
Lecture 7: Word2Vec, Language Models and RNNs

Topics in AI (CPSC 532L): 
Multimodal Learning with Vision, Language and Sound



Course Logistics 

— Assignment 1 grades (available on Connect ???) 
— Solutions will be posted over the  weekend 

— Assignment 2 was due Yesterday  

— Assignment 3 will be out Friday, January 26th 
— The due deadline will be extended 

— Paper choices will be due next week (google form) 
— Projects groups and short description (google form)



Representing a Word: One Hot Encoding
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Representing a Word: One Hot Encoding

dog   
cat 
person 
holding 
tree 
computer 
using

1 
2 
3 
4 
5 
6 
7

one-hot encodings

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] 
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] 

Vocabulary
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]
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Representing Phrases: Bag-of-Words
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person holding dog {3, 4, 1} [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]

person holding cat {3, 4, 2} [ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 ]

person using computer {3, 7, 6} [ 0, 0, 0, 1, 0, 1, 1, 0, 0, 0 ]

person using computer 
person holding cat {3, 3, 7, 6, 2} [ 0, 1, 2, 1, 0, 1, 1, 0, 0, 0 ]

*slide from V. Ordonex 



Distributional Hypothesis

— At least certain aspects of the meaning of lexical expressions depend on 
their distributional properties in the linguistic contexts 
— The degree of semantic similarity between two linguistic expressions is a 
function of the similarity of the two linguistic contexts in which they can appear

* Adopted from slides by Louis-Philippe Morency

[ Lenci, 2008 ]



What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.  
— Beef dishes are made to complement the bardiwacs.  
— Nigel staggered to his feet, face flushed from too much bardiwac.  
— Malbec, one of the lesser-known bardiwac grapes, responds well to 
Australia’s sunshine.  
— I dined off bread and cheese and this excellent bardiwac.  
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish. 

* Adopted from slides by Louis-Philippe Morency



What is the meaning of “bardiwac”?

— He handed her glass of bardiwac.  
— Beef dishes are made to complement the bardiwacs.  
— Nigel staggered to his feet, face flushed from too much bardiwac.  
— Malbec, one of the lesser-known bardiwac grapes, responds well to 
Australia’s sunshine.  
— I dined off bread and cheese and this excellent bardiwac.  
—The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish. 

* Adopted from slides by Louis-Philippe Morency

bardic is an alcoholic beverage made from grapes



Geometric Interpretation: Co-occurrence as feature 

— Row vector describes usage of word 
in a corpus of text 

— Can be seen as coordinates o the 
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency
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Distance and Similarity

— Illustrated in two dimensions 

— Similarity = spatial proximity 
(Euclidian distance) 

— Location depends on frequency of 
noun (dog is 27 times as frequent as ca)

* Slides from Louis-Philippe Morency



Angle and Similarity

— direction is more important than location  

— normalize length of vectors 

— or use angle as a distance measure

* Slides from Louis-Philippe Morency
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Geometric Interpretation: Co-occurrence as feature 

— Row vector describes usage of word 
in a corpus of text 

— Can be seen as coordinates of the 
point in an n-dimensional Euclidian space

Co-occurrence Matrix

* Slides from Louis-Philippe Morency

Way too high dimensional!



SVD for Dimensionality Reduction

*slide from Vagelis Hristidis



Learned Word Vector Visualization 
We can also use other methods, like LLE here:

[ Roweis and Saul, 2000 ]



Issues with SVD

Computational cost for a             matrix is            , where  
— Makes it not possible for large number of word vocabularies or documents 

It is hard to incorporate out of sample (new) words or documents

d⇥ n O(dn2) d < n

*slide from Vagelis Hristidis



word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words 
of every word 

Benefits: Faster and easier to 
incorporate new document, words, etc. 

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



word2vec: Representing the Meaning of Words
Key idea: Predict surrounding words 
of every word 

Benefits: Faster and easier to 
incorporate new document, words, etc. 

Continuous Bag of Words (CBOW): use context words in a window to predict 
middle word

Skip-gram: use the middle word to predict surrounding ones in a window
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]



CBOW: Continuous Bag of Words

Example: “The cat sat on floor” (window size 2)

the

cat

on

floor

sat

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]
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CBOW: Continuous Bag of Words

*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]
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CBOW: Continuous Bag of Words

x 2 R|V |

W|V |⇥|N |

W|V |⇥|N |

W0
|N |⇥|V |

ŷ 2 R|V |
v̂ 2 R|N |

Parameters to be learned

Size of the word vector (e.g., 300)
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]
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[ Mikolov et al., 2013 ]
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[ Mikolov et al., 2013 ]
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Optimize to get close to 1-hot encoding 
*slide from Vagelis Hristidis

[ Mikolov et al., 2013 ]
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Skip-Gram Model [ Mikolov et al., 2013 ]



Comparison

— CBOW is not great for rare words and typically needs less data to train 
— Skip-gram better for rate words and needs more data to train the model 

[ Mikolov et al., 2013 ]



Interesting Results: Word Analogies



Interesting Results: Word Analogies [ Mikolov et al., 2013 ]



Language Models 

Model the probability of a sentence; ideally be able to sample plausible 
sentences

* Slides from Louis-Philippe Morency
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Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

* Slides from Louis-Philippe Morency
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Simple Language Models: N-Grams
w1:n = [w1, w2, ..., wn]

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Given a word sequence:

We want to estimate

p(w1:n) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1:n�1)

Using Chain Rule of probabilities:

p(w1:n) =
nY

k=1

p(wk|wk�1) p(w1:n) =
nY

k=1

p(wk|wk�N+1:k�1)

Bi-gram Approximation: N-gram Approximation:

* Slides from Louis-Philippe Morency



Estimating Probabilities

p(wn|wn�1) =
C(wn�1wn)

C(wn�1)

p(wn|wn�N�1:n�1) =
C(wn�N�1:n�1wn)

C(wn�N�1:n�1)

N-gram conditional probabilities can be estimated based on raw concurrence 
counts in the observed sequences

Bi-gram:

N-gram:

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency



Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)



Neural-based Unigram Language Mode

* Slides from Louis-Philippe Morency

Problem: Does not model sequential information (too local)

We need sequence modeling!



Why Model Sequences? 

* slide from Dhruv BatraImage Credit: Alex Graves and Kevin Gimpel



Multi-modal tasks

Cap$on	Genera$on:	Vinyals	et	al.	2015	

[ Vinyals et al.,  2015 ]



Sequences where you don’t expect them … 

Classify images by taking a 
series of “glimpses”

[ Gregor et al., ICML 2015 ]
[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences where you don’t expect them … 

Classify images by taking a 
series of “glimpses”

[ Gregor et al., ICML 2015 ]
[ Mnih et al., ICLR 2015 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences in Inputs or Outputs? 

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequences in Inputs or Outputs? 

Input: No sequence 
Output: No seq. 

Example: 
“standard” 

classification /  
regression problems

Input: No 
sequence 
Output: 

Sequence 
Example: 

Im2Caption

Input: Sequence 
Output: No seq. 

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence 
Output: Sequence 

Example: machine translation, video captioning, 
open-ended question answering, video question 

answering

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Key Conceptual Ideas

Parameter Sharing 

— in computational graphs = adding gradients 

“Unrolling” 
— in computational graphs with parameter sharing 

Parameter Sharing + “Unrolling” 
— Allows modeling arbitrary length sequences!  
— Keeps number of parameters in check

* slide from Dhruv Batra



x

RNN

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



x

RNN

y
usually want to predict a 
vector at some time steps

Recurrent Neural Network

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

some function 
with parameters W

x

RNN

y

input vector at 
some time step

old statenew state

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Recurrent Neural Network

We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

x

RNN

y

Note: the same function and the same set of 
parameters are used at every time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Vanilla) Recurrent Neural Network
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(Vanilla) Recurrent Neural Network

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1

x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1 fW h2

x2x1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

… 

x2x1

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

hT

Re-use the same weight matrix at every time-step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1
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RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT
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x2x1W

hT
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RNN Computational Graph: Many to Many

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: Many to One

h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

hT

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



RNN Computational Graph: One to Many

h0 fW h1 fW h2 fW h3

yT

… 

x
W

hT

y3y2y1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sequence to Sequence: Many to One + One to Many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

y1 y2

fW h1 fW h2 fW

W2

One to many: Produce output 
sequence from single input vector

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”
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Example: Character-level Language Model

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

Example training sequence: 
“hello”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model

.03 
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.84

.25 

.20 

.05 

.50
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.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample
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back to the model

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Example: Character-level Language Model (Sampling)
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Example: Character-level Language Model (Sampling)

Vocabulary: 
[‘h’, ‘e’, ‘l’, ‘o’]

At test time sample one 
character at a time and feed 
back to the model

.03 

.13 

.00 

.84

.25 

.20 

.05 

.50

.11 

.17 

.68 

.03

.11 

.02.08 

.79
Softmax

“e” “l” “l” “o”Sample
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BackProp Through Time

Loss

Forward through entire sequence to compute loss, then backward through entire 
sequence to compute gradient

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Truncated BackProp Through Time

Loss

Run backwards and forwards through (fixed length) chunks of the sequence, 
instead of the whole sequence 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence, 
instead of the whole sequence 

Loss Carry hidden states 
forward, but only 
BackProp through some 
smaller number of steps

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Truncated BackProp Through Time
Run backwards and forwards through (fixed length) chunks of the sequence, 
instead of the whole sequence 

Loss

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Implementation: Relatively Easy  

… you will have a chance to experience this in the Assignment 3



Learning to Write Like Shakespeare

x

RNN

y

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



train more

train more

train more

at first:

Learning to Write Like Shakespeare … after training a bit

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning to Write Like Shakespeare … after training

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Learning Code
Trained on entire source code of Linux kernel 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



DopeLearning: Computational Approach to Rap Lyrics

[ Malmi et al., KDD 2016 ]



Sunspring: First movie generated by AI 



Multilayer RNNs

time

depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow

ht-1

xt

W

stack

tanh

ht

[ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

Backpropagation from ht to ht-1 
multiplies by W (actually WhhT)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh)
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Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1: 
Exploding gradients 

Largest singular value < 1: 
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1: 
Exploding gradients 

Largest singular value < 1: 
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh)

Gradient clipping: Scale 
gradient if its norm is too big

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Vanilla RNN Gradient Flow [ Bengio et al., 1994 ]
[ Pascanu et al., ICML 2013 ]

h0

x1

W
stack

tanh

h1

x2

W
stack

tanh

h2

x3

W
stack

tanh

h3

x4

W
stack

tanh

h4

Largest singular value > 1: 
Exploding gradients 

Largest singular value < 1: 
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W 
(and repeated tanh) Change RNN architecture

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Long-Short Term Memory (LSTM)

Vanilla RNN LSTM

[ Hochreiter and Schmidhuber, NC 1977 ]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Long-Short Term Memory (LSTM)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Long-Short Term Memory (LSTM)

Cell state / memory 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Forget Gate

Should we continue to remember this “bit” of information or not? 

Intuition: memory and forget gate output multiply, output of forget gate can 
be though of as binary (0 or 1) 

anything x 0 = 0 (forget)
anything x 1 = anything (remember)

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Input Gate

Should we update this “bit” of information or not? 
If yes, then what should we remember?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Memory Update

Forget what needs to be forgotten + memorize what needs to be remembered

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Output Gate

Should we output this bit of information (e.g., to “deeper” LSTM layers)? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Intuition: Additive Updates
Backpropagation from ct to ct-1 only elementwise multiplication by 

f, no matrix multiply by W

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Uninterrupted gradient flow!

LSTM Intuition: Additive Updates

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128 / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

...

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool
Similar to ResNet

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Variants: with Peephole Connections 

Lets gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



LSTM Variants: with Coupled Gates

Only memorize new information when you’re forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Gated Recurrent Unit (GRU)

No explicit memory; memory = hidden output

z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * slide from Dhruv Batra



Phased LSTM

Gates are controlled by phased (periodic) oscillations

[ Neil et al., 2016 ]



Skip-thought Vectors 

word2vec but for sentences, where each sentence is processed by an LSTM

[ Kiros et al., 2015 ]


