
Lecture 8: RNNs (cont.) + Applications

Topics in AI (CPSC 532L): 
Multimodal Learning with Vision, Language and Sound



Course Logistics 

— Assignment 1 grades are (finally) available  
— Part 1 solutions are available on Piazza 
— Part 2 solutions will be out soon 

— Assignment 3 is out, due Wednsday, February 7th 

— Questions on Assignment 3? 

— Paper choices (google form) will is due Wednsday THIS week (Jan 31st) 

— Projects pitches we will do during next class  



RNNs: Review
Key Enablers: 
— Parameter sharing in computational graphs 

— “Unrolling” in computational graphs 

— Allows modeling arbitrary length sequences! 
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Vanilla RNN Long-Short Term Memory (LSTM)

Loss functions: often cross-entropy (for classification); could be max-margin (like in SVM) 
or Squared Loss (regression)



Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Long-Short Term Memory (LSTM)

Cell state / memory 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Input Gate

Should we update this “bit” of information or not? 
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Uninterrupted gradient flow!

LSTM Intuition: Additive Updates
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Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Variants: with Peephole Connections 

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Variants: with Peephole Connections 

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM/RNN Challenges

— LSTM can remember some history, but not too long 
— LSTM assumes data is regularly sampled



Phased LSTM

Gates are controlled by phased (periodic) oscillations

[ Neil et al., 2016 ]



Bi-directional RNNs/LSTMs
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Attention Mechanisms and RNNs 
Consider a translation task: This is one of the first neural translation models 
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Summary Vector

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Attention Mechanisms and RNNs 
Consider a translation task with a bi-directional encoder of the source language
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Attention Mechanisms and RNNs 
Consider a translation task with a bi-directional encoder of the source language
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Attention Mechanisms and RNNs 
Consider a translation task with a bi-directional encoder of the source language
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Build a small neural network (one layer) with softmax output that takes  
(1) everything decoded so far and (encoded by previous decoder state Zi) 
(2) encoding of the current word (encoded by the hidden state of encoder hj) 

and predicts relevance of every source word towards next translation  

[ Cho et al., 2015 ]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Attention Mechanisms and RNNs 
Consider a translation task with a bi-directional encoder of the source language
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Build a small neural network (one layer) with softmax output that takes  
(1) everything decoded so far and (encoded by previous decoder state Zi) 
(2) encoding of the current word (encoded by the hidden state of encoder hj) 

and predicts relevance of every source word towards next translation  

ci =
TX

j=1

↵jhj

[ Cho et al., 2015 ]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Attention Mechanisms and RNNs 
[ Cho et al., 2015 ]

https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/



Regularization in RNNs

Standard dropout in recurrent layers does not work because it causes loss of 
long term memory!  

* slide from Marco Pedersoli and Thomas Lucas



Regularization in RNNs

Standard dropout in recurrent layers does not work because it causes loss of 
long term memory!  
—Dropout in input-to-hidden or hidden-to-output layers 
— Apply dropout at sequence level (same zeroed units for the entire sequence)  
— Dropout only at the cell update (for LSTM and GRU units) 
— Enforcing norm of the hidden state to be similar along time 
— Zoneout some hidden units (copy their state to the next tilmestep)  

[ Zaremba et al., 2014 ]

[ Gal, 2016 ]

[ Semeniuta et al., 2016 ]

[ Krueger & Memisevic, 2016 ]

[ Krueger et al., 2016 ]

* slide from Marco Pedersoli and Thomas Lucas
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Testing: Sample the full sequence

Training and testing objectives are not consistent! 

Training Objective: Predict the next word 
                                 (cross entropy loss)



Teacher Forcing

Slowly move from Teacher Forcing to Sampling

Probability of sampling from 
the ground truth

[ Bengio et al., 2015 ]

* slide from Marco Pedersoli and Thomas Lucas



Baseline: Google NIC captioning model 

Baseline with Dropout:  Regularized RNN version  

Always sampling: Use sampling from the beginning of training 

Scheduled sampling: Sampling with inverse Sigmoid decay 

Uniformed scheduled sampling: Scheduled sampling but uniformly 

Teacher Forcing

* slide from Marco Pedersoli and Thomas Lucas



Sequence Level Training

During training objective is different than at test time  
— Training: generate next word given the previous  
— Test: generate the entire sequence given an initial state 

Optimize directly evaluation metric (e.g. BLUE score for sentence generation)  

Set the problem as a Reinforcement Learning: 
— RNN is an Agent 
— Policy defined by the learned parameters  
— Action is the selection of the next word based on the policy - Reward is the evaluation metric 

* slide from Marco Pedersoli and Thomas Lucas

[ Ranzato et al., 2016 ]



Let us look at some actual practical 
uses of RNNs 



Applications: Skip-thought Vectors 

word2vec but for sentences, where each sentence is processed by an LSTM

[ Kiros et al., 2015 ]



Applications: Google Language Translation
One model to translate from any language to any other language

[ Johnson et al., 2017 ]
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[ Johnson et al., 2017 ]
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Applications: Neural Image Captioning

* slide from Dhruv Batra



Convolution Layer 
+ Non-Linearity

Pooling Layer Convolution Layer 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Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)

Applications: Neural Image Captioning
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* slide from Dhruv Batra
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Applications: Neural Image Captioning

* slide from Dhruv Batra



Applications: Neural Image Captioning
Good results

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Neural Image Captioning
Failure cases

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Applications: Image Captioning with Attention
RNN focuses its attention at a different spatial location 
when generating each word

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Xu et al., ICML 2015 ]
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Applications: Image Captioning with Attention

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Xu et al., ICML 2015 ]

Good results



Failure results

Applications: Image Captioning with Attention

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Xu et al., ICML 2015 ]



Image

Question

“How   many   horses    are      in       this     image?”

Applications: Typical Visual Question Answering (VQA)

* slide from Dhruv Batra
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Convolution Layer 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Pooling Layer Fully-Connected MLP
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Convolution Layer 
+ Non-Linearity

Pooling Layer Convolution Layer 
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image

                 Embedding (LSTM)Question

“How   many   horses    are      in       this     image?”

Embedding (VGGNet)
Neural Network  

Softmax  
over top K answers

Applications: Typical Visual Question Answering (VQA)

* slide from Dhruv Batra



Applications: Activity Detection

[ Ma et al., 2014 ]
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Activity: A collection of human/object movements with a particular semantic meaning 

[ Ma et al., 2014 ]
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Applications: Activity Detection
Activity: A collection of human/object movements with a particular semantic meaning 

Action Recognition: Finding if a video segment contains such a movement

Action Detection: Finding a segment (beginning and start) and recognize the action in it

[ Ma et al., 2014 ]



Applications: Activity Detection

[ Ma et al., 2014 ]



Applications: Activity Detection

Early Detection: Recognize when an action starts and try to predict which  
action is performed as quickly as possible.

[ Ma et al., 2014 ]



Applications: Activity Detection

[ Ma et al., 2014 ]



Applications: Activity Detection
Penalty at every time step is the same

[ Ma et al., 2014 ]
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Applications: Activity Detection
Penalty at every time step is the same

[ Ma et al., 2014 ]



As the detector sees more of an action, it should become more confident of 
— Detecting the correct action class 
— More confident that it is not the incorrect action class 

Applications: Activity Detection

[ Ma et al., 2014 ]
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As the detector sees more of an action, it should become more confident of 
— Detecting the correct action class 
— More confident that it is not the incorrect action class 

Applications: Activity Detection

[ Ma et al., 2014 ]



New Class of Loss Functions

Classification loss at time t

Ranking loss at time t

Training loss at time t:

ranking loss on discriminative margin
ranking loss on detection score

is one of the following:

[ Ma et al., 2014 ]



Prediction score of the ground truth action label 

Ideally what we want:

Ranking Loss on Detection Score

[ Ma et al., 2014 ]



In Practice:

Prediction score of the ground truth action label 

Ranking Loss on Detection Score

[ Ma et al., 2014 ]



In Practice:

Prediction score of the ground truth action label 

[ Ma et al., 2014 ]

Ranking Loss on Detection Score



In Practice:

Prediction score of the ground truth action label 

[ Ma et al., 2014 ]

Ranking Loss on Detection Score



LSTM-m			LSTM	trained	using	both	classification	loss	and	rank	loss	on	discriminative	margin.	

LSTM-s					LSTM	trained	using	both	classification	loss	and	rank	loss	on	detection	score.	

Activity	detection	performance	measured	in	mAP	at	different	IOU	thresholds	

[ Ma et al., 2014 ]

Applications: Activity Detection



LSTM-m			LSTM	trained	using	both	classification	loss	and	rank	loss	on	discriminative	margin.	

LSTM-s					LSTM	trained	using	both	classification	loss	and	rank	loss	on	detection	score.	

Activity	early	detection	performance	measured	in	mAP	at	different	IOU	thresholds	

Note:	first	3/10	of	activity	is	seen	by	a	detector

[ Ma et al., 2014 ]

Applications: Early Activity Detection



LSTM-m			LSTM	trained	using	both	classification	loss	and	rank	loss	on	discriminative	margin.	

LSTM-s					LSTM	trained	using	both	classification	loss	and	rank	loss	on	detection	score.	

Activity	early	detection	performance	measured	in	mAP	at	different	IOU	thresholds	

Note:	first	3/10	of	activity	is	seen	by	a	detector

Take home: Early detection is only 1-3% worse than sewing the whole sequence 
[ Ma et al., 2014 ]

Applications: Early Activity Detection



[ Ma et al., 2014 ]

Applications: Activity Detection



[ Ma et al., 2014 ]

Applications: Activity Detection



Attention Models for Action Highlighting

[ Torabi & Sigal, 2017 ]


