THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 7: Word2Vec, Language Models and RNNs



Course Logistics

— Assignment 1 grades (available on Connect ?7?)
— Solutions will be posted over the weekend

— Assignment 2 was due Yesterday

— Assignment 3 will be out Friday, January 26th

— The due deadline will be extended

— Paper choices will be due next week (google form)

— Projects groups and short description (google form)



Representing a Word: One Hot Encoding

Vocabulary

dog

cat
person
holding
tree
computer

using

*slide from V. Ordonex
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Representing a Word: One Hot Encoding

Vocabulary

dog

cat
person
holding
tree
computer

using

~N O O B~ W N

one-hot encodings

11,0,0,0,0,0,0,0,0,0]
10,1,0,0,0,0,0,0,0,0]
10,0,1,0,0,0,0,0,0,0]
10,0,0,1,0,0,0,0,0,0]
10,0,0,0,1,0,0,0,0,0]
10,0,0,0,0,1,0,0,0, 0]
10,0,0,0,0,0,1,0,0,0]
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Representing Phrases: Bag-of-VWords Vocabuiary

dog 1
cat 2
bag-of-words representation person 3
holding 4
tree 5
computer o)
using /

@) O Cc O = C
U O cD-— - - —
2 O + 2 0
O O QO 35

O -

@)

@)
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Representing Phrases: Bag-of-VWords Vocabuiary
bag-of-words representation pt 2
person holding dog (3,4,1 11,0,1,1,0,0,0,0,0,0] o

O)"C_U' C O O CT) @))
O O Cc O = C
U O cD-— | - - —
> T + 2 0
O B O S

Q -

O

O
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Representing Phrases: Bag-of-VWords Vocabuiary
bag-of-words representation pt i
person holding dog (3,4,1} 11,0,1,1,0,0,0,0,0,0] e
person holding cat 3,4,2y [1,1,0,1,0,0,0,0,0,0] Hong !
zs B
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Representing Phrases: Bag-of-VWords Vocabuiary
bag-of-words representation pt 2
person holding dog (3,4,1} 11,0,1,1,0,0,0,0,0,0] e
person holding cat 3,4,2y [1,1,0,1,0,0,0,0,0,0] Hong !
person using computer {3,7,6} [0,0,0,1,0,1,1,0,0,0]
zs B
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Representing Phrases: Bag-of-VWords

bag-of-words representation
person holding dog 3,4,1 [1,0,1,1,0,0,0,0,0,0]

person holding cat 3,4,2} [1,1,0,1,0,0,0,0,0,0]
person using computer {3,7,6} [0,0,0,1,0,1,1,0,0,0]
zs B

person using computer
person holding cat

Vocabulary

dog
cat
person
holding

tree

~N O O B~ W0 N =

computer

using

3,3,7,6,2 [0,1,2,1,0,1,1,0,0, 0]

*slide from V. Ordonex



Distributional HypothesIs | iendi 2008

— At least certain aspects of the meaning of lexical expressions depend on
thelr distributional properties in the linguistic contexts

— [he degree of semantic similarity between two linguistic expressions IS a
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac’?

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.

— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— | dined off bread and cheese and this excellent bardiwac.

— I'he drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac””

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.

— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.

— | dined off bread and cheese and this excellent bardiwac.

— I'he drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

bardic is an alcoholic beverage made from grapes

* Adopted from slides by Louis-Philippe Morency



Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word

IN a corpus of text
get | see | use | hear | eat | Kkill

e [ 1 [ [ w0 [ 3]0
— Can be seen as coordinates o the cat [ 52 [58) 4 ) 4 ] 6 [26

oint iIn an n-dimensional Euclidian space fog
P poat [ 50 [ B[ 53] ¢ [0 [0
cup [ 98 | 141 6 | 2 | 1] 0
pig [ 12 | 17 ) 3 | 2 [ 9 [271
banana | 11 [ 2 [ 2 ] 0 | 18] 0

Co-occurrence Matrix
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Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word l i

IN a corpus of text
get | see | use | hear | eat | Kkill

e [ 1 [ [ w0 [ 3]0
— Can be seen as coordinates o the cat [ 52 [58) 4 ) 4 ] 6 [26

oint iIn an n-dimensional Euclidian space fog
P poat [ 50 [ B[ 53] ¢ [0 [0
cup [ 98 | 141 6 | 2 | 1] 0
pig [ 12 | 17 ) 3 | 2 [ 9 [271
banana | 11 [ 2 [ 2 ] 0 | 18] 0

Co-occurrence Matrix
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Distance and Similarity

Two dimensions of English V=0Obj DSM

o
— lllustrated in two dimensions -
S _
Knife
— Similarity = spatial proximity g - ¢
(Euclidian distance)
3
> 8 -
. o _
— Location depends on frequency of N
NOUN (dog is 27 times as frequent as ca) - bc;at d=g5> 5
N N
do
cat d=63.3 o
® <
< | | | | | |

0 20 40 60 80 100 120

get
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Angle and Similarity

Two dimensions of English V=0Obj DSM

-
— direction is more important than location
&2 _
Knife
. o O
— normalize length of vectors ®
3 g -
— Or use angle as a distance measure 2 - ...,
OL"‘; boat
o
™ do
cat .g
-

0 20 40 60 80 100 120
get
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Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
IN a corpus of text

— (Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Voo

get | see | use | hear | eat | Kkill

e [ ST [0 8| 0 [ 3]0
= I L N
Jog
boat [ 59 [ B[ B3| 4 [0 [0

Cu

p| 98 |14 6] 2 1[0

pig | 12 | 17 ] 3 ) 2 |9 |27

paana | 1 7 [ 2| 0 [0

Co-occurrence Matrix
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Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
IN a corpus of text

— (Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Voo

get | see | use | hear | eat | Kkill
e [ 1 [0 [ 8] 0 [ 3]0
| s [ 4 [ & [ o [%
Jog
N I I I
cop [ B | 1416 ]2 [1]0
8 I I N I
amans | 1] 2 [ 2 [ 0[]0

Co-occurrence Matrix

* Slides from Louis-Philippe Morency



SVD for Dimensionality Reduction

m r m
S, Vi
S, O V;
n — r S; r Vs
0o - '
S
T
X S V
m k m
S, V,
s, U v/
n = k S, k Y
0 'S, .
\ N\ \ T
X S |74
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Learned \Vord Vector Visualization

We can also use other methods, like LLE here:

LANDSCAPE o PAINTING
subjects @ & FIGURES
archltecthural ® FIGURE
Ot e o law section
houses Cogﬂﬁr.em : oCONEIESS
justice @ consttitttl.tion e president
: representatives
architecture g fed.era] P g
ITALIAN ® oseng ccutive Y
statfy partjes K% owers flgt;gtmg

® commander P party id I killed
e navy e ' presidential  jefeat

haval e deferise '~ political peace

' command ® ° ruasrsrizelrlcan Loaty
o mllltaryo ® france victory

® force © russian campaign
umted bI’ltall‘l o Invasion
government @ @ ® forces .. attack
@
front ¢ french
@ battle troops
®
world alliedO. ® japan
e army britis ,
e germany Japanecsc
ware german@®

Nonlinear dimensionality reduction by locally linear embedding. Sam Roweis & Lawrence Saul. Science, v.290,2000

[ Roweis and Saul, 2000 |



Issues with SVD

Computational cost for a d X n matrix is O(dn?), where d < n

— Makes it not possible for large number of word vocabularies or documents

't Is hard to incorporate out of sample (hew) words or documents

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words  (Mioovetal, 2013]

Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
iIncorporate new document, words, etc.

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words  (Mioovetal, 2013]

Key idea: PrediCt SurrOUHdiﬂg WOrdS INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
of every word o | | ‘

w(t-2)

w(t-1) w(t-1)

Benefits: Faster and easier to
iIncorporate new document, words, etc.

1

w(t) w(t)

w(t+1) w(t+1)

w(t+2)

w(t+2)
CBOW Skip-gram

Continuous Bag of Words (CBOW): use context words in a window to predict
middle word

Skip-gram: use the middle word to predict surrounding ones in a window

*slide from Vagelis Hristidis



CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

olf

floor

INPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

\\“"//

PROJECTION

SUM

OUTPUT

» wit Sat

A
| Mikolov et al., 2013 |
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013

Input layer
0
1
0
O [ ]
cat 0 Hidden layer Output layer
: 0
’ 0
0
’ 0
(one-hot vector) 0 sat (one-hot vector)
5 0
; 1
O s
1 0
on
0
0
-
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CBOW: Continuous Bag of Words

Input layer

cat

OFf Oooooooo—

Onn

oOFf OoOooco—oo oo

'S

M

=i
=~

Wivix N

Hidden layer

| Mikolov et al., 2013 |

Output layer

/
W Nix v

sat

O mRoocoooooo

<

0

=
=~
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CBOW: Continuous Bag of Words

Input layer

cat

OFf Oooooooo—

Onn

oOFf OoOooco—oo oo

'S

M

=i
=~

W v ix|n|

Hidden layer

| Mikolov et al., 2013 |

Parameters to be learned

Output layer

/
W Nix v

sat

O mRoocoooooo

<

0

=
=~
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CBOW: Continuous Bag of Words

Input layer

cat

OFf Oooooooo—

Onn

oOFf OoOooco—oo oo

'S

M

=i
=~

W v ix|n|

| Mikolov et al., 2013 |

Parameters to be learned

Hidden layer Output layer

0

0

0

, 0

WiNx v, 0. sat

0

1

v ¢ RIVI 0

y € R|V|

Size of the word vector (e.g., 300)
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer
0
i
X //V/*/p
0 .
Xcat O '*x  Hidden layer Output layer

0 2N
0 b q
0 @ g
5
U 0

0

0 sat
0 0
1 %o* v eRW 5

Xon 8 \\I\+ }’} c R|V|
0 qﬂ\ﬁvL
0
"
x ¢ RV
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer

T
W|V|><|N| X Xecat

ox[ex[rerefosos] [ [ [ez

|
<
S

cat

os[zs[afzo o8 || e
L ] %
B o O S B

P4
S
~
OFf Oooooooo—

|
=
00

0
0
0
1 >
Xon O \I\+
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N\
0 N\
0
-
x € RV
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer W ’ )
|V | x| V]| Xon T on
Iy~
M, o[ isos os[ ] [e2
>

os[ze[afzo o8 || e
L ] %
B o O S B

P4
S
~
OFf Oooooooo—
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0
0
1 >
Xon O \I\+
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N\
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0
-
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer
0
i
X //V/*/p
0 -
Xcat O '*x  Hidden layer Output layer

O 2N
0 s 0
O “z 0
0
: A Veat T Von 0

— 0

M 9 5 sat
) 0
0 g ov 1
O & .o
1 +o" v e RIVI 5
Xon 8 \\I\+ }’} c R|V|
0 qﬂ\ﬁvL
O
.
x € RIVI
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer
0
i W
; //V/)f/p
0 :
K. |0 '*x  Hidden layer Output layer
0 “r N
0 Voo, 0
. 8 y = softmax(z)
0 , ) 0
Wivin xv=2z 0 o
0 0
; P |
1 %" v € RIMI 0
X 0 T
0 +\\T\ y € RH/'
0 qﬂ\ﬁ\
0
»
x € RV
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CBOW: Continuous Bag of Words [ Mikolov et al., 2013]

Input layer

0
i W
: //V/)f/p
0 -

Xonp 0 '*x  Hidden layer Output layer .
O Qx % .
0 Voo, 0 0.02
) 8 y = softmax(z) | 0.00
0 / ) 0 0.02

Wiy xv=2z 0 ¢ 0.0

0 0 0.02
. ot 1 0.01
1 %ot v e RW 0 0.7

X 0 T

on o +\\[\ }A’ c R|V|
0 0.00
0
: Optimize to get close to 1-hot encoding
x € RV
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CBOW: Continuous Bag of Words

Input |a)

J

P4
S
~
OFf Oooooooo—

T
Wivixiv

ox[es[rereos]os] [ [ [ez
os[z[efzs] rsfos | | [r

oa[afar]ofealeo |||

Word vectors

0
O qw
0 2
1 &0t ‘GERW|
X 0 I
n J\
0 WA
N\
0 N\
0
5
x ¢ RV

| Mikolov et al., 2013 ]

)utput layer

— 0
O
O
O
=7 |0 A
0 Ysat
0
1
6

y = softmax(z)
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CBOW: Interesting Observation [ Mikolov et al., 2013

Input layer
0
i W
; //V/)f/p
0 :
K. |0 '*x  Hidden layer Output layer
0 XN
0 Voo, 0
0 8 y = softmax(z)
0 , ) 0
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Skip-Gram Mode] [ Mikolov et al., 2013 ]

gl Output layer
O
Ol y 1
w'NxV C_)l
Input layer
——_Hidden layer -
O ' .
X, o0 Wyw A, a» W'y 1ol Y2
O N-dim C
V-dim
’ O
W' o
o
Ol y oF,




Comparison

| Mikolov et al., 2013 |

— CBOW is not great for rare words and typically needs less data to train

— SKkip-gram better for rate words and needs more data to train the model

Model Vector Training Accuracy [%]
Dimensionality | words

Semantic | Syntactic | Total
Collobert-Weston NNLM 50 660M 9.3 12.3 11.0
Turian NNLM 50 37M 1.4 2.6 2.1
Turian NNLM 200 37M 1.4 2.2 1.8
Mnih NNLM 50 37M 1.8 9.1 5.8
Mnih NNLM 100 37M 3.3 13.2 8.8
Mikolov RNNLM 80 320M 4.9 18.4 12.7
Mikolov RNNLM 640 320M 8.6 36.5 24.6
Huang NNLM 50 990M 13.3 11.6 12.3
Our NNLM 20 6B 12.9 26.4 20.3
Our NNLM 50 6B 27.9 55.8 43.2
Our NNLM 100 6B 34.2 64.5 50.8
CBOW 300 783M 15.5 53.1 36.1
Skip-gram 300 783M 50.0 55.9 53.3




Interesting Results: Word Analogies

-+

-+

Test for linear relationships, examined by Mikolov et al. (2014)

|ad33(:? I

man:woman :: king:?

king
man

woman

queen

10.300.70 ]

[0.200.20 }
[0.600.30}

[0.700.80 }

——

0.75

0.5

0.25

(wp — wq + W,

)Tu%

d = arg max
I

wp — we + we||

queen
xlqng
woman
man
0.25 0.5 0.75 1




Interesting Results: Word Analogies

1.5

0.5

-0.5

-1.5

| | Chinas | | |
Beijing
B Russia«
Japarx
_ Moscow
Turkey< yAnkara ﬂ'okyo
Poland«
- Germany«
France Warsaw
v »Berlin
- Italy« Paris
*Athens
Greece« "
1 - Spain¢ Fome
> Madrid
- Portugal Lisbon
| | | | |
2 -1.5 1 0.5 1 1.5

| Mikolov et al., 2013 |



Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

* Slides from Louis-Philippe Morency



Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?
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Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x P(wordsequence)

arg max .
wordsequence P(acoustics)

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence

* Slides from Louis-Philippe Morency



Language Models

Model the probability of a sentence; ideally be able to sample plausible
SEeNteNces

Why is this useful?

arg max P(wordsequence | acoustics) =

wordsequence

P(acoustics | wordsequence) x _
arg max

wordsequence P (Cl coustics )

arg max P(acoustics | wordsequence) X _

wordsequence

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi., = |W1, W, ..., Wy

We want to estimate p(w1:n)

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi., = |W1, W, ..., Wy

We want to estimate p(w1:n)

Using Chain Rule of probabilities:

p(w1:n) — p(w1)p(w2\w1)p(w3\w1, wz) a 'P(wn|w1:n—1)

* Slides from Louis-Philippe Morency



Simple Language Models: N-Grams

Given a word sequence: Wi., = |W1, W, ..., Wy

We want to estimate p(w1:n)

Using Chain Rule of probabilities:
p(wlzn) — p(wl)p(wz\wl)p(w:&\wla wz) ' 'p(wn|w1:n—1)

Bi-gram Approximation' N-gram Approximation:

wl n H P wk\wk 1 P(wlzn) — Hp(wk\wk—NH:k—ﬁ
k=1

* Slides from Louis-Philippe Morency



Estimating Probabilities

N-gram conditional probabilities can be estimated based on raw concurrence
counts In the observed sequences

Bi-gram:
C(wn_ 1wn)

C’(wn_l)

p(wn‘wn—l) —

N-gram:

C(wn—N—lzn—lwn)
C(Wn—N—-1:n—1)

p<wn|wn—N—1:n—1) —

* Slides from Louis-Philippe Morency



P(next word is

P(next word is

P(next word Is

Neural-based Unigram Language Mode

P(next word is

“dog”) “on”) “the”) “beach”)
tttttt  tttttt  tetttt  t1tttd
Neural Neural Neural Neural
Network Network Network Network
t t t t
1-0f-N encoding 1-of-N encoding  1-of-N encoding 1-0f-N encoding

of “START” of “dog” of “on” of “the”

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is

“dog”) “on”) “the”) “beach”)
tttttt  ttttt  tetttt  tttttt
Neural Neural Neural Neural
Network Network Network Network

f

f

f

f

1-0f-N encoding 1-of-N encoding  1-of-N encoding 1-0f-N encoding
of “START” of “dog” of “on” of “the”

Problem: Does not model sequential information (too local)

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

P(next word is P(next word is P(next word is P(next word is
“dog”) “on”) “the™) “beach”)
tttttt  tttttt  tetttt  tttttt
Neural Neural Neural Neural
Network Network Network Network

f f f f

1-0f-N encoding 1-of-N encoding  1-of-N encoding 1-0f-N encoding
Of “START” Of “dog” Of “On” Of “th e”

Problem: Does not model sequential information (too local)

We need sequence modeling!

* Slides from Louis-Philippe Morency



Why Model Sequences”

7,07‘67/7/ M/é/ m———)  FOREIGN MINISTER.

—l  THE SOUND OF

bringen sie bitte das auto zuriick

A X/

= please return the car

£

* glide from Dhruv Batra



Multi-modal tasks

Vision

Deep CNN  Generating

O

-

Language

RNN

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

| Vinyals et al.,, 2015 ]



Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015 ]
[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences where you don’t expect them ...

Classify images by taking a
series of “glimpses”

| Gregor et al., ICML 2015 ]
[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



one to one

Input: No sequence
Output: No sea.

Example:
“standard”
classification /
regression problems

Sequences in Inputs or Outputs?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences in Inputs or Outputs?

one to one one to many many to one many {o many many to many

Input: No sequence Input: NoO Input: Sequence Input: Sequence
Output: No sea. sequence Output: No seq. Output: Sequence
Example: Output: Example: sentence Example: machine translation, video captioning,
“standard” Sequence classification, open-ended question answering, video question
classification / Example: multiple-choice answering
regression problems  Im2Caption question answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Key Conceptual [deas

Parameter Sharing

— In computational graphs = adding gradients

“Unrolling”

— In computational graphs with parameter sharing

Parameter Sharing + “Unrolling”
— Allows modeling arbitrary length sequences!

— Keeps number of parameters in check

* glide from Dhruv Batra



Recurrent Neural Network

AN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

usually want to predict a
vector at some time steps

NN

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

new state old state

hy = fW(ht—la $t)

Input vector at

_ some time step
some function X

with parameters W

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

hy = fW(ht—la mt)

Note: the same function and the same set of

parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

hy = fW(ht—la xt)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

hy = fW(ht—la xt)
1

ht — tanh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



(Vanilla) Recurrent Neural Network

Yt — Whyht aE by

hy = fW(ht—la xt)
1

ht — tanh(Whhht_l T rhLt T bh)

y
|
1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

hg— fy — hy— fy — ho— fy — hs — — Nt
T T T
X1 X5 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph

Re-use the same weight matrix at every time-step

No— fw — N1 — fw —hp— tw — N3 = — Nt
W i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

Y1

Yo Y3 YT
T T T
Ny — foy —> hg —  —» hy

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

Y1

yo —> Lo y3 — L3 yr —> Lt
T T T
Ny — foy —> hg —  —» hy

X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to Many

/_//4 -
vi — L ya —> Lo Y3 —* Ls yr —> Lt
T T T T
No— tw —hi— fw — ho— tw — 3 = — N7
VV/ i X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: Many to One

Y
No— tw —hi— fw — ho— tw — 3 = — N7
W 1 X3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



RNN Computational Graph: One to Many

Y1

Yo Y3 YT
T T T
Ny — foy —> hg —  —» hy

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequence to Sequence: Many to One + One to Many

Many to one: Encode input
seguence In a single vector

ho_) f\/\/ _)h1 f\/\/ _)hg f\/\/ _)hg_) _)hT
W1 X1 X2 X3
\

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Sequence to Sequence: Many to One + One to Many

Many to one: Encode input One to many: Produce output
seguence in a single vector seguence from single input vector
Y Yo
No—> f\/\/—)h1 f\/\/—)hg f\/\/—>h3_).“ - N |—> fw = D “’f\/\/th —> v —>
W, X4 X2 X3 /
~— ‘ Wo

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model

Vocabulary:
[‘hi, ie!, “1, GO!]

Example training sequence:

“hello”
1 0 0 0
: 0 1 0 0
tl
input layer 0 0 1 1
0 0 0 0
input chars: “h” fa® | |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model

Vocabulary:
[ih!, ﬂe!, (l!, GO!]

Example training sequence:
‘nello”

ht — taﬂh(Whhht_l —+- thl‘t —+ bh)

W _hh| -

(.5
hidden layer | -0.1
0.9
1
- 0
tl
input layer 0
0
input chars: “h”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung,

cs231n Stanford



Example: Character-level Language Model

target chars: ‘e’ il " ‘0’
1.0 05 0.1 .2
Vocabulary: output layer | 2-2 0.3 0.5 -1.5
s e -3.0 -1.0 1.9 -0.1
‘n’, ‘e’, I', ‘o'l 4.1 1.2 1.1 2.2
I S
o DEE 1.0 0.1 |w nhl| -0-3
Example training sequence: hidden layer | -0.1 > 0.3 ~ -0.5 —= 0.9
HheHO” 09 01 ‘03 07
R N R 2
1 0 0 0
iInput layer 8 (1) (1) (1)
0 0 0 0
input chars: “n’ “e” | I

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)

“e”
T
Vocabulary: 03

Softmax | .13
(L) 7 ) ) 00
'h’, ‘e’, ', "o’}
i
1.0
2.2

-3.0
4.1

Sample

output layer

At test time sample one
character at a time and feed T

0.3

baCk tO the mOde‘ hidden layer | -0.1 —

09

iInput layer

1
0
0
0
input chars: “p”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model (Sampling)

(1P L)
e

Sample
| \\
.03

Softmax | .13
(L) 7 ) ) 00
'h’, ‘e’, ', "o’}
i
1.0
2.2

-3.0
4.1

Vocabulary:

output layer

At test time sample one
character at a time and feed T

0.3

baCk tO the mOde‘ hidden layer | -0.1 —

09

iInput layer

1
0
0
0
“h”

CD= e o e o i )|

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

input chars:



Example: Character-level Language Model (Sampling)

Sample “e”\\ “AI”

f |

Vocabulary: sofmax | 13| | | 20

SERTY I

! [

1.0 0.5

output layer %20 -(‘)I%

At test time sample one i -

character at a time and feed | |
baCk tO the mOde‘ hidden layer _(())31 > g)g N

0.9 01

1 0

iInput layer 8 (1)

0 0

input chars: “h” k e

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Example: Character-level Language Model (Sampling)

Sample e’ T T 0’
] \ T \ | \ |
Vocabulary: w211 121 [2] LI
'h’, e’ T, o] s | 50 | o3
! [ 1 T
1.0 0.5 0.1 0.2
output layer %% -(‘)I% (1)8 :(1)513
At test time sample one &l 1.2 1. 2.
character at a time and feed T T T TW—“Y
baCk tO the mOde‘ hidden layer .%:i a g)g | _%15 W_hrl '83
0.9 0.1 -0.3 074
T T T TW_xh
1 0 0 0
input layer 8 (1) EI) (1)
0 0 0 0
input chars: “h” k “a” k o k k|

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



BackProp [hrough Time

Forward through entire sequence to compute loss, then backward through entire
seqguence to compute gradient

i

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole seqguence

| 0SS

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence,

instead of the whole seqguence

. 0SS

P

—

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

Carry hidden states
forward, but only
BackProp through some
smaller number of steps



Truncated BackProp Through Time

Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole seqguence

| 0SS

DN U NN

* slide from Fei-Deli Li, Justin Johngon, Serena Yeung, ¢s231n Stanford



Implementation: Relatively Easy

... you will have a chance to experience this in the Assignment 3



Learning to Write Like Shakespeare

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease, y
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:

Pity the world, or else this glutton be,

To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days; x
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning to Write Like Shakespeare ... after training a bit

Eit fif!;t' tyntd-iafthatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
- plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

i train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

L train more

"Why do what that day,"” replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Learning to Write Like Shakespeare ... after training

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning Code

Trained on entire source code of Linux kernel

static void do_command(struct seq file *m, void *v)
{
int column = 32 << (cmd[2] & 0x80);
if (state)
cmd = (int)(int_state " (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
else
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000f£f£f£f£f£f£f8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec_ handle, 0x20000000);
pipe set bytes(i, 0);
}

/* Free our user pages pointer to place camera if all dash */
subsystem info = &of changes[PAGE_SIZE];
rek _controls(offset, idx, &soffset);

/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Everybody got one

And all the pretty mommies want some
And what i told you all was

But you need to stay such do not touch

They really do not want you to vote
what do you condone

Music make you lose control

What you need is right here ahh oh

This is for you and me

I had to dedicate this song to you Mami
Now I see how you can be

I see u smiling i kno u hattig

Best I Eva Had x4

That I had to pay for

Do I have the right to take yours
Trying to stay warm

(2 Chainz - Extremely Blessed)
(Mos Def - Undeniable)
(Lil Wayne - Welcome Back)

(Common - Heidi Hoe)

(KRS One - The Mind)
(Cam’ron - Bubble Music)
(Missy Elliot - Lose Control)

(Wiz Khalifa - Right Here)

(Missy Elliot - Hit Em Wit Da Hee)
(Fat Joe - Bendicion Mami)

(Lil Wayne - How To Hate)

(Wiz Khalifa - Damn Thing)

(Nicki Minaj - Best I Ever Had)
(Ice Cube - X Bitches)
(Common - Retrospect For Life)

(Everlast - 2 Pieces Of Drama)

Dopelearning: Computational Approach to Rap Lyrics

[ Malmi et al., KDD 2016 |



Sunspring: First movie generated by Al

‘

WATCH

Sunspring | A Sci-Fi Short Film Starring Thomas Middleditch

Sunspring, a short science fiction movie written entirely by Al, debuts exclusively on Ars today.



Multilayer RNNs

depth

time

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



| Bengio et al., 1994 |
| Pascanu et al., ICML 2013 |

Vanilla BRNN Gradient Flow

4 N ht — tanh(Whhht_l — th.Tt)
W —> —> tanh h
— tanh ((Whh th) ( t_l))
‘ Lt
h, ——> stack N, ,
t—1
T ()
Xt

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



| Bengio et al., 1994 |
| Pascanu et al., ICML 2013 |

Vanilla BRNN Gradient Flow

Backpropagation from h; to hy4
multiplies by W (actually Wpn")

4 R ht — tanh(Whhht_l -+ thZEt)

| E — tanh ((Whh Wha) (h;j))
h, ——> stack N, -
I —can (w (1))

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Vanilla BRNN Gradient Flow

| Bengio et al., 1994 |
| Pascanu et al., ICML 2013 |

% o - N s o s o
V\/—>l —>tanh \/\/—>l —>tanh V\/—>l —>tanh V\/—>l —>tanh
No 2 > stack H——> N 2 > stack “——» N, ; > stack “——» N5 2 > stack “——» h,
N T J N T Y N I Y N ! Y
X X5 Xq X4

Computing gradient
of hg INnvolves many

factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Vanilla BRNN Gradient Flow

| Bengio et al., 1994 |
| Pascanu et al., ICML 2013 |

% o - N s o s o
V\/—>l —>tanh \/\/—>l —>tanh V\/—>l —>tanh V\/—>l —>tanh
No 2 > stack H——> N 2 > stack “——» N, ; > stack “——» N5 2 > stack “——» h,
N T J N T Y N I Y N ! Y
X X5 Xq X4

Largest singular value > 1:

Computing gradient Exploding gradients

of hg INnvolves many
factors of W

(and repeated tanh) Largest singular value < 1:

Vanishing gradients

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Vanilla BRNN Gradient Flow

| Bengio et al., 1994 |
| Pascanu et al., ICML 2013 |

% o - N s o s o
\/\\—( )—tanh \\/—( )—=tanh \/\\—( )—tanh V\/—>l —>tanh
No 2 > stack H——> N 2 > stack “——» N, ; > stack “——» N5 2 > stack “——» h,
N T J N T Y N I Y N ! Y
X X5 Xq X4

Largest singular value > 1:

_ : Gradient clipping: Scale
Exploding gradients

gradient It its norm is too big

Computing gradient
of hg INnvolves many

factors of W

L argest singular value < 1: grad_norm = np.sum(grad * grad)
(aﬂd repeated taﬂh) ] _ ) if grad_norm > threshold:
van|3h|ng gradlents grad *= (threshold / grad_norm)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Vanilla BRNN Gradient Flow

| Bengio et al., 1994 |
| Pascanu et al., ICML 2013 |

% o - N s o s o
V\/—>l —>tanh \/\/—>l —>tanh V\/—>l —>tanh V\/—>l —>tanh
No 2 > stack H——> N 2 > stack “——» N, ; > stack “——» N5 2 > stack “——» h,
N T J N T Y N I Y N ! Y
X X5 Xq X4

Largest singular value > 1:

Computing gradient Exploding gradients

of hg INnvolves many

factors of W

(@and repeated tanh) Largest singular value < 1:

Vanishing gradients Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



| ong-Short Term Memory (LSTM)

Vanilla RNN LSTM

&

|

c's

Qo

-

-

S

N\
N

!

N

N

Q O Sw =
|
Q 9
/—;
3T
—_
N

| Hochreiter and Schmidhuber, NC 1977 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



| ong-Short Term Memory (LSTM)

* glide from Dhruv Batra



| ong-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

ftT fi=0Wjy-lhi_1,2¢] + by)

O

hi—1
Lt

* glide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

1

O

hi—1
Lt

fo =0 (Wy-lhi—1,2¢] + by)

Intuition: memory and forget gate output multiply, output of forget gate can

be though of as binary (O or 1)

anyt
anyt

ning X 1 = anything (remember)

ning X O = O (forget)

* glide from Dhruv Batra



LSTM Intuition: Input Gate

Should we update this “bit” of information or not”/
f yes, then what should we remember??’

’it — O (Wi'[ht—lyzt] -+ bz)
il C, = tanh(W¢-|hi—1,2¢| + bo)

* glide from Dhruv Batra



LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

ffT ZtF'%% C, = ft x Cp_1 + 14 % ét

* glide from Dhruv Batra



LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

Py T

(tanh> O — O'(WO [ht—lawt] - bO)

hy = o; * tanh (C})
ht—l ' ht

* glide from Dhruv Batra



LSTM Intuition: Additive Updates

Backpropagation from c; to ¢4 only elementwise multiplication by
f, no matrix multiply by W

— — — —
Cy_ 1 Ci

e — >

* glide from Dhruv Batra



LSTM Intuition: Additive Updates

Uninterrupted gradient flow!

* glide from Dhruv Batra



o—>

tanh

* glide from Dhruv Batra



LSTM Variants: with Peephole Connections

|_ets gates see the cell state / memory

Jt =0 (Wf'[Ct—laht—laxt: =+ bf)
it = O (Wi'[ct—lyht—lwfbt: =+ bz‘)
— or =0 (Wo-|Ct, he—1,2¢] + by)

* glide from Dhruv Batra



LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

P@-’ Cy = fi* Coo1 + (1= fr) * Cy

* glide from Dhruv Batra



Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

<t — 0 (Wz ' [ht—laajt])
r{ =0 (Wr ' [ht—la$t])
iLt — tanh(

<

' [Tt * Ny 1, th])

ht:(l—Zt *ht_l—FZt*iLt

N’

Z = memorize new and forget old

* glide from Dhruv Batra



Phased LSTM [ Neil et al., 2016 ]

Gates are controlled by phased (periodic) oscillations

X4 Xy

t t 100 ¢ ;
: Output ) I I i
%F’Ut the >t > 90 1 Phased LSTM [
L B BN LSTM
Gate E . LSTM
| @)
- Q80 -
Xt——{ /" @ C; '@ ° )= h -
p~ 5
(C
° 70
)
©
X -
S 60
Forget Gate
>0 High
Xt | Standard resolution Async.

sampling sampling sampling



Skip-thought Vectors

word2vec but for sentences, where each sentence is processed by an LSTM

l got back home <e0s5>
NS vy <€05~> I got back home
O—>»C & B @ B 5 ) BX ! -
et IS was strange <eos>
l could see the cat on the steps . 9
& - - "
<@os> This was strange

| Kiros et al., 2015 |



