
Lecture 7: Word2Vec, Language Models and RNNs

Topics in AI (CPSC 532L):
Multimodal Learning with Vision, Language and Sound

Course Logistics

— Assignment 1 grades (available on Connect ???)
— Solutions will be posted over the weekend

— Assignment 2 was due Yesterday

— Assignment 3 will be out Friday, January 26th
— The due deadline will be extended

— Paper choices will be due next week (google form)
— Projects groups and short description (google form)

Representing a Word: One Hot Encoding

dog
cat
person
holding
tree
computer
using

Vocabulary

*slide from V. Ordonex

Representing a Word: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

*slide from V. Ordonex

Representing a Word: One Hot Encoding

dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

one-hot encodings

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Vocabulary

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
ing

tre

e
co

m
pu

te
r

us
ing

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
ing

tre

e
co

m
pu

te
r

us
ing

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
ing

tre

e
co

m
pu

te
r

us
ing

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
ing

tre

e
co

m
pu

te
r

us
ing

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

person using computer {3, 7, 6} [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

*slide from V. Ordonex

Representing Phrases: Bag-of-Words
dog
cat
person
holding
tree
computer
using

1
2
3
4
5
6
7

Vocabulary

bag-of-words representation

do
g

ca

t
pe

rs
on

ho

ld
ing

tre

e
co

m
pu

te
r

us
ing

person holding dog {3, 4, 1} [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

person holding cat {3, 4, 2} [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

person using computer {3, 7, 6} [0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

person using computer
person holding cat {3, 3, 7, 6, 2} [0, 1, 2, 1, 0, 1, 1, 0, 0, 0]

*slide from V. Ordonex

Distributional Hypothesis

— At least certain aspects of the meaning of lexical expressions depend on
their distributional properties in the linguistic contexts
— The degree of semantic similarity between two linguistic expressions is a
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency

[Lenci, 2008]

What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.
— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.
— I dined off bread and cheese and this excellent bardiwac.
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

* Adopted from slides by Louis-Philippe Morency

What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.
— Beef dishes are made to complement the bardiwacs.
— Nigel staggered to his feet, face flushed from too much bardiwac.
— Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine.
— I dined off bread and cheese and this excellent bardiwac.
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

* Adopted from slides by Louis-Philippe Morency

bardic is an alcoholic beverage made from grapes

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates o the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates o the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Distance and Similarity

— Illustrated in two dimensions

— Similarity = spatial proximity
(Euclidian distance)

— Location depends on frequency of
noun (dog is 27 times as frequent as ca)

* Slides from Louis-Philippe Morency

Angle and Similarity

— direction is more important than location

— normalize length of vectors

— or use angle as a distance measure

* Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Geometric Interpretation: Co-occurrence as feature

— Row vector describes usage of word
in a corpus of text

— Can be seen as coordinates of the
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Way too high dimensional!

SVD for Dimensionality Reduction

*slide from Vagelis Hristidis

Learned Word Vector Visualization
We can also use other methods, like LLE here:

[Roweis and Saul, 2000]

Issues with SVD

Computational cost for a matrix is , where
— Makes it not possible for large number of word vocabularies or documents

It is hard to incorporate out of sample (new) words or documents

d⇥ n O(dn2) d < n

*slide from Vagelis Hristidis

word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
incorporate new document, words, etc.

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words
of every word

Benefits: Faster and easier to
incorporate new document, words, etc.

Continuous Bag of Words (CBOW): use context words in a window to predict
middle word

Skip-gram: use the middle word to predict surrounding ones in a window
*slide from Vagelis Hristidis

[Mikolov et al., 2013]

CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

on

floor

sat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

(one-hot vector)

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

(one-hot vector)

CBOW: Continuous Bag of Words

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

Parameters to be learned

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

cat

on

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

Parameters to be learned

Size of the word vector (e.g., 300)
*slide from Vagelis Hristidis

[Mikolov et al., 2013]

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

	

2.4

2.6

…

…

1.8

	

0

1

0

0

0

0

0

0

0

0

WT
|V |⇥|N | xcat vcat=⇥

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

	

1.8

2.9

…

…

1.9

	

0

0

0

1

0

0

0

0

0

0

WT
|V |⇥|N | =⇥ v

on

x

on

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer

sat

Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

v̂ =
v
cat

+ v
on

2

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

0.01
0.02
0.00
0.02
0.01
0.02
0.01
0.7
…

0.00

Optimize to get close to 1-hot encoding
*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Continuous Bag of Words

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

WT
|V |⇥|N |

Word vectors

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

W

|N |⇥|V | ⇥
x

cat =
v

cat

W

|N
|⇥|V |⇥

x

o

n

=
v

o

n

x

on

xcat

Input layer

Hidden layer Output layer

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

CBOW: Interesting Observation

x 2 R|V |

ŷ 2 R|V |
v̂ 2 R|N |

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

W

0
|V |⇥|N | ⇥ v̂ = z

ŷ = softmax(z)

ŷsat

*slide from Vagelis Hristidis

[Mikolov et al., 2013]

Skip-Gram Model [Mikolov et al., 2013]

Comparison

— CBOW is not great for rare words and typically needs less data to train
— Skip-gram better for rate words and needs more data to train the model

[Mikolov et al., 2013]

Interesting Results: Word Analogies

Interesting Results: Word Analogies [Mikolov et al., 2013]

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

Why is this useful?

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

Why is this useful?

* Slides from Louis-Philippe Morency

Language Models

Model the probability of a sentence; ideally be able to sample plausible
sentences

Why is this useful?

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Using Chain Rule of probabilities:

* Slides from Louis-Philippe Morency

Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Using Chain Rule of probabilities:

p(w1:n) =
nY

k=1

p(wk|wk�1) p(w1:n) =
nY

k=1

p(wk|wk�N+1:k�1)

Bi-gram Approximation: N-gram Approximation:

* Slides from Louis-Philippe Morency

Estimating Probabilities

p(wn|wn�1) =
C(wn�1wn)

C(wn�1)

p(wn|wn�N�1:n�1) =
C(wn�N�1:n�1wn)

C(wn�N�1:n�1)

N-gram conditional probabilities can be estimated based on raw concurrence
counts in the observed sequences

Bi-gram:

N-gram:

* Slides from Louis-Philippe Morency

Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!

Why Model Sequences?

* slide from Dhruv BatraImage Credit: Alex Graves and Kevin Gimpel

Multi-modal tasks

Cap$on	Genera$on:	Vinyals	et	al.	2015	

[Vinyals et al., 2015]

Sequences where you don’t expect them …

Classify images by taking a
series of “glimpses”

[Gregor et al., ICML 2015]
[Mnih et al., ICLR 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences where you don’t expect them …

Classify images by taking a
series of “glimpses”

[Gregor et al., ICML 2015]
[Mnih et al., ICLR 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

Input: No sequence
Output: No seq.

Example:
“standard”

classification /  
regression problems

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequences in Inputs or Outputs?

Input: No sequence
Output: No seq.

Example:
“standard”

classification /  
regression problems

Input: No
sequence
Output:

Sequence
Example:

Im2Caption

Input: Sequence
Output: No seq.

Example: sentence
classification,

multiple-choice
question answering

Input: Sequence
Output: Sequence

Example: machine translation, video captioning,
open-ended question answering, video question

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Key Conceptual Ideas

Parameter Sharing

— in computational graphs = adding gradients

“Unrolling”
— in computational graphs with parameter sharing

Parameter Sharing + “Unrolling”
— Allows modeling arbitrary length sequences!
— Keeps number of parameters in check

* slide from Dhruv Batra

x

RNN

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

x

RNN

y
usually want to predict a
vector at some time steps

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

some function
with parameters W

x

RNN

y

input vector at
some time step

old statenew state

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

x

RNN

y

Note: the same function and the same set of
parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1

x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2

x2x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: Many to One

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

RNN Computational Graph: One to Many

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence:
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Example: Character-level Language Model (Sampling)

Vocabulary:
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one
character at a time and feed
back to the model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02.08

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

BackProp Through Time

Loss

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time

Loss

Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss Carry hidden states
forward, but only
BackProp through some
smaller number of steps

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence,
instead of the whole sequence

Loss

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Implementation: Relatively Easy

… you will have a chance to experience this in the Assignment 3

Learning to Write Like Shakespeare

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

train more

train more

train more

at first:

Learning to Write Like Shakespeare … after training a bit

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning to Write Like Shakespeare … after training

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Learning Code
Trained on entire source code of Linux kernel

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

DopeLearning: Computational Approach to Rap Lyrics

[Malmi et al., KDD 2016]

Sunspring: First movie generated by AI

Multilayer RNNs

time

depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]
[Pascanu et al., ICML 2013]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[Bengio et al., 1994]
[Pascanu et al., ICML 2013]

Backpropagation from ht to ht-1
multiplies by W (actually WhhT)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Gradient clipping: Scale
gradient if its norm is too big

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Vanilla RNN Gradient Flow [Bengio et al., 1994]
[Pascanu et al., ICML 2013]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh) Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[Hochreiter and Schmidhuber, NC 1977]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Long-Short Term Memory (LSTM)

Cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not?

Intuition: memory and forget gate output multiply, output of forget gate can
be though of as binary (0 or 1)

anything x 0 = 0 (forget)
anything x 1 = anything (remember)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Input Gate

Should we update this “bit” of information or not?
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Intuition: Additive Updates
Backpropagation from ct to ct-1 only elementwise multiplication by

f, no matrix multiply by W

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128 / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

...

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool
Similar to ResNet

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Peephole Connections

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra

Phased LSTM

Gates are controlled by phased (periodic) oscillations

[Neil et al., 2016]

Skip-thought Vectors

word2vec but for sentences, where each sentence is processed by an LSTM

[Kiros et al., 2015]

