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Introduction
● Previous work to describe 

videos first started with labelling 
them with a predefined category. 
playing piano or dancing

● What’s missing?
● Detail
● Any solutions?!
● Explaining video semantics 

using sentence descriptions
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● Dense-captioning events
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Dense-captioning events vs. dense-image captioning
● Event localization in time vs. Localization of regions in space
● Events range across multiple time scales and can even overlap 

○ Requires encoding short as well as long  sequences of video frames to propose events  

○ Previous works used  mean-pooling or a recurrent neural network (RNN)  

○ Vanishing gradients in  long video sequences  

○ Generating action proposals to multi-scale detection of events.





● The events in a given video are usually 
related to one another. 

○ Use context from surrounding events to caption 
each event.

○ One solution : describe videos with multiple 
sentences

○ Problem: generates sentences for sequentially 
occurring events and highly correlated to the 
objects in the video 

○ Doesn’t not generalize to “open” domain videos

○ Solution: using context will solve the problem
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Related Work: Temporal Action Proposal

Localization Module: Predict the location of K proposals inside the stream based on a linear 
combination of the last state in the sequence encoder. In this way the model can output segments of 
different lengths in one pass.

Credit: Daps: Deep action Proposals for action understanding, Escorcia et al.
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Related Work: Video captioning

Early Solutions: Mean pooled video frame features and used a pipeline 
inspired by the success of image captioning

Problems: Only works for short video clips with only one major event

Some solutions: 

● Hierarchical RNN (Sentences generated are not localized in time. The 
dataset only contain non-overlapping sequential events)

● Attention mechanism
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Model: Event Proposal Module

Main difference from traditional DAPs:

● Before feeding into DAPs, sample the video features at different strides (1, 2, 4, and 
8 in the paper). The longer strides are able to capture longer events.

● Traditional DAPs uses non-maximum suppression to eliminate overlapping outputs. 
Here overlapping outputs are kept separately and treated as individual events
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Experiments and Results 

● Evaluation is done by multi-captioning.
● Activitynet captions dataset is used to test model.
● Baseline results on two additional tasks that are possible:

○ Localization

○ Retrieval



Qualitative Results

Adding context can generate consistent captions.



Compare online versus full model
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Qualitative Results

 Context might add more noise to rare events.



Quantitative Results

with GT proposals with learnt proposals
B@1 B@2 B@3 B@4 M C B@1 B@2 B@3 B@4 M C

LSTM-YT 18.22 7.43 3.24 1.24 6.56 14.86 - - - - - -

S2VT  20.35 8.99 4.60 2.62 7.85 20.97 - - - - - -
H-RNN 19.46 8.78 4.34 2.53 8.02 20.18 - - - - - -
no context 
(ours)

20.35 8.99 4.60 2.62 7.85 20.97 12.23 3.48 2.10 0.88 3.76 12.34

Online-attn 
(ours)

21.92 9.88 5.21 3.06 8.50 22.19 15.20 5.43 2.52 1.34 4.18 14.20

online (ours) 22.10 10.02 5.66 3.10 8.88 22.94 17.10 7.34 3.23 1.89 4.38 15.30

Full-attn 
(ours)

26.34 13.12 6.78 3.87 9.36 24.24 15.43 5.63 2.74 1.72 4.42 15.29

full (ours) 26.45 13.48 7.12 3.98 9.46 24.56 17.95 7.69 3.86 2.20 4.82 17.29



B@1 B@2 B@3 B@4 M C
No context
1st sen. 23.60 12.19 7.11 4.51 9.34 31.56

2nd sen. 19.74 8.17 3.76 1.87 7.79 19.37

3rd sen. 18.89 7.51 3.43 1.87 7.31 19.36

Online
1st sen. 24.93 12.38 7.45 4.77 8.10 30.92

2nd sen. 19.96 8.66 4.01 1.93 7.88 19.17

3rd sen. 19.22 7.72 3.56 1.89 7.41 19.36

Full
1st sen. 26.33 13.98 8.45 5.52 10.03 29.92

2nd sen. 21.46 9.06 4.40 2.33 8.28 20.17

3rd sen. 19.82 7.93 3.63 1.83 7.81 20.01

Quantitative Results



Quantitative Results

Video retrieval Paragraph retrieval

R@1 R@5 R@50 Med. 
rank

R@1 R@5 R@50 Med. 
rank

LSTM-YT 0.00 0.04 0.24 102 0.00 0.07 0.38 98

no context 0.05 0.14 0.32 78 0.07 0.18 0.45 56

online (ours) 0.10 0.32 0.60 36 0.17 0.34 0.70 33

full (ours) 0.14 0.32 0.65 34 0.18 0.36 0.74 32
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Conclusion

● Dense-captioning events

○ Events can occur within a second or last up to minutes

○ Events in a video are related to one another.
● Proposed model combines a proposal module with a new captioning module

○ The proposal module 

○ The captioning module

● Compare variants of the model and show that context does indeed improve 
captioning.

● Release a new dataset for dense-captioning events: activitynet captions.



Pros & Cons and Possible Extensions

Pros:
● Through sampling features at different strides and coming 

up with context incorporated feature, effectively solved the 
problem of captioning overlapping events of different 
lengths in a long video

Cons and Possible Extensions:
● Use more accurate models to extract video features
● Use more attention mechanisms
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Questions?!!



Thanks For your 
Attention!


