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Background



What is Situation Recognition?

Is the same thing happening in these images?

turkers say... why no?
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What is Situation Recognition?

What is happening in an image?

A man is carrying a baby on his chest outdoors.

carrying
agent item agentpart place
man baby chest outdoors

slide from Mark Yatskar



How to extract roles?

FrameNet: a semantic-role-labeling project.

- The meanings of most words can best be understood on the
basis of a semantic frame.

agent food container heatsource tool

noun noun noun noun noun noun

- For a frame f,

- Set of semantic roles is called £;.

- Set of pairs of semantic roles and their values is called a "realized
frame” Ry.



Problem Formulation

- Asituation S = (v, Ry), where v is a verb and Ry is a realized
frame.

- Each elementin Ry is (e, ne), is a pair of semantic role e and a
noun fe.

(carrying, {(agent, man), (item, table), (agentpart, back), (place, )

- Frame f

{(agent,), (item,), (agentpart,), (place, )}

- Averb v e Vis mapped to exactly one frame f € F that is
described with a set of semantic roles.

- Vand F are derived from FrameNet (Fillmore et al. 2003)
- Situation recognition:

argmax P(S]i)
s



Conditional Random Field (CRF): Basics

- CRF is a probabilistic graphical model that fits the conditional
distributions P(Y|X). In our setting P(S|i).

- Conditional distribution is factorized using potentials defined
on subsets of v

P(YIX) o< 91(D1, X)h2(D2, X)...
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Conditional Random Field (CRF): Potentials

P(Sli; 0) o< 1y(v,i;0) H Ye(V, €, Ne,1;0)

(e,ne)€Ry

- Verb potential:
w\/(v7 Iy 9) = e(ﬁv(V,/;Q)

- Verb-Role-None potential:

’(/}E’(V7 e7 n€7 Iv 9) = e(/)e(V7e7”e7i§9)



Conditional Random Field (CRF): Architecture of Previous Work

- Let g; € RP be an image representation from VGG
(z)v(\/a i; 9) - g(TeW ¢9(V7ean€ai;9) - 979V7e»”e'

Neural Conditional Random Field
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Figure 7: Situation recognition: visual semantic role labeling for image
understanding (Yatskar et al. 2016)



Conditional Random Field (CRF): Training

- Training data: {image;, S € A;}_, (A; ground truth situations)

- Optimize the log-likelihood of observing at least one situation
S eA

n
6 =argmax > log [ 1— JJ (01— p(sli; 0)
A SeA

© de(v,e,Ne,i;0) = Q,TGV,e,ne, need to compute 6y ¢, for every
combination of (v, e, ne).

- Hard to obtain an accurate estimate with rare (v, e, ne)
combinations.
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Motivation: Semantic sparsity

- Semantic sparsity: “there are a combinatorial number of
possible outputs, no dataset can cover them all” (Yatskar, 2016)

- For a given verb, many role-value combinations are rare.

CARRYING

ROLE | VALUE ROLE | VALUE
AGENT MAN AGENT  WOMAN AGENT MAN
ITEM BABY ITEM BUCKET ITEM TABLE
AGENTPART ~ CHEST |[AGENTPART ~ HEAD | |AGENTPART  BACK
PLACE  OUTSIDE PLACE PATH PLACE  STREET




Motivation: Semantic sparsity

- Semantic sparsity is common: 35% of the (verb, role, noun) pairs
appeared less than 10 times in the training set.

- Current CRF model performs badly with rarely observed
role-value pairs.
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Contribution of the paper

The paper “Commonly Uncommon” (Yatskar et al, 2016) deals with
semantic sparsity in situation recognition by

- (1) introducing compositional CRF that shares information of the
nouns between roles.

- (2) semantically augmenting the training data with gathered
web data.
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Compositional CRF: Basic Idea

-

JUMPING
ROLE VALUE ROLE /ALUE

AGENT BOY AGENT BEAR AGENT MAN AGENT FIREMAN
SOURCE CLIFF SOURCE ICEBERG SOURCE  SPRAY CAN SOURCE HOSE
OBSTACLE - OBSTACLE WATER SUBSTANCE PAINT SUBSTANCE  WATER
DESTINATION  WATER J DESTINATION  ICEBERG DESTINATION WALL DESTINATION FIRE
PLACE LAKE PLACE OUTDOOR PLACE ALLEYWAY PLACE OUTSIDE

- Some nouns are shared across different roles (e.g. water)
- Independent representation of noun, (verb,role), and image.



Compositional CRF: Tensor Potential

- CRF:
(be(Va e, Ne, i; 9) = g;revxe,ne'
- Compositional CRF

T(Va ea neagf) - C® (dne ® g)THV,e ® g))

M 0 P
¢€(V7eanea[; 9) :ZZ T(V7ev neagi)[xvyaz]'
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Compositional CRF: Proposed Architecture

Global Noun VGG Image Specific
Representations Image Representation Role Representations

Cat

Tensor Composition
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Semantic data augmentation: Overview

- Generate descriptive sentences.

- Use image search to find images for data augmentation.
- Pre-train the network on images from the web.

- Use "Self Training” to reduce effect of noise.



Semantic data augmentation: Terminology

We only do data augmentation for "uncommon situations”

For each image i, the groundtruth situation is S; = (v;, Ry).

S is an uncommons situation if 3(e, ne) € Ry : #{(e, ne) € Ry |v; = v} is small.
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Semantic data augmentation: Generate descriptive sentences

For an uncommon situation S = (v, Ry), enumerate all sub-pieces of
Ry.

Example:
R¢ = (carrying, {(agent, man), (item, table), (agentpart, back), (place, street)})

l

(carrying, {(agent, man)}
(carrying, {(agent, man), (item, table)}

)

(carrying, {(item,table)}

20



Semantic data augmentation: Generate descriptive sentences

Using a template for each verb, each sub-structure is
deterministically converted into a phrase.

Example:
{agent} carrying {item} {with agentpart} {in place}

I

man carrying
man carrying table

21



Semantic data augmentation: Retrieve images

- Generated phrases are used as queries to Google image search.

- Construct a set of images annotated with a verb and partially
complete realized frames.

22



Semantic data augmentation: Pre-training

- Retrieved images are annotated partially.
- Partially realized frame: Ryf
- Use marginal likelihood for computing potentials.

D(SIi; 0) o< (v, i; 0) H Ye(v, €,Ne,1;0)
(e,ne) ERys
< I D welv.e,n,i;0)
e¢RyAecE nEN
carrying
agent item agentpart place

man - - - 23



Semantic data augmentation: Self Training

Retrieved images are noisy.

Increase k

Use the trained
model to rank all Pre-train on the
augmented images selected
and keep top-k augmented images
according to p~

Train the model
on imSitu

Train the model
on imSitu

24



Experimental setup and results




Experimental setup: Baselines

1. Image Regression (Yatskar et al, 2016)

(b@(vv e7 n€7 ia 0) = gz—ev,e,ne

2. Noun potential

p(SI6) = %u(v,is:0) T we(v,e,ne,i; )i, (ne,i; 6)

(e;ne)€Rs

3. Inner product composition

be(V,€,Ne, i) = Z dh Hikw,e)9i

k
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top-1 predicted verb top-5 predicted verbs ground truth verbs

verb | value | value-all verb | value | value-all || value | value-all mean

1 : Image R ion [4] 3225 | 24.56 14.28 58.64 | 42.68 22.75 65.90 29.50 36.32
a2 Noun Potential + reg 27.64 | 2121 1221 5395 | 39.95 21.45 68.87 3231 34.70
ERIE Inner product ition + reg 32.13 | 2477 14.71 5833 | 4293 23.14 66.79 30.2 36.62
Ela Tensor composition 3173 | 24.04 13.73 58.06 | 42.64 227 68.73 32.14 36.72
5 ‘Tensor composition + reg 3291 | 25.39 14.87 5992 | 445 24.04 69.39 33.17 38.02

P 6 Baseline : Image R 3240 | 24.14 15.17 59.10 | 44.04 24.40 68.03 31.93 3753
v [7 “Tensor composition + reg 3404 | 2647 15.73 61.75 | 4648 25.77 70.89 35.08 39.53
* ["8 | Tensor composition + reg + self train | 34.20 | 26.56 15.61 62.21 | 46.72 25.66 70.80 34.82 39.57

Results on the full imSitu development set
top-1 predicted verb top-5 predicted verbs ground truth verbs

verb | value | value-all verb | value | value-all || value | value-all mean

1 : image ion [+4] 19.89 | 11.68 2.85 44.00 | 2493 6.16 50.80 9.97 19.92

g 2 Noun potential + reg 15.88 | 9.13 1.86 3822 | 2228 5.46 54.65 1191 19.92
E[3 Inner product ition + reg 18.96 | 10.69 1.89 4253 | 2328 3.69 49.54 6.46 19.63
T2 Tensor composition 19.78 [ 11.28 2.26 4266 | 24.42 5.57 54.06 1147 2143
5 ‘Tensor composition + reg 21.12 | 11.89 2.20 45.14 [ 2551 5.36 53.58 10.62 21.93

6 Baseline : image 1995 | 1144 213 43.08 | 2456 495 51.55 841 20.76

7 ‘Tensor composition + reg 20.08 | 11.58 222 4482 | 26.02 5.55 55.45 1153 22.16

8 | Tensor composition + reg + self train | 20.52 | 11.91 234 4594 | 26.99 6.06 5590 12.04 22.71

Results on the rare portion of imSitu development set
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Global Noun VGG Image Specific

Representations Image Representation Role Representations
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S e L

| DOUSING |  FLOATING LEADING RIDING

ROLE @ VALUE ROLE | VALUE ROLE  VALUE

AL ALt L, 3.0 AGENT = WOMAN | AGENT  TRUCK
LQUD | WATER | MEDIUM | WATER

= e e = |FOLLOWER ~ HORSE || VEHICLE = HORSE
PLACE | BUIDNG | PLACE  OUTSIDE || PLACE | ROAD || PLACE FIELD
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top-1 predicted verb top-5 predicted verbs ground truth verbs
verb | value | value-all verb | value | value-all || value | value-all || mean
{mSitu Baseline: Image Regression [+-] 3234 | 2464 14.19 58.88 | 42.76 | 2255 65.66 28.96 36.25
Tensor composition + reg 3296 | 2532 14.57 60.12 | 44.64 | 24.00 69.2 3297 37.97
+SA Baseline : Image R 323 | 2495 14.77 59.52 | 44.08 23.99 67.82 31.46 37.36
Tensor ition + reg + self train | 34.12 | 2645 1551 62.59 | 46.88 | 2546 70.44 3438 39.48

Results on the rare portion of imSitu test set

top-1 predicted verb top-5 predicted verbs ground truth verbs
verb | value | value-all verb | value | value-all || value | value-all || mean
{mSitu Baseline: Image Regression ] 2061 | 11.79 3.07 4475 | 24.85 5.98 50.37 9.31 21.34
i Tensor composition + reg 19.96 | 1157 2.30 4489 | 2526 4.87 53.39 10.15 21.55
+SA Baseline : Image Regression 19.46 | 11.15 2.13 4352 | 24.14 4.65 51.21 8.26 20.57
Tensor ition + reg + self train | 2032 | 11.87 252 47.07 | 2750 635 5572 1228 22.95

Results on the rare portion of imSitu test set
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top-5 verb accuracy

Baseline CRF
10 O Compositinal CRF+SA

0 10 20 30 40 50 60 70 80 90 100 110 120
# of samples of least observed role,value pair
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PLACE
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Future Work

- Follow-up publications
- Li et al. (2017) captures joint dependencies between roles using
neural networks defined on a graph.
- Mallya and Lazebnik (2017) proposes Recurrent Neural Network
(RNN) models to predict structured 'image situations’.

- Our thoughts:

- Multiple frames corresponding to a given verb.

- Predict the number of situations and their realizations for a given
image.

- A generalized definition of situation. (not only defined with (v, Rf)).
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