Commonly Uncommon

Semantic Sparsity in Situation Recognition

Saeid Naderiparizi Department of Computer Science

Xiaomeng Ju Department of Statistics

- Background
- Motivation
- Methodology
 - Compositional conditional random field
 - Semantic data augmentation
- Experimental setup and results
- Future Work

Background

Is the same thing happening in these images?

Is the same thing happening in these images?

Is the same thing happening in these images?

Is the same thing happening in these images?

Is the same thing happening in these images?

Is the same thing happening in these images?

What is happening in an image?

A man is carrying a baby on his chest outdoors.

carrying									
agent	item	agentpart	place						
man	baby	chest	outdoors						

FrameNet: a semantic-role-labeling project.

• The meanings of most words can best be understood on the basis of a **semantic frame**.

cooking										
agent	food	container	heatsource	tool	place					
noun	noun	noun	noun	noun	noun					

- For a frame *f*,
 - Set of semantic roles is called E_f .
 - Set of pairs of semantic roles and their values is called a "realized frame" R_f .

Problem Formulation

- A situation $S = (\mathbf{v}, R_f)$, where \mathbf{v} is a verb and R_f is a realized frame.
- Each element in R_f is (e, n_e) , is a pair of semantic role e and a noun n_e .

(carrying, {(agent, man), (item, table), (agentpart, back), (place, street)})

• Frame f

{(agent,), (item,), (agentpart,), (place,)}

- A verb $v \in V$ is mapped to exactly one frame $f \in F$ that is described with a set of semantic roles.
- V and F are derived from FrameNet (Fillmore et al. 2003)
- Situation recognition:

$$\underset{S}{\operatorname{argmax}} P(S|i)$$

Conditional Random Field (CRF): Basics

- CRF is a probabilistic graphical model that fits the conditional distributions P(Y|X). In our setting P(S|i).
- Conditional distribution is factorized using **potentials** defined on subsets of Y:

CLEAN AGENT SOURCE DIRT TOOL PLACE man_chimney_soot_brush_roof

 $P(Y|X) \propto \psi_1(D_1, X)\psi_2(D_2, X)...$

Conditional Random Field

For situation recognition:

$$P(S|i;\theta) \propto \psi_{v}(v,i;\theta) \prod_{(e,n_{e}) \in R_{f}} \psi_{e}(v,e,n_{e},i;\theta)$$

$$P(S|i;\theta) \propto \psi_{v}(v,i;\theta) \prod_{(e,n_{e})\in R_{f}} \psi_{e}(v,e,n_{e},i;\theta)$$

• Verb potential:

٠

$$\psi_{\mathsf{V}}(\mathsf{V},\mathsf{i};\theta)=e^{\phi_{\mathsf{V}}(\mathsf{V},\mathsf{i};\theta)}$$

• Verb-Role-None potential:

$$\psi_e(\mathbf{v}, e, n_e, i; \theta) = e^{\phi_e(\mathbf{v}, e, n_e, i; \theta)}$$

Conditional Random Field (CRF): Architecture of Previous Work

• Let $g_i \in \mathbb{R}^p$ be an image representation from VGG

 $\phi_{\mathsf{v}}(\mathsf{v},i;\theta) = g_i^{\mathsf{T}}\theta_{\mathsf{v}}, \qquad \phi_{e}(\mathsf{v},e,n_{e},i;\theta) = g_i^{\mathsf{T}}\theta_{\mathsf{v},e,n_{e}}.$

Figure 7: Situation recognition: visual semantic role labeling for image understanding (Yatskar et al. 2016)

Conditional Random Field (CRF): Training

- Training data: {image_i, $S \in A_i$ }ⁿ_{i=1} (A_i ground truth situations)
- Optimize the log-likelihood of observing at least one situation $S \in A_i$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(1 - \prod_{S \in A_i} (1 - p(S|i;\theta)) \right)$$

Potential problem:

- $\phi_e(v, e, n_e, i; \theta) = g_i^T \theta_{v, e, n_e}$, need to compute θ_{v, e, n_e} for every combination of (v, e, n_e) .
- Hard to obtain an accurate estimate with rare (v, e, n_e) combinations.

Motivation

Motivation: Semantic sparsity

- Semantic sparsity: "there are a combinatorial number of possible outputs, no dataset can cover them all" (Yatskar, 2016)
- For a given verb, many role-value combinations are rare.

Motivation: Semantic sparsity

- Semantic sparsity is common: 35% of the (verb, role, noun) pairs appeared less than 10 times in the training set.
- Current CRF model performs badly with rarely observed role-value pairs.

The paper "Commonly Uncommon" (Yatskar et al, 2016) deals with semantic sparsity in situation recognition by

- (1) introducing compositional CRF that shares information of the nouns between roles.
- (2) semantically augmenting the training data with gathered web data.

Methodology

Compositional CRF: Basic Idea

	JU	MPI	NG			SPRAYING							
ROLE	VALUE		ROLE	VALUE		ROLE	VALUE		ROLE	VALUE			
AGENT	BOY		AGENT	BEAR		AGENT	MAN		AGENT	FIREMAN			
SOURCE	CLIFF		SOURCE	ICEBERG		SOURCE	SPRAY CAN		SOURCE	HOSE			
OBSTACLE	-		OBSTACLE	WATER		SUBSTANCE	PAINT		SUBSTANCE	WATER			
DESTINATION	WATER		DESTINATION	ICEBERG		DESTINATION	WALL		DESTINATION	FIRE			
PLACE	LAKE		PLACE	OUTDOOR		PLACE	ALLEYWAY		PLACE	OUTSIDE			

- Some nouns are shared across different roles (e.g. water)
- Independent representation of noun, (verb,role), and image.

Compositional CRF: Tensor Potential

• CRF:

$$\phi_e(\mathbf{v}, e, n_e, i; \theta) = g_i^{\mathsf{T}} \theta_{\mathbf{v}, e, n_e}.$$

• Compositional CRF

$$T(\mathbf{v}, e, n_e, g_i) = C \odot (d_{n_e} \otimes g_i^T H_{\mathbf{v}, e} \otimes g_i)$$

$$\phi_e(\mathbf{v}, e, n_e, i; \theta) = \sum_{x=0}^{M} \sum_{y=0}^{O} \sum_{z=0}^{P} T(\mathbf{v}, e, n_e, g_i)[x, y, z].$$

Compositional CRF: Proposed Architecture

- Generate descriptive sentences.
- Use image search to find images for data augmentation.
- Pre-train the network on images from the web.
- Use "Self Training" to reduce effect of noise.

We only do data augmentation for "uncommon situations":

For each image *i*, the groundtruth situation is $S_i = (v_i, R_{f_i})$.

S is an uncommons situation if $\exists (e, n_e) \in R_f : \#\{(e, n_e) \in R_{f_i} | v_i = v\}$ is small.

Semantic data augmentation: Generate descriptive sentences

For an uncommon situation $S = (v, R_f)$, enumerate all sub-pieces of R_f .

Example:

 $R_f = (carrying, \{(agent, man), (item, table), (agentpart, back), (place, street)\})$

```
↓
(carrying, {(agent, man)}
(carrying, {(agent, man), (item, table)}
(carrying, {(item, table)}
```

Using a template for each verb, each sub-structure is deterministically converted into a phrase.

Example:
{agent} carrying {item} {with agentpart} {in place}

man carrying man carrying table

- Generated phrases are used as queries to Google image search.
- Construct a set of images annotated with a verb and partially complete realized frames.

Semantic data augmentation: Pre-training

- Retrieved images are annotated partially.
- Partially realized frame: R_{pf}

ŕ

• Use marginal likelihood for computing potentials.

$$\begin{split} \hat{\phi}(\mathsf{S}|i;\theta) \propto \psi_{\mathsf{V}}(\mathsf{v},i;\theta) \prod_{(e,n_e)\in \mathsf{R}_{pf}} \psi_{e}(\mathsf{v},e,n_e,i;\theta) \\ \times \prod_{e\notin\mathsf{R}_{ef}\wedge e \in \mathsf{F}_{e}} \sum_{n\in\mathsf{N}} \psi_{e}(\mathsf{v},e,n,i;\theta) \end{split}$$

carrying									
agent item agentpart place									
man	-	-	-						

Semantic data augmentation: Self Training

Retrieved images are noisy.

Experimental setup and results

1. Image Regression (Yatskar et al, 2016)

$$\phi_e(\mathbf{v}, e, n_e, i, \theta) = g_i^{\mathsf{T}} \theta_{\mathbf{v}, e, n_e}$$

2. Noun potential

$$p(S|\theta_i) = \psi_v(v, i, ; \theta) \prod_{(e, n_e) \in R_f} \psi_e(v, e, n_e, i; \theta) \psi_{n_e}(n_e, i; \theta)$$

3. Inner product composition

$$\phi_e(\mathbf{v}, e, n_e, i) = \sum_k d_{n_e}^{\mathsf{T}} H_{(k, \mathbf{v}, e)} g_i$$

			top-1 predicted verb			top-	5 predicte	ed verbs	ground		
			verb	value	value-all	verb	value	value-all	value	value-all	mean
	1	Baseline: Image Regression [44]	32.25	24.56	14.28	58.64	42.68	22.75	65.90	29.50	36.32
B	2	Noun Potential + reg	27.64	21.21	12.21	53.95	39.95	21.45	68.87	32.31	34.70
imSitu	3	Inner product composition + reg		24.77	14.71	58.33	42.93	23.14	66.79	30.2	36.62
E.	4	Tensor composition	31.73	24.04	13.73	58.06	42.64	22.7	68.73	32.14	36.72
	5	Tensor composition + reg	32.91	25.39	14.87	59.92	44.5	24.04	69.39	33.17	38.02
	6	Baseline : Image Regression	32.40	24.14	15.17	59.10	44.04	24.40	68.03	31.93	37.53
SA	7	Tensor composition + reg	34.04	26.47	15.73	61.75	46.48	25.77	70.89	35.08	39.53
+	8	Tensor composition + reg + self train	34.20	26.56	15.61	62.21	46.72	25.66	70.80	34.82	39.57

Results on the full imSitu development set

			top-1 predicted verb			top-	5 predicte	ed verbs	ground		
			verb	value	value-all	verb	value	value-all	value	value-all	mean
	1	Baseline: image regression [44]	19.89	11.68	2.85	44.00	24.93	6.16	50.80	9.97	19.92
l i	2	Noun potential + reg	15.88	9.13	1.86	38.22	22.28	5.46	54.65	11.91	19.92
imSitu	3	Inner product composition + reg	18.96	10.69	1.89	42.53	23.28	3.69	49.54	6.46	19.63
	4	Tensor composition	19.78	11.28	2.26	42.66	24.42	5.57	54.06	11.47	21.43
	5	Tensor composition + reg	21.12	11.89	2.20	45.14	25.51	5.36	53.58	10.62	21.93
	6	Baseline : image regression	19.95	11.44	2.13	43.08	24.56	4.95	51.55	8.41	20.76
SA	7	Tensor composition + reg	20.08	11.58	2.22	44.82	26.02	5.55	55.45	11.53	22.16
+	8	Tensor composition + reg + self train	20.52	11.91	2.34	45.94	26.99	6.06	55.90	12.04	22.71

Results on the rare portion of imSitu development set

Results

DOU	SING	FLOA	ATING	LEA	DING	RIDING		
ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	
AGENT	PERSON	AGENT	PERSON	AGENT	WOMAN	AGENT	TRUCK	
LIQUID	WATER	MEDIUM	WATER	FOLLOWER	HORSE	VEHICLE	HORSE	
DEST.	FIRE	TOOL	ø		HONGE		HONGE	
PLACE	BUILDING	PLACE	OUTSIDE	PLACE	ROAD	PLACE	FIELD	

		top-1 predicted verb			top-	5 predicte	ed verbs	ground		
		verb	value	value-all	verb	value	value-all	value	value-all	mean
imSitu	Baseline: Image Regression [44]	32.34	24.64	14.19	58.88	42.76	22.55	65.66	28.96	36.25
	Tensor composition + reg	32.96	25.32	14.57	60.12	44.64	24.00	69.2	32.97	37.97
+ SA	Baseline : Image Regression	32.3	24.95	14.77	59.52	44.08	23.99	67.82	31.46	37.36
+ 54	Tensor composition + reg + self train	34.12	26.45	15.51	62.59	46.88	25.46	70.44	34.38	39.48

Results on the rare portion of imSitu test set

		top-	top-1 predicted verb			top-5 predicted verbs			ground truth verbs		
		verb	value	value-all	verb	value	value-all	value	value-all	mean	
imSitu	Baseline: Image Regression [44]	20.61	11.79	3.07	44.75	24.85	5.98	50.37	9.31	21.34	
misitu	Tensor composition + reg	19.96	11.57	2.30	44.89	25.26	4.87	53.39	10.15	21.55	
+ SA	Baseline : Image Regression	19.46	11.15	2.13	43.52	24.14	4.65	51.21	8.26	20.57	
+ 5A	Tensor composition + reg + self train	20.32	11.87	2.52	47.07	27.50	6.35	55.72	12.28	22.95	

Results on the rare portion of imSitu test set

Results

Results

SLIPPING		INJECTING		JUMPING		WINKING				TRIMMING	
SLI								CRASHING			
ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE
AGENT	ICE BEAR (1)	AGENT	PERSON	AGENT	PERSON	AGENT	CAT (5)	AGENT	CAR	AGENT	PERSON
AGEINT	ICE BEAR (I)	DEST.	HORSE (2)	DEST.	LAND	AGEINT	CAI (5)	ITEM	ø	ITEM	MEAT (5)
DEST.	LAND	SOURCE SUBSTANC	SYRINGE	SOURCE	BUILDING (3)	ADRESSEE	ø	AGAINST	TREE (5)	REMOVED TOOL	FAT KNIFE
PLACE	OUTSIDE	PLACE	Ø	PLACE	OUTSIDE	PLACE	ø	PLACE	STREET	PLACE	TABLE
							2				
REP	AIRING	TOV	VING	SNUG	GLING	PEE	LING	GRIL	LING		GING
ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE	ROLE	VALUE
AGENT	ΜΔΝ					AGENT	PERSON			AGENT	ΜΔΝ
ITEM	SINK (1)	AGENT	TRUCK	AGENT	RHINO (0)	ITEM	ORANGE (1)	AGENT	MAN	ITEM	TIRE (2)
TOOL	HAND	ITEM	BOAT	COAGENT	RHINO (0)	TOOL	PEELER	ITEM	MEAT (1)	SURFACE	LAND
PROBLEM	Ø	DI AOF	0040 (0)	DI AOF	0040 (0)			DI AOF	01/7700000	TOOL	ROPE
PLACE	INSIDE	PLACE	ROAD (2)	PLACE	ROAD (2)	PLACE	ø	PLACE	OUTDOORS	PLACE	OUTSIDE

Future Work

- Follow-up publications
 - Li et al. (2017) captures joint dependencies between roles using neural networks defined on a graph.
 - Mallya and Lazebnik (2017) proposes Recurrent Neural Network (RNN) models to predict structured 'image situations'.
- Our thoughts:
 - Multiple frames corresponding to a given verb.
 - Predict the number of situations and their realizations for a given image.
 - A generalized definition of situation. (not only defined with (v, R_f)).

Yatskar, Mark, Vicente Ordonez, Luke Zettlemoyer, and Ali Farhadi.

Commonly uncommon: Semantic sparsity in situation recognition.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

Yatskar, Mark, Luke Zettlemoyer, and Ali Farhadi.
Situation recognition: Visual semantic role labeling for image understanding.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

- Mallya, Arun, and Svetlana Lazebnik Recurrent models for situation recognition. arXiv preprint arXiv:1703.06233 (2017)
- Li, Ruiyu, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, and Sanja Fidler.
 Situation recognition with graph neural networks. arXiv preprint arXiv:1708.04320 (2017)

Thank you