
Presented by:
Gursimran Singh
Borna Ghotbi
{msimar,bgotbi}@cs.ubc.ca

Inferring and executing programs for 
Visual Reasoning

Justin Johnson, Bharath Hariharan, Laurens Maaten, Judy Hoffman, 
Li Fei-Fei, C.Lawrence Zitnick, Ross Girshick 

Stanford University, Facebook Research
International Conference on Computer Vision (ICCV 2017)

CPSC 532L presentation

1



Visual question answering

LSTM

CNN

MERGE Predict

Woman

Who is wearing 
glasses?

Antol etal. Vqa: Visual question answering : Proceedings of the IEEE International Conference on Computer Vision
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● Generalizes well to new kinds of questions
○ who is wearing spectacles; how many people?



Compositional visual reasoning

Q: How many spheres 
are the left of the big 
sphere and the same 
color as the small rubber 
cylinder?
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Johnson, Justin, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. (CVPR), 2017



Compositional visual reasoning

Q: How many spheres 
are the left of the big 
sphere and the same 
color as the small rubber 
cylinder?
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Identify big sphere

Johnson, Justin, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. (CVPR), 2017



Compositional visual reasoning

Q: How many spheres 
are the left of the big 
sphere and the same 
color as the small rubber 
cylinder?
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Identify big sphere

Spheres on left

Johnson, Justin, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. (CVPR), 2017



Compositional visual reasoning

Q: How many spheres 
are the left of the big 
sphere and the same 
color as the small 
rubber cylinder?
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Identify big sphere

Spheres on left

Rubber cylinder

Johnson, Justin, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. (CVPR), 2017



Compositional visual reasoning

Q: How many spheres 
are the left of the big 
sphere and the same 
color as the small 
rubber cylinder?
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Identify big sphere

Spheres on left

Rubber cylinder

Sphere of same color

Johnson, Justin, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. (CVPR), 2017



Compositional visual reasoning

Q: How many spheres 
are the left of the big 
sphere and the same 
color as the small rubber 
cylinder? A:1
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Identify big sphere

Spheres on left

Rubber cylinder

Sphere of same color

Count

Johnson, Justin, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. (CVPR), 2017



Standard VQA?
Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder?

LSTM

CNN

MERGE Predict

 Answer?
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● Can’t model complex questions

LIMITATIONS



Standard VQA?
Q: How many spheres are the 
right of the big sphere and 
the same color as the small 
rubber cylinder?

Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder?
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● Can’t model complex questions
● Lacks composition

LIMITATIONS

LSTM

CNN

MERGE Predict

 Answer?



Standard VQA?
Q: How many spheres are the 
right of the big sphere and 
the same color as the small 
rubber cylinder?

Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder?

Cylinder?

Sphere?

Predict

 Answer?

11

● Can’t model complex questions
● Lacks composition

LIMITATIONS

Move Left

Spheres 
of same 

color

Decompose the network into multiple modules



Standard VQA?
Q: How many spheres are the 
right of the big sphere and 
the same color as the small 
rubber cylinder?

Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder?

● Can’t model complex questions
● Lacks composition
● Uses same structure

Q: How many objects are 
either red cylinders or metal 
objects?

LIMITATIONS
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LSTM

CNN

MERGE Predict

 Answer?



Standard VQA?
Q: How many spheres are the 
right of the big sphere and 
the same color as the small 
rubber cylinder?

Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder?

● Can’t model complex questions
● Lacks composition
● Uses same structure

Q: How many objects are 
either red cylinders or metal 
objects?

LIMITATIONS
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● Use composition and structure

Solution

B

A
H

GC

D

B

A
H

G

D

Use separate networks for each question



Instead: consider a compositional model

Q: How many spheres are the 
right of the big sphere and the 
same color as the small 
rubber cylinder?

Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder? Attributes identification

Counting objects
Comparisons
Spatial relationships
Logical operations

Q: Is the big sphere the same 
material as the thing on the 
right of the cube?

Network architecture 
corresponding to the 

third question

Common operations
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Overview of approach

15Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk



Overview of approach

16Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk



Module networks

17Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk

NLP
Semantic

Parser



Module networks

18Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk

NLP
Semantic

Parser
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Modules recap
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Andreas etal; Deep Compositional Question Answering with Neural Module Networks: arxiv 2017



Module networks - limitations

20Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk

NLP
Semantic

Parser
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Trained separately
Uses some pre-trained parser



Inferring and executing programs

21Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk

Trained end-end!!!



Inferring and executing programs

22Graphics take from -> https://www.youtube.com/watch?v=3pCLma2FqSk



Execution engine
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Modules architectures
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a) Visual feature extraction

b.1) Unary modules

b.2) Binary modules

d) Classifier



What do the modules learn?
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Training
● Train Program Generator
● Freeze Program Generator,

Train Execution Engine
● Finetune
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Reinforce



Clever dataset
A training set of 70,000 images and 699,989 questions

● A validation set of 15,000 images and 149,991 questions

● A test set of 15,000 images and 14,988 questions

● Answers for all train and val questions

● Scene graph annotations for train and val images giving ground-truth

locations, attributes, and relationships for objects

● Objects can be cubes, cylinders and spheres.
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Experiments: Baselines
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Experiments: Strongly and semi-supervised 
learning
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Experiments
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Generalizing to new attribute combinations



Experiments
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Generalizing to new question types

Short: all questions which their questions family has a 
mean program length less than 16

Long: otherwise



Experiments
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The CLEVR-Humans Dataset

   ● Use of questions that are hard to answer for a “smart robot”
● Filtered questions by asking three workers to answer them and removing

those that a majority of workers answers incorrectly.
● About 17000 training questions and 7000 validation and test questions on
● CLEVR images.



Experiments
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Human-composed questions

   



Results
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Other approaches
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Andreas et al. ICCV 2017 Santoro et al. arXiv 2017



Strengths and weaknesses
Strengths

● Novel idea of using compositional reasoning to answer complex questions
● Train program generator on questions using LSTMs
● Training the whole network end to end

Weaknesses

● Not enough results on real images!
● More complex questions may not work properly
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Future works/ possible improvements
Ideas taken from paper

● Adding ternary operations (if/else/then) and loops (for, do) to answer 
questions like “What color is the object with a unique shape?” .

● Control-flow operators could be incorporated into the framework
● Learning programs with limited supervision

Our ideas

● Using treeRNNs to synthesize programs
● Testing the whole framework on real images
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Conclusion
● This method outperforms previous baselines.
● Neural module networks are a more natural way to reproduce reasoning step.
● More flexibility in the composition of the neural module network as modules 

have generic architectures.
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Thanks!
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Visual question answering

LSTM

CNN

MERGE Predict

Woman

Who is wearing 
hat?

● But does not really understand the question; same answer for
○ who is wearing hat? who is wearing?; wearing?
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Antol etal. Vqa: Visual question answering : Proceedings of the IEEE International Conference on Computer Vision



Standard VQA?
Q: How many spheres are the 
right of the big sphere and 
the same color as the small 
rubber cylinder?

Q: How many spheres are the 
left of the big sphere and the 
same color as the small 
rubber cylinder?

INPUT Predict

 Answer?
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Identify
Sphere Left/ Right

Decompose the network!!


