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What is Situation Recognition?

Is the same thing happening in these images?
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What is Situation Recognition?

What is happening in an image?

A man is carrying a baby on his chest outdoors.

slide from Mark Yatskar
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How to extract roles?

FrameNet: a semantic-role-labeling project.

• The meanings of most words can best be understood on the
basis of a semantic frame.

• For a frame f,
• Set of semantic roles is called Ef.
• Set of pairs of semantic roles and their values is called a ”realized
frame” Rf.
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Problem Formulation

• A situation S = (v,Rf), where v is a verb and Rf is a realized
frame.

• Each element in Rf is (e,ne), is a pair of semantic role e and a
noun ne.

(carrying, {(agent,man), (item, table), (agentpart,back), (place, street)})

• Frame f

{(agent, ), (item, ), (agentpart, ), (place, )}

• A verb v ∈ V is mapped to exactly one frame f ∈ F that is
described with a set of semantic roles.

• V and F are derived from FrameNet (Fillmore et al. 2003)
• Situation recognition:

argmax
S

P(S|i)
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Conditional Random Field (CRF): Basics

• CRF is a probabilistic graphical model that fits the conditional
distributions P(Y|X). In our setting P(S|i).

• Conditional distribution is factorized using potentials defined
on subsets of Y:

P(Y|X) ∝ ψ1(D1, X)ψ2(D2, X)...

For situation recognition:

P(S|i; θ) ∝ ψv(v, i; θ)
∏

(e,ne)∈Rf

ψe(v, e,ne, i; θ)
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Conditional Random Field (CRF): Potentials

•
P(S|i; θ) ∝ ψv(v, i; θ)

∏
(e,ne)∈Rf

ψe(v, e,ne, i; θ)

• Verb potential:
ψv(v, i; θ) = eϕv(v,i;θ)

• Verb-Role-None potential:

ψe(v, e,ne, i; θ) = eϕe(v,e,ne,i;θ)
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Conditional Random Field (CRF): Architecture of Previous Work

• Let gi ∈ Rp be an image representation from VGG

ϕv(v, i; θ) = gTi θv, ϕe(v, e,ne, i; θ) = gTi θv,e,ne .

Figure 7: Situation recognition: visual semantic role labeling for image
understanding (Yatskar et al. 2016)
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Conditional Random Field (CRF): Training

• Training data: {imagei, S ∈ Ai}ni=1 (Ai ground truth situations)
• Optimize the log-likelihood of observing at least one situation
S ∈ Ai

θ̂ = argmax
θ

n∑
i=1

log

1− ∏
S∈Ai

(1− p(S|i; θ)


Potential problem:

• ϕe(v, e,ne, i; θ) = gTi θv,e,ne , need to compute θv,e,ne for every
combination of (v, e,ne).

• Hard to obtain an accurate estimate with rare (v, e,ne)
combinations.
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Motivation



Motivation: Semantic sparsity

• Semantic sparsity: “there are a combinatorial number of
possible outputs, no dataset can cover them all” (Yatskar, 2016)

• For a given verb, many role-value combinations are rare.
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Motivation: Semantic sparsity

• Semantic sparsity is common: 35% of the (verb, role, noun) pairs
appeared less than 10 times in the training set.

• Current CRF model performs badly with rarely observed
role-value pairs.
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Contribution of the paper

The paper “Commonly Uncommon” (Yatskar et al, 2016) deals with
semantic sparsity in situation recognition by

• (1) introducing compositional CRF that shares information of the
nouns between roles.

• (2) semantically augmenting the training data with gathered
web data.
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Methodology



Compositional CRF: Basic Idea

• Some nouns are shared across different roles (e.g. water)
• Independent representation of noun, (verb,role), and image.
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Compositional CRF: Tensor Potential

• CRF:
ϕe(v, e,ne, i; θ) = gTi θv,e,ne .

• Compositional CRF

T(v, e,ne,gi) = C⊙ (dne ⊗ gTi Hv,e ⊗ gi)

ϕe(v, e,ne, i; θ) =
M∑
x=0

O∑
y=0

P∑
z=0

T(v, e,ne,gi)[x, y, z].
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Compositional CRF: Proposed Architecture
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Semantic data augmentation: Overview

• Generate descriptive sentences.
• Use image search to find images for data augmentation.
• Pre-train the network on images from the web.
• Use ”Self Training” to reduce effect of noise.
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Semantic data augmentation: Terminology

We only do data augmentation for ”uncommon situations”:

For each image i, the groundtruth situation is Si = (vi,Rfi).

S is an uncommons situation if ∃(e,ne) ∈ Rf : #{(e,ne) ∈ Rfi |vi = v} is small.
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Semantic data augmentation: Generate descriptive sentences

For an uncommon situation S = (v,Rf), enumerate all sub-pieces of
Rf.

Example:

Rf = (carrying, {(agent,man), (item, table), (agentpart,back), (place, street)})y
(carrying, {(agent,man)}

(carrying, {(agent,man), (item, table)}

(carrying, {(item, table)}
...
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Semantic data augmentation: Generate descriptive sentences

Using a template for each verb, each sub-structure is
deterministically converted into a phrase.

Example:
{agent} carrying {item} {with agentpart} {in place}y

man carrying
man carrying table
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Semantic data augmentation: Retrieve images

• Generated phrases are used as queries to Google image search.
• Construct a set of images annotated with a verb and partially
complete realized frames.
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Semantic data augmentation: Pre-training

• Retrieved images are annotated partially.
• Partially realized frame: Rpf
• Use marginal likelihood for computing potentials.

p̂(S|i; θ) ∝ ψv(v, i; θ)
∏

(e,ne)∈Rpf

ψe(v, e,ne, i; θ)

×
∏

e/∈Rpf∧e∈Ef

∑
n∈N

ψe(v, e,n, i; θ)
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Semantic data augmentation: Self Training

Retrieved images are noisy.
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Experimental setup and results



Experimental setup: Baselines

1. Image Regression (Yatskar et al, 2016)

ϕe(v, e,ne, i, θ) = gTi θv,e,ne

2. Noun potential

p(S|θi) = ψv(v, i, ; θ)
∏

(e,ne)∈Rf

ψe(v, e,ne, i; θ)ψne(ne, i; θ)

3. Inner product composition

ϕe(v, e,ne, i) =
∑
k

dTneH(k,v,e)gi
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Results

Results on the full imSitu development set

Results on the rare portion of imSitu development set
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Results

Results on the rare portion of imSitu test set

Results on the rare portion of imSitu test set
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Future Work



Future Work

• Follow-up publications
• Li et al. (2017) captures joint dependencies between roles using
neural networks defined on a graph.

• Mallya and Lazebnik (2017) proposes Recurrent Neural Network
(RNN) models to predict structured ’image situations’.

• Our thoughts:
• Multiple frames corresponding to a given verb.
• Predict the number of situations and their realizations for a given
image.

• A generalized definition of situation. (not only defined with (v,Rf)).
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