Grounding of Textual Phrases in Images by Reconstruction (ECCV, 2016)

Anna Rohrbach¹ Marcus Rohrbach^{2,3} Ronghang Hu² Trevor Darrell² Bernt Schiele¹

¹Max Planck Institute for Informatics, Saarbrücken, Germany

²UC Berkeley EECS, CA, United States

³ICSI, Berkeley, CA, United States

Presenters: Jiaxuan Chen, Meng Li March 1, 2018

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

Outline

Introduction Motivation & Problem

Methodology GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

Motivation & Problem

Outline

Introduction Motivation & Problem

Methodology

GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

< ∃ →

-

Motivation & Problem

Motivation

 Language grounding (i.e.localizing) in visual data is a challenging problem.

A little brown and white dog emerges from a yellow collapsable toy tunnel onto the lawn.

- Prior studies focus on constrained settings with a small number of nouns to ground.
- Few datasets provide the ground truth localization of phrases

Problem of this paper

Problem:

Given images paired with natural language phrases, grounding arbitrary textual phrases in images, with no, a few, or all bounding box annotations available.

Relation to other works:

This paper uses CNN, LSTM, soft-attention mechanism and a bi-directional mapping (Phrase \Rightarrow Attended Image Region \Rightarrow Reconstructed Phrase).

GroundeR Experimental Setup Results

Outline

ntroduction Motivation & Problem

Methodology GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

- ● ● ●

GroundeR Experimental Setup Results

Training time

- Given a phrase, attend to the most relevant region (or potentially also multiple regions) based on the phrase
- Reconstruct the same phrase p from region(s) it attended to in the first phase

GroundeR Experimental Setup Results

Test time

- 1. Given a phrase, attend to the most relevant region based on the phrase
- 2. Calculate the IOU (intersection over union) value between the selected box and the ground truth box.

GroundeR Experimental Setup Results

Model Overview

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

GroundeR Experimental Setur Results

Learning to ground

- ▶ Generate a set of image region proposals {r_i}_{i=1,...,N}
- Encode phrase and proposal boxes h = f_{LSTM}(p), v_i = f_{CNN}(r_i)

GroundeR Experimental Setur Results

Learning to ground

- ▶ Generate a set of image region proposals {r_i}_{i=1,...,N}
- Encode phrase and proposal boxes h = f_{LSTM}(p), v_i = f_{CNN}(r_i)
- Apply Attention
 - 1. Attention weight: $\bar{\alpha}_i = f_{ATT}(p, r_i) =$ $W_2 * \text{Relu}(W_h h + W_v v_i + b_1) + b_2$
 - 2. Normalized attention weight $\alpha_i = \operatorname{softmax}(\bar{\alpha}_i)$
 - 3. E.g. $\alpha_1 = 0.2, \alpha_2 = 0.7, \alpha_3 = 0.1$

GroundeR Experimental Setup Results

Learning to ground

- ▶ Generate a set of image region proposals {r_i}_{i=1,...,N}
- Encode phrase and proposal boxes h = f_{LSTM}(p), v_i = f_{CNN}(r_i)
- Apply Attention
 - 1. Attention weight: $\bar{\alpha}_i = f_{ATT}(p, r_i) =$ $W_2 * \text{Relu}(W_h h + W_v v_i + b_1) + b_2$
 - 2. Normalized attention weight $\alpha_i = \operatorname{softmax}(\bar{\alpha}_i)$
- Supervised training loss $L_{ATT} = -\frac{1}{B} \sum_{b=1}^{B} \log(\alpha_{\hat{j}})$, where $r_{\hat{i}}$ is the correct proposal box

GroundeR Experimental Setur Results

Learning to reconstruct

Encode visual features

1.
$$v_{ATT} = \sum_{i=1}^{N} \alpha_i v_i$$

= 0.2 v_1 + 0.7 v_2 + 0.1 v_3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

2.
$$v'_{ATT} = f_{REC}(v_{ATT}) =$$

Relu $(W_a v_{ATT} + b_a)$

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

GroundeR Experimental Setup Results

Learning to reconstruct

Encode visual features

L.
$$v_{ATT} = \sum_{i=1}^{N} \alpha_i v_i$$

= $0.2v_1 + 0.7v_2 + 0.1v_3$

30.00

2.
$$v'_{ATT} = f_{REC}(v_{ATT}) =$$

Relu $(W_a v_{ATT} + b_a)$

• Generated distribution over p $P(p|v'_{ATT}) = f_{LSTM}(v'_{ATT})$

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

GroundeR Experimental Setup Results

Learning to reconstruct

Encode visual features

1.
$$v_{ATT} = \sum_{i=1}^{N} \alpha_i v_i$$

= 0.2 v_1 + 0.7 v_2 + 0.1 v_3

2.
$$v'_{ATT} = f_{REC}(v_{ATT}) =$$

Relu $(W_a v_{ATT} + b_a)$

- Generated distribution over p $P(p|v'_{ATT}) = f_{LSTM}(v'_{ATT})$
- Unsupervised training loss $L_{REC} = -\frac{1}{B} \sum_{b=1}^{B} \log(P(\hat{p}|v'_{ATT})),$ where \hat{p} is the ground-truth phrase

GroundeR Experimental Setup Results

Learning to reconstruct

Encode visual features

1.
$$v_{ATT} = \sum_{i=1}^{N} \alpha_i v_i$$

= $0.2v_1 + 0.7v_2 + 0.1v_3$

2.
$$v'_{ATT} = f_{REC}(v_{ATT}) =$$

Relu $(W_a v_{ATT} + b_a)$

- Generated distribution over p $P(p|v'_{ATT}) = f_{LSTM}(v'_{ATT})$
- Unsupervised training loss $L_{REC} = -\frac{1}{B} \sum_{b=1}^{B} \log(P(\hat{\rho}|v'_{ATT})),$ where $\hat{\rho}$ is the ground-truth phrase

(人間) ト く ヨ ト く ヨ ト

Semi-supervised training loss L = λL_{ATT} + L_{REC}

GroundeR Experimental Setup Results

Outline

ntroduction Motivation & Problem

Methodology GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

- ● ● ●

Experimental Setup I

Datasets: Flickr 30k Entities and ReferItGame

- Flickr 30k Entities: over 275K bounding boxes from 31K images with natural language phrases
- ReferItGame: over 99K regions from 20K images with natural language expressions

Generate 100 bounding box proposals for each image using

- Selective Search for Flickr 30k Entities
- Edge Boxes for ReferItGame

For semi- and fully supervised models, the ground-truth attention is obtained by selecting the proposal box that overlaps most with the ground-truth box.

・ 同・ ・ ヨ・

GroundeR Experimental Setup Results

Experimental Setup II

Flickr 30k Entities

- VGG-CLS: VGG16 network trained on ImageNet
- VGG-DET: VGG16 network fine-tuned for object detection on PASCAL, trained using Fast R-CNN

ReferItGame

 VGG+SPAT: VGG-CLS features and additional spatial features provided by Hu et al (2016).

Test time evaluation: the ratio of phrases for which the attended box overlaps with the ground-truth box by more than 0.5 IOU.

Introduction Ground Methodology Experim Discussions Results

GroundeR Experimental Setup **Results**

Outline

ntroduction Motivation & Problem

Methodology

GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

- ● ● ●

э

GroundeR Experimental Setup Results

Experiments on Flickr 30k Entities dataset

Approach	Accuracy Other VGG-CLS VGG-DET			
Unsupervised training				
Deep Fragments [6]	21.78	-	-	
GroundeR	-	24.66	28.94	
Supervised training				
CCA [35]	-	27.42	-	
SCRC [18]	-	27.80	-	
DSPE [45]	-	-	43.89	
GroundeR	-	41.56	47.81	
Semi-supervised traini	ng			
GroundeR 3.12% annot.	-	33.02	42.32	
GroundeR 6.25% annot.	-	37.10	44.02	
GroundeR 12.5% annot.	-	38.67	44.96	
GroundeR 25.0% annot.	-	39.31	45.32	
GroundeR 50.0% annot.	-	40.72	46.65	
GroundeR 100.0% annot.	-	42.43	48.38	
Proposal upperbound	77.90	77.90	77.90	

Table 1: Phrase localization performance on Flickr 30k Entities with different levels of bounding box supervision, accuracy in %.

GroundeR Experimental Setup Results

Experiments on ReferItGame dataset

Approach	Accuracy		
	Other	VGG	VGG+SPAT
Unsupervised training			
LRCN [9] (reported in [18])	8.59	-	-
CAFFE-7K [15] (reported in [18])	10.38	-	-
GroundeR	-	10.69	10.70
Supervised training			
SCRC [18]	-	-	17.93
GroundeR	-	23.44	26.93
Semi-supervised training			
GroundeR 3.12% annot.	-	13.70	15.03
GroundeR 6.25% annot.	-	16.19	19.53
GroundeR 12.5% annot.	-	19.02	21.65
GroundeR 25.0% annot.	-	21.43	24.55
GroundeR 50.0% annot.	-	22.67	25.51
GroundeR 100.0% annot.	-	24.18	28.51
Proposal upperbound	59.38	59.38	59.38

Table 3: Phrase localization performance on ReferItGame with different levels of bounding box supervision, accuracy in %.

(人間) ト く ヨ ト く ヨ ト

GroundeR Experimental Setup Results

Qualitative results on Flickr 30k Entities

A little girl in a pink shirt is looking at a toy doll.

A woman is riding a bicycle on the pavement.

A girl with a red cap, hair tied up and a gray shirt is fishing in a calm lake.

Fig. 3: Qualitative results on the test set of Flickr 30k Entities. Top : GroundeR (VGG-DET) unsupervised, bottom: GroundeR (VGG-DET) supervised.

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

Results

Qualitative results on ReferItGame

two people on right

the top of the building

picture of a bird flying dat alpaca up in front, above sand total coffeelate swag

palm tree coming out of guy with blue shirt and hut to the nearest left of vellow shorts the person on the right

Fig. 4: Qualitative results on the test set of ReferItGame: GroundeR (VGG+SPAT) supervised. Green: ground-truth box, red: predicted box.

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

Comments Potential Extensions

Outline

ntroduction Motivation & Problem

Aethodology GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

- **→** → **→**

э

Comments Potential Extensions

Comments

Contribution:

Applicability to un-, semi-, and supervised training regimes

Limitations:

- Ignore the object relationships
- Select a single proposal box that overlaps the most with ground-truth box but not the union

.

Comments Potential Extensions

Outline

ntroduction Motivation & Problem

Aethodology GroundeR Experimental Setup Results

Discussions

Comments Potential Extensions

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

- **→** → **→**

-

Comments Potential Extensions

Potential Extensions

- Fine tune VGG
- Apply attention on input phrases
- Different language model

- **→** → **→**

Comments Potential Extensions

Thanks for your attention!

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu , Trevor Darrel Grounding of Textual Phrases in Images by Reconstruction

□ ▶ < □ ▶ < □</p>