THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 8: RNNs (cont.) + Applications



Course Logistics

— Assignment 1 grades are (finally) available
— Part 1 solutions are available on Piazza

— Part 2 solutions will be out soon

— Assignment 3 is out, due Wednsday, February 7th
— Questions on Assignment 37

— Paper choices (google form) will is due Wednsday THIS week (Jan 31st)

— Projects pitches we will do during next class



RNNs: Review

Key E n a b I e rs : one to one one to many many to one many to many many to many

— Parameter sharing in computational graphs

— “Unrolling” in computational graphs

— Allows modeling arbitrary length sequences!
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RNNs: Review

Key E na blers: one to one one to many many to one many to many many to many

— Parameter sharing in computational graphs ; F oo : F ot bt

— “Unrolling™ in computational graphs LB i B LT T

— Allows modeling arbitrary length sequences!

Loss functions: often cross-entropy (for classification); could be max-margin (like in SVM)
or Squared LoSS (regression)

Vanilla RNN

Long-Short Term Memory (LSTM)

Yo = Whyhe + 0, Vanishing /}\ ) / i \ (s
or ol | o (xt
he = fw (he1, z0) Exploding \9/  \tanh/
| Gradients ct=f0Oc-1+i0g

he = tanh(Wiphe—1 + Wanze + b)) | x ht = 0 © tanh(c)

Uninterrupted aradient flow!



| ong-Short Term Memory (LSTM)

* glide from Dhruv Batra



| ong-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

ftT fi=0Wjy-lhi_1,2¢] + by)

O

hi—1
Lt

* glide from Dhruv Batra



LSTM Intuition: Input Gate

Should we update this “bit” of information or not”/
f yes, then what should we remember??’

’it — O (Wi'[ht—lyzt] -+ bz)
il C, = tanh(W¢-|hi—1,2¢| + bo)

* glide from Dhruv Batra



LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

ffT ZtF'%% C, = ft x Cp_1 + 14 % ét

* glide from Dhruv Batra



LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

Py T

(tanh> O — O'(WO [ht—lawt] - bO)

hy = o; * tanh (C})
ht—l ' ht

* glide from Dhruv Batra



LSTM Intuition: Additive Updates

Uninterrupted gradient flow!

* glide from Dhruv Batra



o—>

tanh

* glide from Dhruv Batra



LSTM Variants: with Peephole Connections

|_ets gates see the cell state / memory

Jt =0 (Wf'[Ct—laht—laxt: =+ bf)
it = O (Wi'[ct—lyht—lwfbt: =+ bz‘)
— or =0 (Wo-|Ct, he—1,2¢] + by)

* glide from Dhruv Batra



LSTM Variants: with Peephole Connections

|_ets gates see the cell state / memory
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LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

P@-’ Cy = fi* Coo1 + (1= fr) * Cy

* glide from Dhruv Batra



Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

<t — 0 (Wz ' [ht—laajt])
r{ =0 (Wr ' [ht—la$t])
iLt — tanh(

<

' [Tt * Ny 1, th])

ht:(l—Zt *ht_l—FZt*iLt

N’

Z = memorize new and forget old

* glide from Dhruv Batra



| STM/RBNN Challenges

— LSTM can remember some history, but not too long
— LSTM assumes data is regularly sampled




Phased LSTM [ Neil et al., 2016 ]

Gates are controlled by phased (periodic) oscillations
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Bi-directional RNNs/LSTMs

Yt — Whyht =+ by

. 4

hy = fW(ht—la Cll’t)

ht — taﬂh(Whhht_l -+ thatt -+ bh)

. 4




Bi-directional RNNs/LSTMs

—
gt = Why[he, he]” +D,
— —
ht:fﬁ}(ht—lamt)
— $—
hut :fW(ht+1>$t)




Attention Mechanisms and RNNSs

Consider a translation task: This is one of the first neural translation models

f=(La, croissance, économique, s'est, ralentie, ces, dernieres, années, .)
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https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Attention Mechanisms and RNNSs

Consider a translation task with a bi-directional encoder of the source language
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Attention Mechanisms and RNNSs

Consider a translation task with a bi-directional encoder of the source language
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Attention Mechanisms and RNNSs

Consider a translation task with a bi-directional encoder of the source language

f=(La, croissance, économique, s'est, ralentie, ces, dernieres, années, .)
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Build a small neural network (one layer) with softmax output that takes

(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)

and predicts relevance of every source word towards next translation

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Attention Mechanisms and RNNSs

Consider a translation task with a bi-directional encoder of the source language

f=(La, croissance, économique, s'est, ralentie, ces, dernieres, années, .)
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Build a small neural network (one layer) with softmax output that takes

(1) everything decoded so far and (encoded by previous decoder state Zi)
(2) encoding of the current word (encoded by the hidden state of encoder hj)

and predicts relevance of every source word towards next translation
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Attention Mechanisms and RNNSs

| Cho et al., 2015 ]

Economic growth has slowed down In recent years

s

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down In recent years

7SO

La croissance économique s' est ralentie ces dernieres années .

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Regularization in RNNS

Standard dropout in recurrent layers does not work because it causes loss of
long term memory!

* slide from Marco Pedersoll and Thomas Lucas



Regularization in RNNS

Standard dropout in recurrent layers does not work because it causes loss of
long term memory!

— Dropout in input-to-hidden or hidden-to-output layers (zaemsastal, 20141

— Apply dropout at sequence level (same zeroed units for the entire sequence)

— Dropout only at the cell update (for LSTM and GRU units) (semeniuta et at, 20161 o
— Enforcing norm of the hidden state to be similar along time (kwueger & vemisevic, 20161

— Zoneout some hidden units (copy their state to the next tilmestep) | «uewereta. 2016

* slide from Marco Pedersoll and Thomas Lucas



Teacher ForCing Testing: Sample the full sequence
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Teacher FOFCiﬂg Testing: Sample the full sequence

o i . . . " “I” ulu uou
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Teacher -orcing

Slowly move from Teacher Forcing to Sampling
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% I
2
?

| Bengio et al., 2015 ]

* slide from Marco Pedersoll and Thomas Lucas



Teacher -orcing

Microsoft COCO developement set

Approach vs Metric BLEU-4 | METEOR | CIDER
Baseline 28.8 24.2 89.5
Baseline with Dropout 28.1 23.9 87.0
Always Sampling 11.2 15.7 49.7
Scheduled Sampling 30.6 24.3 92.1
Uniform Scheduled Sampling 29.2 24.2 90.9
Baseline ensemble of 10 af)} 23.1 9.7
Scheduled Sampling ensemble of 5 32.3 254 98.7

Baseline: Google NIC captioning model

Baseline with Dropout: Regularized RNN version
Always sampling: Use sampling from the beginning of training
Scheduled sampling: Sampling with inverse Sigmoid decay

Uniformed scheduled sampling: Scheduled sampling but uniformly

* slide from Marco Pedersoll and Thomas Lucas



Sequence Level Training

During training objective is different than at test time

— Training: generate next word given the previous

— Test: generate the entire sequence given an initial state

Optimize directly evaluation metric (e.g. BLUE score for sentence generation)

Set the problem as a Reinforcement Learning:
— RNN is an Agent

— Policy de

— Action st

ned by t

ne |lear

ne selec

ned parameters

lon Of 1

he next word based on the policy - Reward is the evaluation metric

| Ranzato et al., 2016 ]

* slide from Marco Pedersoll and Thomas Lucas



| et us ook at some actual practical
uses of RNNS



Applications: Skip-thought Vectors

word2vec but for sentences, where each sentence is processed by an LSTM

I got back home <e0s5>
A <e0s5=> I got back home
O—>»C & ) @ @ 5 ) BX ! -
et IS was strange <eos>
l could see the cat on the steps . 9
& - - "
<e0s> This was strange

| Kiros et al., 2015 |



Applications: Google Language Translation

One model to translate from any language to any other language

--------------------------------------------------------------------------------------
~

A
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| Johnson et al., 2017 ]



Applications: Google Language Translation

One model to translate from any language to any other language
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Applications: Google Language Translation
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Applications: Google Language Translation

One model to translate from any language to any other language
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Applications: Google Language Translation

One model to translate from any language to any other language
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Applications: Google Language Translation

One model to translate from any language to any other language

......................................................................................
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Applications: Neural Image Captioning

* glide from Dhruv Batra



Applications: Neural Image Captioning

Image Embedding (VGGNet)

4096-dim

Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity
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Applications: Neural Image Captioning

4096-dim
(@)

+ Non-Linearity

Convolution Layer Pooling Layer Fully-Connected MLP
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* glide from Dhruv Batra



Applications: Neural Image Captioning

P(next) P(next) P(next) P(next)

<start> Two people and

4096-dim

Image Embedding (VGGNet)

P(next)

two

P(next)

horses.

* glide from Dhruv Batra



Applications: Neural Image Captioning

Good results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
Suitcase on the floor branch grass with a frisbee the grass

75

AR 4 . .
{ . : 'l N ! ‘ R 3 ,‘"v"
C( LRy [ \ \ , Y A% "". ﬁ\,’
AR \ i 1 . \ {-‘, L ..?j IS
R 4 WYz

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Neural Image Captioning

Faillure cases

A woman IS holdmg a
cat in her hand

A manin a
baseball uniform
throwing a ball

A oman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



mage Captioning with Attention  twetal iovi 2015,

Applications:

RNN focuses its attention at a different spatial location
when generating each word

14x14 Feature Map

l.Input 2. Convolutional 3, RNN with attention 4. Word by
Image Feature Extraction over the image word
generation

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Image Captioning with Attention  dwetal. omezo1s,

\
B CNN —P | h0
—

Features:

Image: LxD
HxWx3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications:

Image:
HxWx3

Distribution over
L locations

\

CNN

-

—P

Features:
LxD

al

!

hO

mage Captioning with Attention  twetal iovi 2015,

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications:

Image:
HxWx3
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Weighted
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mage Captioning with Attention  twetal iovi 2015,
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Applications:

Image:
HxWx3

/

CNN

|

Weighted
combination
of features

=

—3P» | h0 —P h1

Distribution over
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/N

Weighted
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features: D

First word

mage Captioning with Attention  twetal iovi 2015,

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications:

Image:
HxWx3

mage Captioning with Attention  twetal iovi 2015,

Distribution over  Distribution
L locations over vocab
/ a1 82 d1
CNN =3 | h0 —P> h1
/Feat res: /\
L Weighted
eighte
features: D 21 y1
Weighted
combination First word
of features

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications:

Image:
HxWx3

/

CNN

|

Weighted
combination
of features

al

!

hO ——P

Weighted
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Distribution over
ocation

Distribution
over vocab

d1

mage Captioning with Attention

h2

A
[ Xu et al., ICML 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications:

Image:
HxWx3

/

CNN

|

Weighted
combination
of features

al

!

hO ——P

Weighted
eatures: D

Distribution over
ocation

mage Captioning with Attention

A
[ Xu et al., ICML 2015 ]

Distribution
over vocab

d1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



A——.
[ Xu et al., ICML 2015 ]

Applications:

- m u u n . . ! ‘ ! -

bird flying over body wat r

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Mage Cap’[iOﬂiﬂg with Attention [ Xu et al., ICML 2015 ]

Applications:

Good results

A dog is standing on a hardwood floor. A stop sign is on a road with a
B mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: |mage Cap’[iOﬂing with Attention [Xu et al., ICML 2015 |

Fallure results

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Typical Visual Question Answering (VQA)

Question

"How many horses are In this  image”?”

* glide from Dhruv Batra



Applications: Typical Visual Question Answering (VQA)

Image Embedding (VGGNet)

4096-dim
------- Osi0
i Q. i 0O
/\\\\OO T‘\\OO
e o
Y Y Y Y Y
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity
Question

1]

OW many horses are In this image”?”

* glide from Dhruv Batra



Image Embedding (VGGNet)

4096-dim

Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity

Question Embedding (LSTM)

1]

OW many horses are In this image”?”

Applications: Typical Visual Question Answering (VQA)

* glide from Dhruv Batra



Image Embedding (VGGNet)

Applications: Typical Visual Question Answering (VQA)

Neural Network
Softmax
over top K answers

\ | —> P(y=0 | x)

4096-dim

Convolution Layer
+ Non-Linearity

Pooling Layer

Question Embedding (LSTM)

1]

OW many horses are

N

Convolution Layer Pooling Layer Fully- Connected MLP
+ Non-Linearity

this

—> Ply=1| x)

— Py =2 | X)
@

Input Softmax
(Features Il) classifier

image’?”

* glide from Dhruv Batra



Applications: Activity Detection

| Ma et al., 2014 ]



Applications: Activity Detection

Activity: A collection of human/object movements with a particular semantic meaning

-~ | CHASE

CHASE

| Ma et al., 2014 |



Applications: Activity Detection

Activity: A collection of human/object movements with a particular semantic meaning
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Applications: Activity Detection

Activity: A collection of human/object movements with a particular semantic meaning
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Action Recognition: Finding If a video segment contains such a movement

Action Detection: Finding a segment (beginning and start) and recognize the action in it
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Applications: Activity Detection

Early Detection: Recognize when an action starts and try to predict which
action is performed as quickly as possible.

Detection s Using ATM t
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Penalty at every time step is the same
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Penalty at every time step is the same
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Applications: Activity Detection

AS the detector sees more of an action, it should become more confident of
— Detecting the correct action class

— More confident that it Is not the incorrect action class

Detection Score
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Applications: Activity Detection

AS the detector sees more of an action, it should become more confident of
— Detecting the correct action class

— More confident that it Is not the incorrect action class

Detection Score
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New Class of Loss Functions

Classification loss at time t
s - . t  pt t
Training loss at time t: [ — ﬁc -+ )\rﬁr

Ranking loss at time t

L is one of the following:

- L? ranking loss on detection score
+ Lt ranking loss on discriminative margin

| Ma et al., 2014 ]



Ranking Loss on Detection Score L

Ideally what we want:
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INn Practice:
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Applications: Activity Detection

Activity detection performance measured in mAP at different IOU thresholds

Model a=0.1 a=02 oa=03 a=04 oa=05 aoa=06 «o=0.7 oa=0.8
Heilbron et al. 12.5% 11.9% 11.1% 10.4% 9.7% - - -
CNN 30.1%  269%  234%  21.2% 18.9% 17.5% 16.5% 15.8%
LSTM 48.1% 44.3%  40.6% 35.6% 31.3% 283% 26.0%  24.6%
LSTM-m 526%  489%  45.1% 40.1% 35.1% 31.8% 29.1% 27.2%
[LLSTM-s 540% 501% 463% 41.2% 36.4% 33.0% 30.4% 28.7%

LSTM-m LSTM trained using both classification loss and rank loss on discriminative margin.

LSTM-s LSTM trained using both classification loss and rank loss on detection score.
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Applications: Early Activity Detection

Activity early detection performance measured in mAP at different IOU thresholds

Model a=01 a=02 aoa=03 a=04 oa=05 aoa=06 «o=0.7 «a=0.8
CNN 27.0%  23.4%  20.4% 17.2% 14.6% 12.3% 11.0% 10.3%
LSTM 495% 447%  38.8% 339%  29.6% 25.6% 23.5%  22.4%
LSTM-m 52.6% 479% 41.5% 362% 31.4% 27.1% 248%  23.5%
LSTM-s 55.1% 503% 44.0% 389% 341% 298% 27.4% 26.1%

Note: first 3/10 of activity is seen by a detector

LSTM-m LSTM trained using both classification loss and rank loss on discriminative margin.

LSTM-s LSTM trained using both classification loss and rank loss on detection score.
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Applications: Early Activity Detection

Activity early detection performance measured in mAP at different IOU thresholds

Model =01 a=02 oa=03 a=04 «a=05 a=06 o=07 «a=0.8
CNN 27.0%  234%  20.4% 17.2% 14.6% 12.3% 11.0% 10.3%
LSTM 495% 447%  388% 339% 29.6% 25.6% 235% 22.4%
LSTM-m 52.6% 479% 41.5% 362% 31.4% 27.1% 24.8%  23.5%
LSTM-s 55.1% 503% 44.0% 389% 341% 298% 27.4% 26.1%

Note: first 3/10 of activity is seen by a detector

LSTM-m LSTM trained using both classification loss and rank loss on discriminative margin.

LSTM-s LSTM trained using both classification loss and rank loss on detection score.

Take home: Early detection is only 1-3% worse than sewing the whole sequence
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Attention Models tor Action
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(b) Action: Having Massage
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