train data is different from test data
- Calculate the co-occurrence statistics for 80 object categories
- Sufficient examples from each category in train set
- Novel compositions (pairs) of categories in test set

Accuracy

- Whether or not a generated caption includes the new object combination
- 100% accuracy for at least one mention of the novel category pair

Robust-COCO split

: worse (2~3 points drop) performance for all models

COCO dataset with Robust split

Method	BLEU4	METEOR	CIDEr	SPICE	Accuracy
Att2in [39]	31.5	24.6	90.6	17.7	39.0
Up-Down [3]	31.6	25.0	92.0	18.1	39.7
NBT	31.7	25.2	94.1	18.3	42.4
NBT ^{oracle}	31.9	25.5	95.5	18.7	45.7

Success

A cat laying on the floor next to a remote control.

A man sitting on a bench next to a bird.

A dog is standing on a skateboard in the grass.

Failure

A bird sitting on a branch in a

tree. Image source: Neural Baby Talk by Jiasen Lu et. al. 19

3. Novel Object Captioning

Excludes all the image-sentence pairs that contain at least one of the eight objects in COCO ("bottle", "bus", "couch", "microwave", "pizza", "racket", "suitcase", and "zebra")

Test set is split into in-domain and out-of-domain subsets

F1 score

: checks if the excluded object is correctly mentioned in the generated caption

	Out-of-Domain Test Data											In-Domain Test Data			
Method	bottle	bus	couch	microwave	pizza	racket	suitcase	zebra	Avg	SPICE	METEOR	CIDEr	SPICE	METEOR	CIDER
DCC [4]	4.6	29.8	45.9	28.1	64.6	52.2	13.2	79.9	39.8	13.4	21.0	59.1	15.9	23.0	77.2
NOC [43]	17.8	68.8	25.6	24.7	69.3	68.1	39.9	89.0	49.1	-	21.4	-	-	-	-
C-LSTM [49]	29.7	74.4	38.8	27.8	68.2	70.3	44.8	91.4	55.7	-	23.0	-	-	-	-
Base+T4 [2]	16.3	67.8	48.2	29.7	77.2	57.1	49.9	85.7	54.0	15.9	23.3	77.9	18.0	24.5	86.3
NBT*+G	7.1	73.7	34.4	61.9	59.9	20.2	42.3	88.5	48.5	15.7	22.8	77.0	17.5	24.3	87.4
NBT [†] +G	14.0	74.8	42.8	63.7	74.4	19.0	44.5	92.0	53.2	16.6	23.9	84.0	18.4	25.3	94.0
$NBT^{\dagger}+T1$	36.2	77.7	43.9	65.8	70.3	19.8	51.2	93.7	57.3	16.7	23.9	85.7	18.4	25.5	95.2
$NBT^{\dagger}+T2$	38.3	80.0	54.0	70.3	81.1	74.8	67.8	96.6	70.3	17.4	24.1	86.0	18.0	25.0	92.1

Table 4. Evaluation of captions generated using the proposed method. G means greedy decoding, and T1-2 means using constrained beam search [2] with 1-2 top detected concepts. * is the result using VGG-16 [41] and † is the result using ResNet-101.

Success

A zebra that is standing in the dirt.

A little girl wearing a helmet and holding a tennis racket.

A woman standing in front of a red bus.

Failure

A plate of food with a bottle and a cup of beer.

Conclusion

A novel image captioning framework

: natural language + grounded in detected objects

Two-stage approach

: 1) generate hybrid template

: 2) fills the slots with categories recognized by object detector

NBT outperforms the state-of-art models on standard, robust, and novel object captioning

Limitations

donat, doughnat, bagor					
cake, cheesecake, cupcake, shortcake, coffeecake, pancake					
bird, ostrich, owl, seagull, goose, duck, parakeet, falcon, robin, pelican, waterfowl, heron, hummingbird, mallard, finch, pigeon, sparrow,					
seabird, osprey, blackbird, fowl, shorebird, woodpecker, egret, chickadee, quail, bluebird, kingfisher, buzzard, willet, gull, swan, bluejay,					
flamingo, cormorant, parrot, loon, gosling, waterbird, pheasant, rooster, sandpiper, crow, raven, turkey, oriole, cowbird, warbler, magpie,					
peacock, cockatiel, lorikeet, puffin, vulture, condor, macaw, peafowl, cockatoo, songbird					
chair, seat, recliner, stool					
couch, sofa, recliner, futon, loveseat, settee, chesterfield					
potted plant, houseplant					
bed					
dining table, table	the				
toilet, urinal, commode, lavatory, potty	cirio				
tv, monitor, television					
laptop, computer, notebook, netbook, lenovo, macbook					
mouse					
remote					
	cake, cheesecake, cupcake, shortcake, coffeecake, pancake bird, ostrich, owl, seagull, goose, duck, parakeet, falcon, robin, pelican, waterfowl, heron, hummingbird, mallard, finch, pigeon, sparrow, seabird, osprey, blackbird, fowl, shorebird, woodpecker, egret, chickadee, quail, bluebird, kingfisher, buzzard, willet, gull, swan, bluejay, flamingo, cormorant, parrot, loon, gosling, waterbird, pheasant, rooster, sandpiper, crow, raven, turkey, oriole, cowbird, warbler, magpie, peacock, cockatiel, lorikeet, puffin, vulture, condor, macaw, peafowl, cockatoo, songbird chair, seat, recliner, stool couch, sofa, recliner, futon, loveseat, settee, chesterfield potted plant, houseplant bed dining table, table toilet, urinal, commode, lavatory, potty tv, monitor, televison, television laptop, computer, notebook, netbook, lenovo, macbook mouse remote				

- 2. Not clear how useful fined grained category name assignment is.
 - a. In general, authors could have compared performance with and without this sub-model

Possible Extensions

- 1. Compare NBT performance with and without end-to-end training of the CNN
- 2. Perform object detection in model that maximizes accuracy-specificity tradeoff.
 - a. Critical for real world tasks that authors use as their motivation (ex: helping visually impaired)
 - i. Likely harm COCO evaluation metrics -> points to the need for a new metric for this real world task
 - b. Accomplish this by:
 - i. Pretrain CNN pre-trained on ImageNet
 - ii. Classify according to semantic hierarchy (eliminating part of slot filling model)
 - 1. Already organized by WordNet hierarchy
 - 2. See my course project for doing this with modern CNN architectures

Questions?

Back-up Slides

Compared Models

Hard-attention

: Attention-based image caption ("soft" or "hard" attention)

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. "soft" (top row) vs "hard" (bottom row) attention. (Note that both models generated the same captions in this example.)

Xu et al. (2016). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Compared Models

ATT-FCN

: Attention-based image caption (semantically important regions)

Compared Models

Adaptive

: Attention-based model with a visual sentinel ("when" to look at + "which" region)

Figure 1: Our model learns an adaptive attention model that automatically determines when to look (**sentinel gate**) and where to look (**spatial attention**) for word generation, which are explained in section 2.2, 2.3 & 5.4.