Paper presentation

Towards diverse and natural image descriptions via a conditional GAN, B. Dai, et. al.

Paper presentation

Towards diverse and natural image descriptions via a conditional GAN, B. Dai, et. al.

Has the problem of generating image descriptions been solved?

Problem Statement

• Image captioning with a focus on fidelity, naturalness, and diversity

			BLEU	E-GAN
	-MLE	A cow standing in a field next to houses		
		A cow standing in a field with houses		
A FA FA	ט	A cow standing in a field of grass		
		Many cows grazing in the grass field in front of houses		
	G-GAN	Several cows grazing on grassy area in a pasture		
	U	A heard of cattle grazing on a lush green field		
AMAN	ч	Grey cow walking in a large green field in front of house		
	human	A cow in a large open field with a house in the background		
	þſ	A cow standing in a large open grass field		

Captions generated by 3 different methods for the given image on the left side. [1]

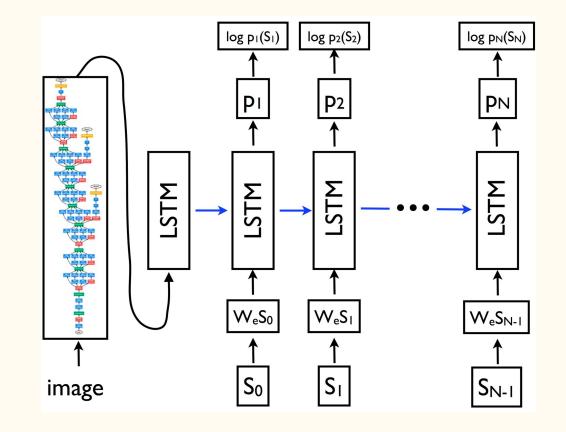
Motivation

- Less variable and rigid captions produced by the state of the art methods
 - \circ ~ High resemblance captions to the ground truth
- Unavailable metrics to capture variability and naturalness
 - \circ \quad Some of the current state of the art metrics:
 - BLEU
 - METEOR

Related Work

- Generation
 - $\circ \quad {\rm Detection\text{-}based approaches}$
 - CRF, SVM, CNN
 - Retrieving sentences from existing data or using sentence templates
 - $\circ \quad {\rm Encoder}{\rm -decoder}{\rm \ paradigm}$
 - Maximum likelihood

$$\sum_{(I_i, S_i) \sim D} \sum_{t=0}^{T_i} \log p(w_i^{(t)} | f(I), w_i^{(t-1)}, ..., w_i^{(t-n)})$$


Related Work

- Evaluation
 - \circ Classical metrics
 - BLEU: Precision
 - ROUGE: Recall of n-grams
 - METEOR
 - Combination of precision and recall
 - CIDEr
 - Weighted statistics
 - SPICE
 - Focus on linguistic entities reflecting visual concepts

What is the state of the art model for image captioning?

State of the art

- Combination of LSTM and CNN
- Metrics
 - CIDEr
 - METEOR
 - BLEU
 - ROUGE

LSTM based model for image captioning. [2]

State of the art

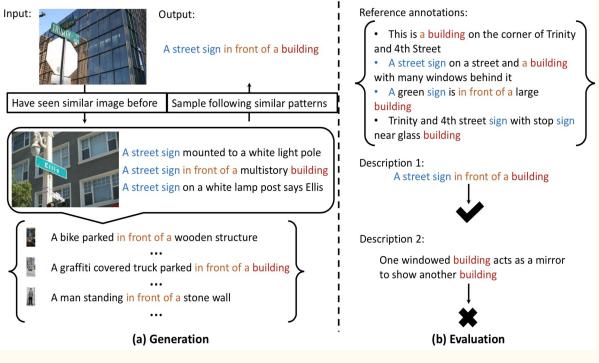
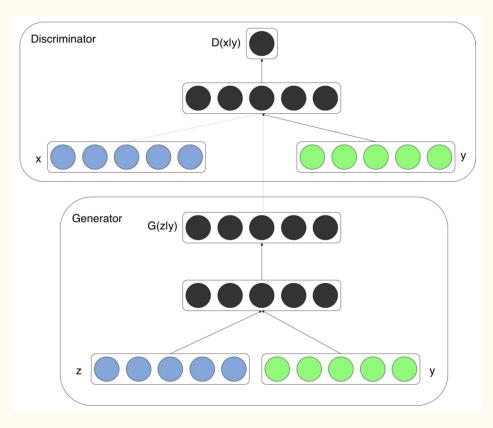


Image description generation and evaluation for the state of the art approaches. [1]

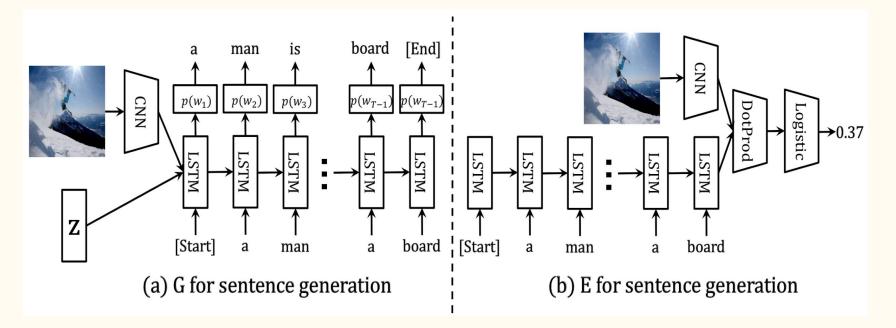

State of the art

		a w	oman holdi	ing a skateb	oard on a	a street	
	0.71	0.61	0.75	0.36	1.49	0.28	0.05
	B3	B4	ROUGE	METEOR	CIDEr	SPICE	E-GAN
1 1	0.25	0.01	0.48	0.19	0.36	0.14	0.37
	three women one with a skateboard outside a store						
	7	al	baseball pla	yer swingin	g a bat at	t a ball	
	0.71	0.65	0.78	0.39	2.21	0.28	0.48
	B3	B4	ROUGE	METEOR	CIDEr	SPICE	E-GAN
	0.01	0.01	0.31	0.23	0.82	0.25	0.82
	the umpire stands over a catcher as the batter swings						
	a man holding a tennis racquet on a tennis court					rt	
	0.99	0.99	1.0	1.0	3.53	0.58	0.69
	B3	B4	ROUGE	METEOR	CIDEr	SPICE	E-GAN
	0.01	0.01	0.48	0.28	1.03	0.2	0.67
		a n	nan getting	ready to se	rve a ten	nis ball	

Examples of images with two semantically similar descriptions. [1]

Background

- Conditional GAN
 - Conditioned on some extra information y.



Conditional adversarial net. [3]

Background

- Sequential Sampling
 - Non-probability sampling technique
 - Not equal chances of being selected for all members of the population
 - \circ ~ Picking a single or a group of objects in every time interval
 - \circ Analyze the result, pick another sample
- Monte Carlo tree search
 - \circ $\,$ A heuristic search algorithm for some kinds of decision processes esp. Game plays
 - Steps
 - Selection
 - Expansion
 - Simulation
 - Backpropagation

Proposed Approach

Overall structure of both generator and evaluator of a CGAN. [1]

Overall formulation

- Evaluator
 - $\circ \quad \ \ {\rm Quality \ of \ descriptions}$

$$r_{\pmb{\eta}}(I,S) = \sigma\left(\langle \mathbf{f}(I,\pmb{\eta}_I), \mathbf{h}(S,\pmb{\eta}_S) \rangle\right)$$

• Learning objective

 $\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\eta}} \mathcal{L}(G_{\boldsymbol{\theta}}, E_{\boldsymbol{\eta}})$

 $\mathbb{E}_{S \sim \mathcal{P}_{I}} \left[\log r_{\boldsymbol{\eta}}(I, S) \right] + \mathbb{E}_{\mathbf{z} \sim \mathcal{N}_{0}} \left[\log(1 - r_{\boldsymbol{\eta}}(I, G_{\boldsymbol{\theta}}(I, \mathbf{z}))) \right]$

The production of sentences is non-differentiable. How can we backpropagate?

Challenges

- Using policy gradient for generating linguistic description
 - Sequential sampling procedure
 - Sampling a discrete token at each time step
 - Non-differentiable
- Expected future reward for early feedback using Monte Carlo rollouts
 - Vanishing gradients
 - \circ Error propagation

Training G

- Policy gradient
 - \circ Action space: words
 - $\circ \quad \ \ {\rm Conditional \ policy}$

 $\boldsymbol{\pi}_{\boldsymbol{\theta}}(w_t | \mathbf{f}(I), \mathbf{z}, S_{1:t-1})$

 \circ $\ \ \, Reward$ given by the evaluator for a sequence of actions S

 $r_{\eta}(I,S)$

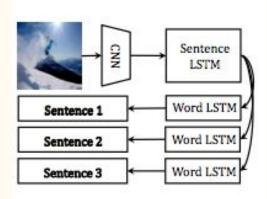
Training G

- Early feedback
 - Expected future reward

$$V_{\boldsymbol{\theta},\boldsymbol{\eta}}(I,\mathbf{z},S_{1:t}) = \mathbb{E}_{S_{t+1:T} \sim G_{\boldsymbol{\theta}}(I,\mathbf{z})}[r_{\boldsymbol{\eta}}(I,S_{1:t} \oplus S_{t+1:T})]$$

 $\circ \quad \text{Gradient of the objective w.r.t. } \theta$

$$\tilde{\mathbb{E}}\left[\sum_{t=1}^{T_{\max}}\sum_{w_t\in\mathcal{V}}\nabla_{\boldsymbol{\theta}}\pi_{\boldsymbol{\theta}}(w_t|I,\mathbf{z},S_{1:t-1})\cdot V_{\boldsymbol{\theta}',\boldsymbol{\psi}}(I,\mathbf{z},S_{1:t}\oplus w_t)\right]$$


Training E

- Enforcing naturalness and semantic relevance
 - \circ Set of descriptions provided by human
 - \circ Descriptions from the generator
 - Human descriptions uniformly sampled from other descriptions not associated with the given image

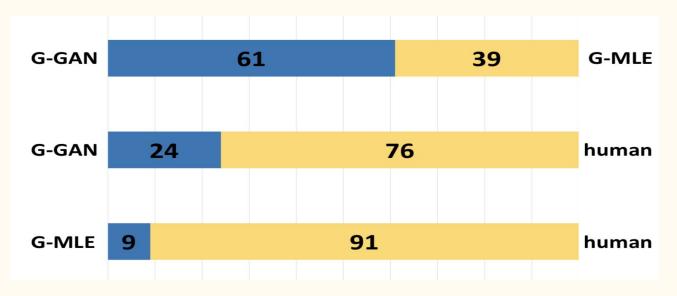
$$\max_{\boldsymbol{\eta}} \quad \mathcal{L}_{E}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{E}(I_{i}; \boldsymbol{\eta})$$
$$\mathcal{L}_{E}(I; \boldsymbol{\eta}) = \mathbb{E}_{S \in \mathcal{S}_{I}} \log r_{\boldsymbol{\eta}}(I, S)$$
$$+ \alpha \cdot \mathbb{E}_{S \in \mathcal{S}_{G}} \log(1 - r_{\boldsymbol{\eta}}(I, S))$$
$$+ \beta \cdot \mathbb{E}_{S \in \mathcal{S}_{\setminus I}} \log(1 - r_{\boldsymbol{\eta}}(I, S))$$

Generating paragraphs

- Hierarchical LSTM
 - $\circ \quad \text{Sentence level} \quad$
 - $\circ \quad \text{Word level} \\$

Adding extension for paragraph generation. [1]

- Datasets
 - MSCOCO
 - Flickr30k
- Settings
 - Removing non-alphabet characters
 - $\circ \quad \ \ {\rm Converting \ to \ lowercase}$
 - \circ ~ Replacing less frequent words, less than 5 times, with UNK
 - Max length of 16
 - \circ ~ Pretrain G for 20 epochs based on MLE ~
 - \circ Pretrain E with supervised training for 5 epochs
 - $\circ \quad \text{Batch} = 64, \, \text{lr} = 0.0001, \, \text{n} = 16 \text{ (Monte Carlo)}$


• Performance

		BLEU-3	BLEU-4	METEOR	ROUGE_L	CIDEr	SPICE	E-NGAN	E-GAN
0	human	0.290	0.192	0.240	0.465	0.849	0.211	0.527	0.626
8	G-MLE	0.393	0.299	0.248	0.527	1.020	0.199	0.464	0.427
Ŭ	G-GAN	0.305	0.207	0.224	0.475	0.795	0.182	0.528	0.602
ckr	human	0.269	0.185	0.194	0.423	0.627	0.159	0.482	0.464
Flic	G-MLE	0.372	0.305	0.215	0.479	0.767	0.168	0.465	0.439
L T	G-GAN	0.153	0.088	0.132	0.330	0.202	0.087	0.582	0.456

Performances of different generators on MSCOCO and Flickr30k. [1]

Has the proposed approach been able to achieve more natural descriptions?

• User Study

Human comparison results between each pair of generators. [1]

• User Study

G-MLE	a man flying through the air	a man flying through the air	a man flying through the air	a man flying through the air
	while riding a snowboard	while riding a snowboard	while riding a snowboard	while riding a skateboard
G-GAN	a man on a skateboard in a	a man skiing down the	a man performing a grind	a man with stunts on his
	snowy park	slope near a mountain	trick on a skateboard ramp	skis in the snow
G-MLE	a group of people standing	a group of people sitting	a group of people sitting at	a group of people sitting
	around a boat	around a table	a table	around a living room
G-GAN	the bench is sitting on the ground by the water	a group of people watching each other	a table with a lot of stuff on it	furnished living room with furniture and built area

Corresponding G-GAN captions for images with similar descriptions in G-MLE. [1]

• Diverse descriptions

	RAMPS			A GLTY CONSCENCE
z ₁	a baseball player holds a bat up to hit the ball	a man riding a snowboard down a slope	a group of people sitting around a table having a meal in a restaurant	a group of men dressed in suits posing for a photo
z ₂	a baseball player holding white bat and wear blue baseball uniform	a person standing on a snowboard sliding down a hill	a young man sitting at a table with coffee and a lot of food	a couple of men standing next to each other wearing glasses
Z ₃	a professional baseball player holds up his bat as he watches	a man is jumping over a snow covered hill	a pretty young man sitting next to two men in lots of people	some people dressed in costume and cups

Generated descriptions with different z. [1]

• Evaluating semantic relevance by retrieval

		R@1	R@3	R@5	R@10
S	G-MLE	5.06	12.28	18.24	29.30
3	G-GAN	14.30	30.88	40.06	55.82
Р	G-MLE	9.88	20.12	27.30	39.94
P	G-GAN	12.04	23.88	30.70	41.78

Image rankings for different generators. [1]

• Paragraph generation with different z values

human	G-GAN, z ₁	G-GAN, z ₂	G-MLE
people are on motorcycles. there are green cars behind them. the signs are all brown with chinese written on it.	men are riding on a motorcycle. the man is wearing tan boots, and a white and blue jacket with beige stripes on. the street is made of cobblestone. there are tall bright green trees on the sidewalk.	two people are riding motorcycles. there are many trees on the sidewalk. there is a red and white painted letter on the side of the ledge. tall buildings are on the background.	a man is riding a bike. there are trees on the sidewalk. there are people walking on the sidewalk. there is a tall building in the background.
A baseball player is swinging a bat. He is wearing a black helmet and a black and white uniform. A catcher is behind him wearing a gray uniform. The catcher has a brown glove on his hand. Two men can be seen standing behind a green fence.	a baseball player in a white and blue uniform is holding a white bat. there is a umpire behind the batter in the blue and white uniform. he is getting ready to catch the ball. there is a crowd of people behind him watching him.	men are on a baseball field on a sunny day. the player is wearing a black and white uniform. there is a catcher behind him. the field is green with brown dirt and white shiny lines.	a baseball player is standing on a baseball field. he is wearing a blue helmet on his head. the catcher is wearing a black and gray uniform. the court is green with white lines.

Different paragraph descriptions generated by human, G-GAN, and G-MLE with different z values. [1]

Failure Analysis

- Incorrect details
 - \circ Colors
 - Counts
 - Few samples for each special detail
 - Increased risk of putting more incorrect details due to focus on diversity

Potential extensions?

Future works

- Use VAE instead of GAN
- Use other similarity metrics instead of dot product in evaluator

Presenters

- Kevin Dsouza
- Ainaz Hajimoradlou

References

- 1. B. Dai, S. Fidler, R. Urtasun, and D. Lin, Towards Diverse and Natural Image Descriptions via a Conditional GAN, 2017, *arXiv preprint arXiv: 1703.06029*
- O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge, arXiv preprint arXiv: 1609.06647
- 3. M. Mirza, S. Osindero, Conditional Generative Adversarial Nets, *arXiv* preprint arXiv: 1411.1784

Thank you.

Has the problem of generating image descriptions been solved?

Problem Statement

• Image captioning with a focus on fidelity, naturalness, and diversity

			BLEU	E-GAN
	-MLE	A cow standing in a field next to houses		
		A cow standing in a field with houses		
A FA FA	ט	A cow standing in a field of grass		
		Many cows grazing in the grass field in front of houses		
		Several cows grazing on grassy area in a pasture		
	G-GAN	A heard of cattle grazing on a lush green field		
AMAN	ч	Grey cow walking in a large green field in front of house		
	human	A cow in a large open field with a house in the background		
	þſ	A cow standing in a large open grass field		

Captions generated by 3 different methods for the given image on the left side. [1]

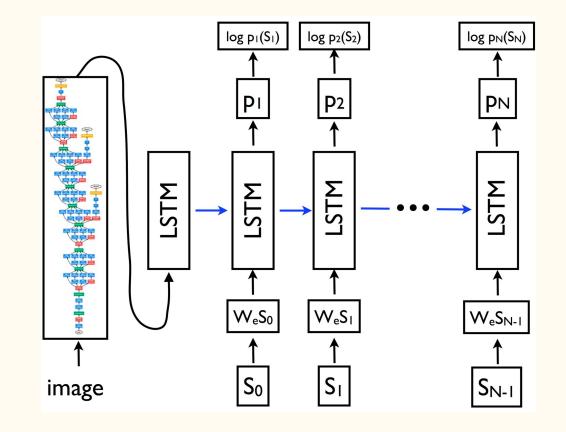
Motivation

- Less variable and rigid captions produced by the state of the art methods
 - \circ ~ High resemblance captions to the ground truth
- Unavailable metrics to capture variability and naturalness
 - \circ \quad Some of the current state of the art metrics:
 - BLEU
 - METEOR

Related Work

- Generation
 - $\circ \quad {\rm Detection\text{-}based approaches}$
 - CRF, SVM, CNN
 - Retrieving sentences from existing data or using sentence templates
 - $\circ \quad {\rm Encoder}{\rm -decoder}{\rm \ paradigm}$
 - Maximum likelihood

$$\sum_{(I_i, S_i) \sim D} \sum_{t=0}^{T_i} \log p(w_i^{(t)} | f(I), w_i^{(t-1)}, ..., w_i^{(t-n)})$$


Related Work

- Evaluation
 - \circ Classical metrics
 - BLEU: Precision
 - ROUGE: Recall of n-grams
 - METEOR
 - Combination of precision and recall
 - CIDEr
 - Weighted statistics
 - SPICE
 - Focus on linguistic entities reflecting visual concepts

What is the state of the art model for image captioning?

State of the art

- Combination of LSTM and CNN
- Metrics
 - CIDEr
 - METEOR
 - BLEU
 - ROUGE

LSTM based model for image captioning. [2]

State of the art

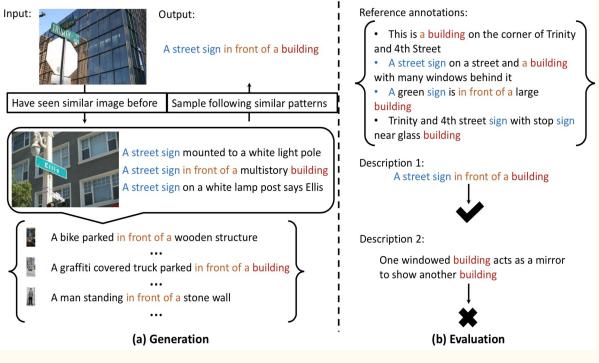
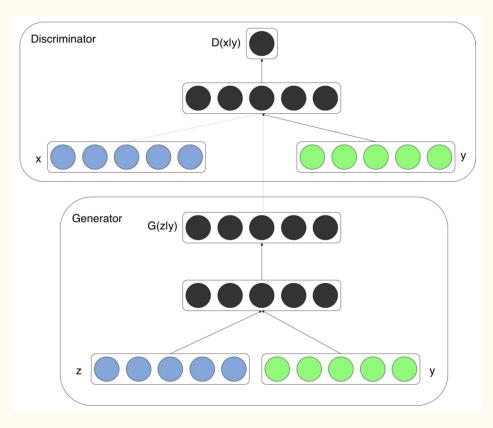


Image description generation and evaluation for the state of the art approaches. [1]

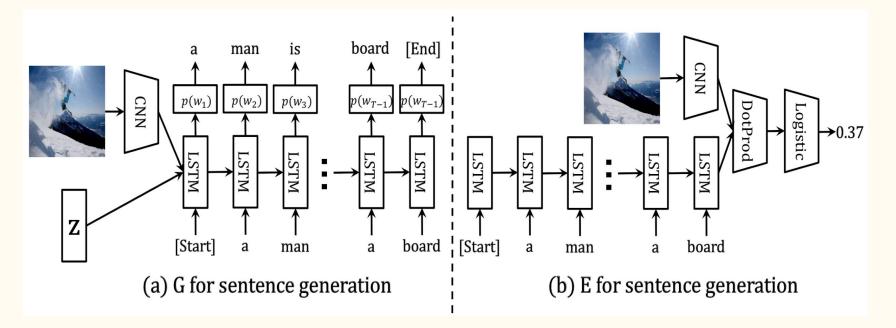

State of the art

		a w	oman holdi	ing a skateb	oard on a	a street	
	0.71	0.61	0.75	0.36	1.49	0.28	0.05
	B3	B4	ROUGE	METEOR	CIDEr	SPICE	E-GAN
1 1	0.25	0.01	0.48	0.19	0.36	0.14	0.37
	three women one with a skateboard outside a store						
	7	al	baseball pla	yer swingin	g a bat at	t a ball	
	0.71	0.65	0.78	0.39	2.21	0.28	0.48
	B3	B4	ROUGE	METEOR	CIDEr	SPICE	E-GAN
	0.01	0.01	0.31	0.23	0.82	0.25	0.82
	the umpire stands over a catcher as the batter swings						
	a man holding a tennis racquet on a tennis court					rt	
	0.99	0.99	1.0	1.0	3.53	0.58	0.69
	B3	B4	ROUGE	METEOR	CIDEr	SPICE	E-GAN
	0.01	0.01	0.48	0.28	1.03	0.2	0.67
		a n	nan getting	ready to se	rve a ten	nis ball	

Examples of images with two semantically similar descriptions. [1]

Background

- Conditional GAN
 - Conditioned on some extra information y.



Conditional adversarial net. [3]

Background

- Sequential Sampling
 - Non-probability sampling technique
 - Not equal chances of being selected for all members of the population
 - \circ ~ Picking a single or a group of objects in every time interval
 - \circ Analyze the result, pick another sample
- Monte Carlo tree search
 - \circ $\,$ A heuristic search algorithm for some kinds of decision processes esp. Game plays
 - Steps
 - Selection
 - Expansion
 - Simulation
 - Backpropagation

Proposed Approach

Overall structure of both generator and evaluator of a CGAN. [1]

Overall formulation

- Evaluator
 - $\circ \quad \ \ {\rm Quality \ of \ descriptions}$

$$r_{\pmb{\eta}}(I,S) = \sigma\left(\langle \mathbf{f}(I,\pmb{\eta}_I), \mathbf{h}(S,\pmb{\eta}_S) \rangle\right)$$

• Learning objective

 $\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\eta}} \mathcal{L}(G_{\boldsymbol{\theta}}, E_{\boldsymbol{\eta}})$

 $\mathbb{E}_{S \sim \mathcal{P}_{I}} \left[\log r_{\boldsymbol{\eta}}(I, S) \right] + \mathbb{E}_{\mathbf{z} \sim \mathcal{N}_{0}} \left[\log(1 - r_{\boldsymbol{\eta}}(I, G_{\boldsymbol{\theta}}(I, \mathbf{z}))) \right]$

The production of sentences is non-differentiable. How can we backpropagate?

Challenges

- Using policy gradient for generating linguistic description
 - Sequential sampling procedure
 - Sampling a discrete token at each time step
 - Non-differentiable
- Expected future reward for early feedback using Monte Carlo rollouts
 - Vanishing gradients
 - \circ Error propagation

Training G

- Policy gradient
 - \circ Action space: words
 - $\circ \quad \ \ {\rm Conditional \ policy}$

 $\boldsymbol{\pi}_{\boldsymbol{\theta}}(w_t | \mathbf{f}(I), \mathbf{z}, S_{1:t-1})$

 \circ $\ \ \, Reward$ given by the evaluator for a sequence of actions S

 $r_{\eta}(I,S)$

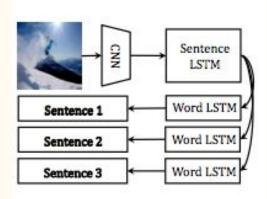
Training G

- Early feedback
 - Expected future reward

$$V_{\boldsymbol{\theta},\boldsymbol{\eta}}(I,\mathbf{z},S_{1:t}) = \mathbb{E}_{S_{t+1:T} \sim G_{\boldsymbol{\theta}}(I,\mathbf{z})}[r_{\boldsymbol{\eta}}(I,S_{1:t} \oplus S_{t+1:T})]$$

 $\circ \quad \text{Gradient of the objective w.r.t. } \theta$

$$\tilde{\mathbb{E}}\left[\sum_{t=1}^{T_{\max}}\sum_{w_t\in\mathcal{V}}\nabla_{\boldsymbol{\theta}}\pi_{\boldsymbol{\theta}}(w_t|I,\mathbf{z},S_{1:t-1})\cdot V_{\boldsymbol{\theta}',\boldsymbol{\psi}}(I,\mathbf{z},S_{1:t}\oplus w_t)\right]$$


Training E

- Enforcing naturalness and semantic relevance
 - \circ Set of descriptions provided by human
 - \circ Descriptions from the generator
 - Human descriptions uniformly sampled from other descriptions not associated with the given image

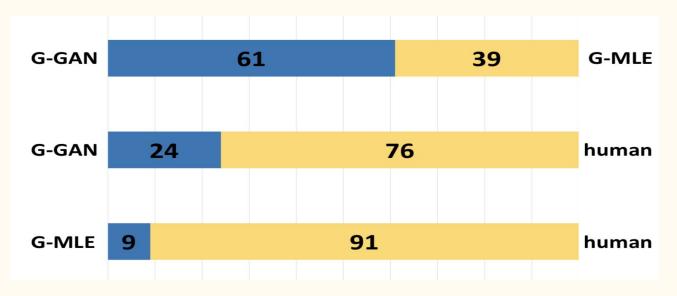
$$\max_{\boldsymbol{\eta}} \quad \mathcal{L}_{E}(\boldsymbol{\eta}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{E}(I_{i}; \boldsymbol{\eta})$$
$$\mathcal{L}_{E}(I; \boldsymbol{\eta}) = \mathbb{E}_{S \in \mathcal{S}_{I}} \log r_{\boldsymbol{\eta}}(I, S)$$
$$+ \alpha \cdot \mathbb{E}_{S \in \mathcal{S}_{G}} \log(1 - r_{\boldsymbol{\eta}}(I, S))$$
$$+ \beta \cdot \mathbb{E}_{S \in \mathcal{S}_{\setminus I}} \log(1 - r_{\boldsymbol{\eta}}(I, S))$$

Generating paragraphs

- Hierarchical LSTM
 - $\circ \quad \text{Sentence level} \quad$
 - $\circ \quad \text{Word level} \\$

Adding extension for paragraph generation. [1]

- Datasets
 - MSCOCO
 - Flickr30k
- Settings
 - Removing non-alphabet characters
 - $\circ \quad \ \ {\rm Converting \ to \ lowercase}$
 - \circ ~ Replacing less frequent words, less than 5 times, with UNK
 - Max length of 16
 - \circ ~ Pretrain G for 20 epochs based on MLE ~
 - \circ Pretrain E with supervised training for 5 epochs
 - $\circ \quad \text{Batch} = 64, \, \text{lr} = 0.0001, \, \text{n} = 16 \text{ (Monte Carlo)}$


• Performance

		BLEU-3	BLEU-4	METEOR	ROUGE_L	CIDEr	SPICE	E-NGAN	E-GAN
0	human	0.290	0.192	0.240	0.465	0.849	0.211	0.527	0.626
8	G-MLE	0.393	0.299	0.248	0.527	1.020	0.199	0.464	0.427
Ŭ	G-GAN	0.305	0.207	0.224	0.475	0.795	0.182	0.528	0.602
ckr	human	0.269	0.185	0.194	0.423	0.627	0.159	0.482	0.464
Flic	G-MLE	0.372	0.305	0.215	0.479	0.767	0.168	0.465	0.439
L T	G-GAN	0.153	0.088	0.132	0.330	0.202	0.087	0.582	0.456

Performances of different generators on MSCOCO and Flickr30k. [1]

Has the proposed approach been able to achieve more natural descriptions?

• User Study

Human comparison results between each pair of generators. [1]

• User Study

G-MLE	a man flying through the air	a man flying through the air	a man flying through the air	a man flying through the air
	while riding a snowboard	while riding a snowboard	while riding a snowboard	while riding a skateboard
G-GAN	a man on a skateboard in a	a man skiing down the	a man performing a grind	a man with stunts on his
	snowy park	slope near a mountain	trick on a skateboard ramp	skis in the snow
G-MLE	a group of people standing	a group of people sitting	a group of people sitting at	a group of people sitting
	around a boat	around a table	a table	around a living room
G-GAN	the bench is sitting on the ground by the water	a group of people watching each other	a table with a lot of stuff on it	furnished living room with furniture and built area

Corresponding G-GAN captions for images with similar descriptions in G-MLE. [1]

• Diverse descriptions

	RAMPS			A GLTY CONSCENCE
z ₁	a baseball player holds a bat up to hit the ball	a man riding a snowboard down a slope	a group of people sitting around a table having a meal in a restaurant	a group of men dressed in suits posing for a photo
z ₂	a baseball player holding white bat and wear blue baseball uniform	a person standing on a snowboard sliding down a hill	a young man sitting at a table with coffee and a lot of food	a couple of men standing next to each other wearing glasses
Z ₃	a professional baseball player holds up his bat as he watches	a man is jumping over a snow covered hill	a pretty young man sitting next to two men in lots of people	some people dressed in costume and cups

Generated descriptions with different z. [1]

• Evaluating semantic relevance by retrieval

		R@1	R@3	R@5	R@10
S	G-MLE	5.06	12.28	18.24	29.30
3	G-GAN	14.30	30.88	40.06	55.82
	G-MLE	9.88	20.12	27.30	39.94
P	G-GAN	12.04	23.88	30.70	41.78

Image rankings for different generators. [1]

• Paragraph generation with different z values

human	G-GAN, z ₁	G-GAN, z 2	G-MLE
people are on motorcycles. there are green cars behind them. the signs are all brown with chinese written on it.	men are riding on a motorcycle. the man is wearing tan boots, and a white and blue jacket with beige stripes on. the street is made of cobblestone. there are tall bright green trees on the sidewalk.	two people are riding motorcycles. there are many trees on the sidewalk. there is a red and white painted letter on the side of the ledge. tall buildings are on the background.	a man is riding a bike. there are trees on the sidewalk. there are people walking on the sidewalk. there is a tall building in the background.
A baseball player is swinging a bat. He is wearing a black helmet and a black and white uniform. A catcher is behind him wearing a gray uniform. The catcher has a brown glove on his hand. Two men can be seen standing behind a green fence.	a baseball player in a white and blue uniform is holding a white bat. there is a umpire behind the batter in the blue and white uniform. he is getting ready to catch the ball. there is a crowd of people behind him watching him.	men are on a baseball field on a sunny day. the player is wearing a black and white uniform. there is a catcher behind him. the field is green with brown dirt and white shiny lines.	a baseball player is standing on a baseball field. he is wearing a blue helmet on his head. the catcher is wearing a black and gray uniform. the court is green with white lines.

Different paragraph descriptions generated by human, G-GAN, and G-MLE with different z values. [1]

Failure Analysis

- Incorrect details
 - \circ Colors
 - Counts
 - Few samples for each special detail
 - Increased risk of putting more incorrect details due to focus on diversity

Potential extensions?

Future works

- Use VAE instead of GAN
- Use other similarity metrics instead of dot product in evaluator

Presenters

- Kevin Dsouza
- Ainaz Hajimoradlou

References

- 1. B. Dai, S. Fidler, R. Urtasun, and D. Lin, Towards Diverse and Natural Image Descriptions via a Conditional GAN, 2017, *arXiv preprint arXiv: 1703.06029*
- O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge, arXiv preprint arXiv: 1609.06647
- 3. M. Mirza, S. Osindero, Conditional Generative Adversarial Nets, *arXiv* preprint arXiv: 1411.1784

Thank you.