THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 4: Convolutional Neural Networks (Part 1)



Course Logistics

— Azure credits have been distributed

— Instructions for using Azure are on Plazza

— Office hours (Shikib) on Wednesday (January 17th) 1-2pm
— Assignment 1 grading

— Assignment 2 will be out today (on CNNSs)

— Start thinking about papers

— Start thinking about project and forming groups (proposal is in ~month)
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Research Projects
Business

"A good entrepreneur can take a mediocre idea and make It great, a bad
entrepreneur will take the best idea and run it into a ground.”

Robert Herjavec

(Canadian businessman and investor)
Shark Tank

Research

“A good I1dea can make a mediocre project great, a bad idea will take the
pbest project and run it into a ground.” — Me



Research Projects Ideas Levels of Abstraction

| want to solve vision / language / etc.
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Research Projects Ideas Levels of Abstraction

| want to solve vision / language / etc.

| want to do X (e.g., Iimage captioning)

— This is excellent if X is something no one has done or thought about and is important (guaranteed success)
— Requires forward thinking, knowledge of the field
— A sure way to get tenure

— Difficult to do as the field matures

AUV

(SNSRI

Rosland Picard, MIT — Affective Computing
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Research Projects Ideas Levels of Abstraction

| want to solve vision / language / etc.

| want to do X (e.g., Iimage captioning)

Geoffrey Hinton

| think the right way to solve (or mprove) Xis'Y

— More incremental; a lot of science is incremental (“standing on the shoulders of giants”)

— Retrospective: compare existing approaches see why they work what is missing (guaranteed success)

— Perspective: come up with an idea or the insight that you truly believe and test it

— Requires through knowledge of the sub-field (lots of reading)

— Requires strong intuition and high level (intuitive) thinking

— Requires understanding of the mathematical tools and formulations to know what maybe possible

— Helps to bringing knowledge from other fields (field cross pollination)



Research Projects Ideas Levels of Abstraction

| want to solve vision / language / etc.
| want to do X (e.g., Iimage captioning)

| think the right way to solve (or mprove) Xis'Y
Mathematical formulation

Implementation / engineering

Experimental testing



On to todays lecture ...



Fully Connected Layer

Example: 200 x 200 image (small)
X 40K hidden units

* slide from Marc’Aurelio Renzato
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Example: 200 x 200 image (small)
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= ~ 2 Billion parameters (for one layer!)
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Fully Connected Layer

Example: 200 x 200 image (small)
X 40K hidden units

= ~ 2 Billion parameters (for one layer!)

Spatial correlations are generally local

Waste of resources + we don’t have
enough data to train networks this large

* slide from Marc’Aurelio Renzato



Locally Connected Layer

Example: 200 x 200 image (small)
X 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

* slide from Marc’Aurelio Renzato



Locally Connected Layer

Example: 200 x 200 image (small)
X 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

Stationarity — statistics is similar at
different locations

* slide from Marc’Aurelio Renzato



Convolutional Layer

Example: 200 x 200 image (small)
X 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

Share the same parameters across the

locations (assuming input is stationary)

* slide adopted from Marc’Aurelio Renzato




Convolutional Layer

Example: 200 x 200 image (small)
X 40K hidden units

Filter size: 10 x 10

= ~ 4 Millign parameters

= 100 parameters

Share the same parameters across the

locations (assuming input is stationary)

* slide adopted from Marc’Aurelio Renzato
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Convolutional Layer

Example: 200 x 200 image (small)
X 40K hidden units

\ Filter size: 10 x 10
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Learn multiple filters

* slide from Marc’Aurelio Renzato



Convolutional Layer

Example: 200 x 200 image (small)
X 40K hidden units

\ Filter size: 10 x 10
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= 2000 parameters

Learn multiple filters

* slide from Marc’Aurelio Renzato



Convolutional Layer

32 X 32 X 3 image (note the image preserves spatial structure)

32 height

32 width

3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Layer

32 X 32 X 3 Image

32 heign! 5 x 5 x 3 filter
Convolve the filter with the image
(.e., “slide over the image spatially,
computing dot products”)
32 width

3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Layer

32 x 32 xfg]image
Filters always extend the full depth of the input volume
32 heignt
- 5 x 5 x[filter
Convolve the filter with the image
(.e., “slide over the image spatially,
computing dot products”
32 width
3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer

32 X 32 X 3 Image

x 3 filter (W)

1 number: the result of taking a dot product
pbetween the filter and a small 5 x 5 x 3 part
of the Image

Wx + b, where W,x € R™

32 Width

3 deptnh

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Layer

32 X 32 X 3 Image

x 3 filter (W)

1 number: the result of taking a dot product
pbetween the filter and a small 5 x 5 x 3 part
of the Image

Wx + b, where W,x € R™

32 Width

How many parameters does the layer have”
3 deptnh
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Convolutional Layer

32 X 32 X 3 Image

x 3 filter (W)

1 number: the result of taking a dot product
pbetween the filter and a small 5 x 5 x 3 part
of the Image

Wx + b, where W,x € R™

32 Width

How many parameters does the layer have? 76
3 deptnh

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Layer

32 X 32 X 3 image activation map
T~
e convolve (slide) over all
- spatial locations
28 idth
32 width 1 depth

3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer

32 X 32 X 3 image activation map
O X 9|x 3 filter (W) 28 heioht
T
Il convolve (slide) over all
- spatial locations
28 widin
32 wiath consider another filter 1 depth

3 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer

If we have 6 5x5 filter, we'll get 6 separate activation maps:  activation map

32 height 28 height
convolutional
layer
28 width
3 deptn this results in the “new image” of size 28 x 28 x 6!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 depth

28 neignt 24 neignt
CONV,
Rel U
e.g. 10 5x5x6
filters

28 width 24 \v|dth

10 cepth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



What filters do networks learn?
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| Zeiler and Fergus, 2013 ]



What filters do networks learn?

| Zeiler and Fergus, 2013 ]



Convolutional Layer: Closer Look at Spatial Dimensions

32 X 32 X 3 Image

o X 9/ x 3 filter (W)

32 width

3 depth

activation map

28 height

convolve (slide) over all

spatial locations

28 width

1 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width
/ X 7 Input image (spatially)

3 x 3 filter

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Convolutional Layer: Closer Look at Spatial Dimensions

7 width

/ X 7 Input image (spatially)
3 X 3 filter

=> 95 X 5 output

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width

/ X 7 Input image (spatially)
3 X 3 filter

(applied with stride 2)

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width

/ X 7 Input image (spatially)
3 X 3 filter

(applied with stride 2)

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width

/ X 7 Input image (spatially)
3 X 3 filter

(applied with stride 2)

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width

/ X 7 Input image (spatially)
3 X 3 filter

(applied with stride 2)

=> 3 X 3 output

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width

/ X 7 Input image (spatially)
3 X 3 filter

(applied with stride 3)

7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

7 width
/ X 7 Input image (spatially)

3 X 3 filter
(applied with stride 3)

7 height

Does not fit! Cannot apply 3 x 3
filter on 7 X 7 Image with stride 3

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

N width

N x N input image (spatially)
F x F filter

Output size: (N-F) / stride + 1

N height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: Closer Look at Spatial Dimensions

N width

N x N input image (spatially)
F x F filter

Output size: (N-F) / stride + 1

N height

Example: N=7/,F=3

stride 1 => (7-3)/1+1 =
stride 2 => (7-3)/2+1 =
stride 3 => (/-3)/3+1 = 2.33

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



7 width

O

O

OO O|IOIOO]TO 10O |0

OO O|IOIO[O]TO 10O |0

Convolutional Layer: Border padding

5 X 5 Input image (spatially)
3 X 3 filter

(applied with stride 1)

pad with 1 pixel border

Output size: 7/ x 7
7 height

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



7 width

O

O

OO O|IOIOO]TO 10O |0

OO O|IOIO[O]TO 10O |0

Convolutional Layer: Border padding

5 X 5 Input image (spatially)
3 X 3 filter
(applied with stride 3)

pad with 1 pixel border

7 height



Convolutional Layer: Border padding

| 5 X 5 Input image (spatially)
7 wiath 3 x 3 filter
olololololol oo (applied with stride 3)

pad with 1 pixel border

7 height

Example: N=7,F=3

stride 1 => (9-3)/1+1 =7
stride 2 => (9-3)/2+1 =4
stride 3 => (9-3)/3+1 =3

OO O|IOIOO]TO 10O |0
OO O|IOIO[O]TO 10O |0




Convolutional Neural Network (ConvNet)

3 deptn

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Network (ConvNet)

3 deptn

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptnh

28 height

28 width

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Network (ConvNet)

3 deptn

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptnh

28 height

CONV,
Rel U

e.g. 10 5x5x6
filters

28 width

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Network (ConvNet)

3 deptn

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptnh

28 height 24 height

CONV,
Rel U

e.g. 10 5x5x6
filters

28 width 24 \vidth

10 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Network (ConvNet)

3 depth

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 depth

28 height 24 height
CONV,
Rel U
e.g. 10 5x5x6
filters
28 width 24 \vidth
10 oeptn

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Neural Network (ConvNet)

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly
(which happens with larger filters) doesn’t work well in practice

3 deptn

32 height

CONV,
Rel U

e.g. 6 5x5x3
filters

32 width

6 deptnh

28 height 24 height

CONV,
Rel U

e.g. 10 5x5x6
filters

28 width 24 \vidth

10 depth

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Layer: 1x1 convolutions

50 X 56 x 64 Image

64 dept

56 heignt

56 width

32 filters of size, 1 x 1 x 64
——————————————————————————————————————

50 X 56 x 32 image

56 heignt

56 width

32 deptn

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Convolutional Neural Networks
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CNNs: Reminder Fully Connected Layers

Input Activation
P Wix + b, where W € R1V%3072

-_—> O
each neuron looks at the full

3072 Input volume 10
(32 x 32 x 3 Image -> stretches to 3072 x 1)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Networks
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Convolutional Neural Networks
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CNNs: Reminder Fully Connected Layers

Input Activation
p WTX 4+ b, Where W c R25,088><4,096

-_—> O
each neuron looks at the full

25,088 input volume 4 096
(7 X 7 x 512 iImage -> stretches to 25,088 x 1)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



CNNs: Reminder Fully Connected Layers

Input Activation
p WTX 4+ b, Where W c R25,088><4,096

-_—> O
each neuron looks at the full

25,088 input volume 4 096
(7 X 7 x 512 iImage -> stretches to 25,088 x 1)

102,760,448 parameters!

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional Neural Networks
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Convolutional Neural Networks
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Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato



Pooling Layer
Let us assume the filter is an “eye” detector

How can we make detection spatially invariant
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response
over a spatial locations we gain robustness
to position variations

* slide from Marc’Aurelio Renzato



Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool 4
/ @ V

&

> e 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/// 112x112x64

pool y
fo-
)/ How many parameters”?’

&

> e 112
224 downsampling
112
224
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Pooling Layer

* Makes representation smaller, more manageable and spatially invariant

* Operates over each activation map independently

224x224x64
/ 112x112x64
pool
/ @ 4 How many parameters?

& None!

> o 112
224 downsampling
112
224

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Vlax Pooling

activation map

max pool with 2 x 2 filter

3 2 1 O and stride of 2 3 A

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

activation map

3.20 0.20

avg pool with 2 x 2 filter

3 2 1 O and stride of 2 D D



Pooling Layer Receptive Field

T convolutional filters have size KxK and stride 1, and pooling layer has pools of
size PxP, then each unit in the pooling layer depends upon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)
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Pooling Layer Receptive Field

T convolutional filters have size KxK and stride 1, and pooling layer has pools of
Size PxP, then each unit in the pooling layer depenos Jpon a patch (at the input of
the preceding conv. layer) of size: (P+K-1)x(P+K-1)

* slide from Marc’Aurelio Renzato



Convolutional Neural Networks
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VGG-16 Network



| ocal Contrast Normalization Layer

ensures response IS the same In both case (details omitted, no longer popular)

* Images from Marc’Aurelio Renzato



Improving Single Model

Regularization
- L2, L1
- Dropout / Inverted Dropout

- Data augmentation



Improving Single Model

Regularization
- L2, L1
- Dropout / Inverted Dropout

- Data augmentation

L2 Regularization: Learn a more (dense) distributed representation

R(W) = [Wll2 =33 W2,

()
L1 Regularization: Learn a sparse representation (few non-zero wight elements)

RW) =[[Wlli =3 [Ws,

(



Improving Single Model

Regularization
- L2, L1

- Dropout / Inverted Dropout

- Data augmentation Dropout

L2 Regularization: Learn a more (dense) distributed representation

R(W) = [Wll2 =33 W2,

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

RW) =[[Wlli =3 [Ws,

(



Regularization: Data Augmentation

= ﬁ é:ﬂ / L 0SS

Load image
and label

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

Load image
and label

CNN Compute

= ﬁ é:ﬂ / L 0SS

Transform
mage

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Training: sample random crops and scales
e.g., ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short size = L
3. Sample random 224x224 patch

Testing: average a fix set of crops
e.g., ResNet:

1. Resize image to 5 scales (224, 256, 384, 480, 640)
2. For each image use 10 224x224 crops: 4 corners + center, + flips

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Regularization: Data Augmentation

Horizontal flips Random crops & scales Color Jitter

Random perturbations in
contrast and brightness

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Regularization: Stochastic Depth (Huang et al. ECCV 2016

Effectively "dropout” but for layers

Stochastically with some probability turn off

some layer (for each batch)

Effectively trains a collection of neural networks

Residual Block

=

1
[ Input }—-
4

fe(Hg—1)

\
ReLU -'[ Output ]
id(Hy-1)
J

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transfer Learning with CNNs

AN
Common “Wisdom”: You need a lot of data to train a CNN

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transfer Learning with CNNs

AN
Common “Wisdom”: You need a lot of data to train a CNN

Solution: Transfer learning — taking a model trained on the task that has
lots of data and adopting it to the task that may not

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transfer Learning with CNNs

Common “Wisdom”: You need a lot of data to train a CNN & L

Solution: Transfer learning — taking a model trained on the task that has
lots of data and adopting it to the task that may not

%Q} % '
A2

This strategy is PERVASIVE.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



' . | Yosinski et al., NIPS 2014 |
Transfer Learning with CNNs " [Donahue stal, IOML 2014
| Razavian et al., CVPR Workshop 2014

Train on ImageNet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

J

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

[

i

MaxPool
Conv-64
Conv-64

I

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




' . | Yosinski et al., NIPS 2014 |
Transfer Learning with CNNs " [Donahue stal, IOML 2014
| Razavian et al., CVPR Workshop 2014

Train on ImageNet

FC-1000
FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

i

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

| MaxPool |
| Conv-64 |
. Conv-64 |

Why on ImageNet”

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




A——..
| Yosinski et al., NIPS 20°

Transfer Learning with CNNs (Donahue e al. IML 20

| Razavian et al., CVPR Workshop 201

N

N

Train on ImageNet

| FC-1000 I

Why on ImageNet”

MaxPool

— - Convenience, lots of data

Conv-512
MaxPool - We know how to train these well

Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




A——..
| Yosinski et al., NIPS 2014

Transfer Learning with CNNSs (Donahue et al., IOML 2014

[ Razavian et al., CVPR Workshop 2014 |

N

N

Train on ImageNet

| Fc-1000 |

|' - ll Why on ImageNet?

MaxPool

— - Convenience, lots of data

Conv-512
MaxPool - We know how to train these well

Conv-512
Conv-512

MaxPool
Conv-256

Conv-256 However, for some tasks we would need to start
MaxPool with something else (e.g., videos for optical flow)

Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




A——..
| Yosinski et al., NIPS 20°

Transfer Learning with CNNs (Donahue e al. IML 20

| Razavian et al., CVPR Workshop 201

N

N

Train on ImageNet Small dataset with C classes

FC-1000
FC-4096
FC-4096

i

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Train on ImageNet

FC-4096
FC-4096

MaxPool
| Conv-512 |
Conv-512

i

J

. MaxPool
Conv-512
Conv-512

|

MaxPool
Conv-256
Conv-256

MaxPool
| Conv-128 |
Conv-128

!

i

MaxPool
Conv-64
Conv-64

I

Transfer Learning with CNNs

Small dataset with C classes

FC-4096
FC-4096

i

MaxPool
| Conv-512 |
Conv-512

|

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256 |
Conv-256

[

:

MaxPool
Conv-128 |
Conv-128

!

MaxPool
Conv-64
Conv-64

I

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford
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Train on ImageNet

FC-1000
FC-4096
FC-4096

i

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Transfer Learning with CNNs

Small dataset with C classes

FC-4096

FC-4096

. MaxPool
. Conv-512

| Conv-512 |

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256

| Conv-256 |

. MaxPool
. Conv-128

| Conv-128 |

' MaxPool
. Conv-64
. Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

A——..
| Yosinski et al., NIPS 20°

| Donahue et al., ICML 207

| Razavian et al., CVPR Workshop 201
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* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford

: : | Yosinski et al., NIPS 2014 |

Transfer Learning with CNNs  Donahue et al., IOML 2014

| Razavian et al., CVPR Workshop 2014 |

Train on ImageNet Small dataset with C classes
FC-1000 it :
Re-initialize
[ FC-4096 | and train [ FC-4096 |

MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-256 Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64



A——..
| Yosinski et al., NIPS 20°

| Donahue et al., ICML 207
| Razavian et al., CVPR Workshop 201

N

Transfer Learning with CNNs

N

Train on ImageNet Small dataset with C classes

FC-1000 1Nt :
|—|IT°96] Re-Initialize
[ FC-4096 | and train [ FC-4096 |
HexPool Hexool Lower levels of the CNN are at
Conv-512 Conv-512 task independent anyways
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-256 Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




: : | Yosinski et al., NIPS 2014 |
Transfer Learning with CNNs Donahue et al., ICML 2014
| Razavian et al., CVPR Workshop 2014 ]
Train on ImageNet Small dataset with C classes Larger dataset
| FC-1000 | iAAl
Re-Initialize
[ FC-4096 | and train [ FC-4006 |
MaxPool ' MaxPool
Conv-512 . Conv-512
Conv-512 . Conv-512
MaxPool . MaxPool
Conv-512 . Conv-512
Conv-512 . Conv-512
MaxPool . MaxPool
Conv-256 . Conv-256
Conv-256 . Conv-256
MaxPool ' MaxPool
Conv-128 . Conv-128
Conv-128 . Conv-128
MaxPool . MaxPool
Conv-64 . Conv-64
Conv-64 . Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




: : | Yosinski et al., NIPS 2014 |
Iransfer Learni Ng with CNNs [ Donahue et al., ICML 2014
| Razavian et al., CVPR Workshop 2014
Train on ImageNet Small dataset with C classes Larger dataset
| FC-1000 |
o nitial
_ FC-4096
|—'Fc4096 Re-initialize e Fodose
FC-4096 and train FC-4096 [_Fcaos |
. MaxPool
. MaxPool ___MaxPool . Conv-512
" Conv-512 |__Conv-512 " Conv-512
. Conv-512 . Conv-512
. MaxPool
. MaxPool |__MaxPool . Conv-512
. Conv-512 . Conv-512 " Conv-512
. Conv-512 . Conv-512
. MaxPool
. MaxPool ___MaxPool . Conv-256
" Conv-256 |__Conv-256 " Conv-256
. Conv-256 . Conv-256
’ ’ . MaxPool
' MaxPool |__MaxPool . Conv-128
" Conv-128 ___Conv-128 " Conv-128
. Conv-128 . Conv-128
. MaxPool
. MaxPool ____MaxPool | Conv-64
" Conv-64 |__Conv-64 ' Conv-64
. Conv-64 . Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



: : | Yosinski et al., NIPS 2014 |
Transfer Learning with CNNs (Donahue et al, ICML 2014
| Razavian et al., CVPR Workshop 2014 ]
Train on ImageNet Small dataset with C classes Larger dataset
| FC-1000 |
[_Fe-tooo_| Re-Initialize
: | FC-4096 |
[Fc4096 | and train [Fc-4096 | ——
MaxPool ' MaxPool T Conv.512
Conv-512 | Conv-512 " Conv-512
Conv-512 . Conv-512
. MaxPool
MaxPool ' MaxPool " Conv-512
Conv-512 . Conv-512 " Conv.512
Conv-512 . Conv-512 |
MaxPool
MaxPool : MaxPool " Conv-256 Freeze
Conv-256 Conv-256
. Conv-256
Conv-256 . Conv-256 these
. MaxPool
MaxPool . MaxPool " Conv-128 ‘ aye s
Conv-128 . Conv-128 " Conv-128
Conv-128 . Conv-128
. MaxPool
MaxPool . MaxPool " Conv-64
Conv-64 . Conv-64 " Conv-64
Conv-64 . Conv-64

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Transfer Learning with CNNs

Train on ImageNet

| FC-1000

FC-4096

| FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Small dataset with C classes

Re-initialize
and train

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

[ Yosinski et al., NIPS 2014
[ Donahue et al., ICML 2014
| Razavian et al., CVPR Workshop 2014 ]

Larger dataset

Re-Initialize
and train

FC-4096

FC-4096 |

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Freeze
these
layers

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Transfer Learning with CNNs

5: Transfer + fine-tuning improves generalization

0.64}
3: Fine-tuning recovers co-adapted interactions

0.62} 2: Performance drops

due to fragile
co-adaptation

4: Performance
drops due to
representation

Top-1 accuracy (higher is better)
o
(@)
-

specificity
0.58} - _
0.56}
0545 i 5 3 7 5 6 7

Layer n at which network is chopped and retrained

[ Yosinski et al., NIPS 2014 |



Model Ensemble

Training: Irain multiple iIndependent models

Test: Average thelr results

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Model Ensemble

Training: Irain multiple iIndependent models

Test: Average their results

~ 2% improved performance in practice
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Model Ensemble

Training: Irain multiple iIndependent models

Test: Average their results

~ 2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!
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Model Ensemble

Training: Irain multiple iIndependent models

Test: Average their results

~ 2% improved performance in practice

Alternative: Multiple snapshots of the single model during training!

Improvement: Instead of using the actual parameter vector, keep a moving
average of the parameter vector and use that at test time (Polyak averaging)

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



CPU vs. GPU (Why do we need Azure?)

B Intel E5-2620 v3 | Pascal Titan X (no cuDNN) [ Pascal Titan X (cuDNN 5.1)

66X 97x 71x 64X 76X

VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

Data from https://qithub.com/jcjohnson/cnn-benchmarks

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


https://github.com/jcjohnson/cnn-benchmarks

Frameworks: Super quick overview

1. Easily build computational graphs
2. Easlly compute gradients in computational graphs

3. Run it all efficiently on a GPU (weap cuDNN, cuBLAS, etc.)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: Super quick overview

Core DNN Frameworks

Caffe Caffe 2 Puddle
(UC Berkeley) (Facebook) (Baidu)
Torch PyTorch CNTK
(NYU/Facebook) (Facebook) (Microsoft)
Theano TensorFlow MXNet
(U Montreal) (Google) (Amazon)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: Super quick overview

Core DNN Frameworks Wrapper Libraries

Caffe Caffe 2 Puddle

(UC Berkeley) (Facebook) (Baidu) Keras
TFLearn

Torch PyTorch CNTK ;e‘giggayer

NYU/Facebook (Facebook) (Microsoft) ' |

Hracehood TF-Slim
tf.contrib.learn

Theano TensorFlow MXNet Pretty Tensor

(U Montreal) (Google) (Amazon)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: Py lorch vs. lensortlow

Dynamic vs. Static computational graphs



Frameworks: Py lorch vs. lensortlow

Dynamic vs. Static computational graphs

Original Graph
Optimized Graph

Conv+RelU

Conv+RelLU
Conv+RelLU

With static graphs, framework Conv
can optimize the graph for you RelLU
before It runs! Conv

RelLU
Conv
RelLU

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Frameworks: Py lorch vs. lensortlow

Dynamic vs. Static computational graphs

Graph building and execution Is
intertwined. Graph can be
different for every sample.

The cat ate a big rat

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PyTorch: Three levels of abstraction

Tensor: Imperative ndarray, but runs on GPU
Variable: Node in a computational graph; stores data and gradients

Module: A neural network layer; may store state or learnable weights

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



