

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound

Lecture 3: Introduction to Computer Vision

Computer vs. human vision

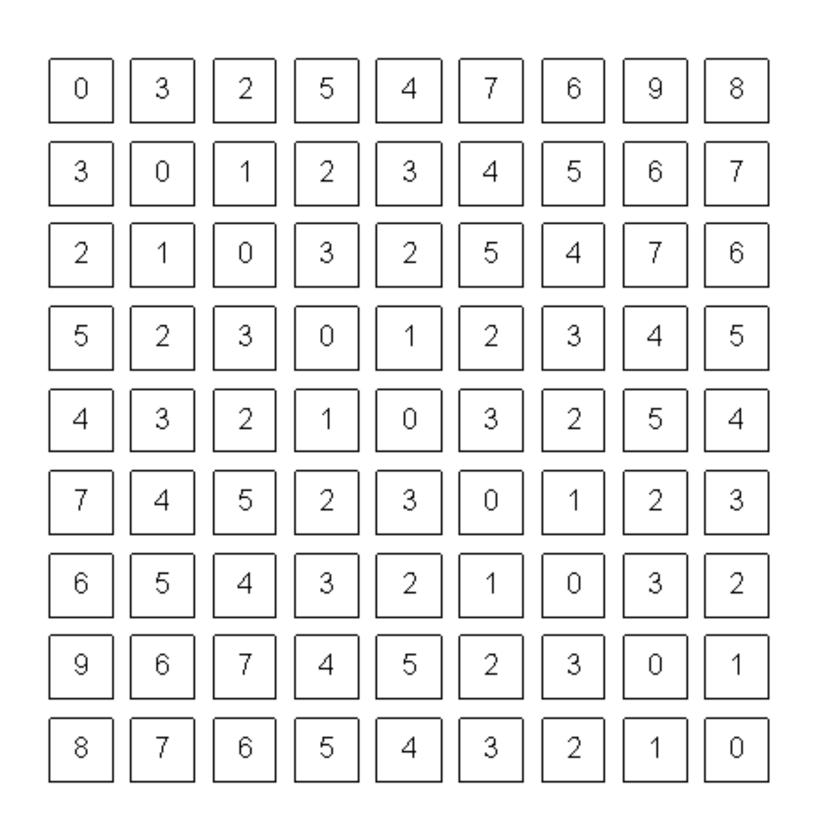
objects, scenes, people

Human Vision

Computer vs. human vision

objects, scenes, people

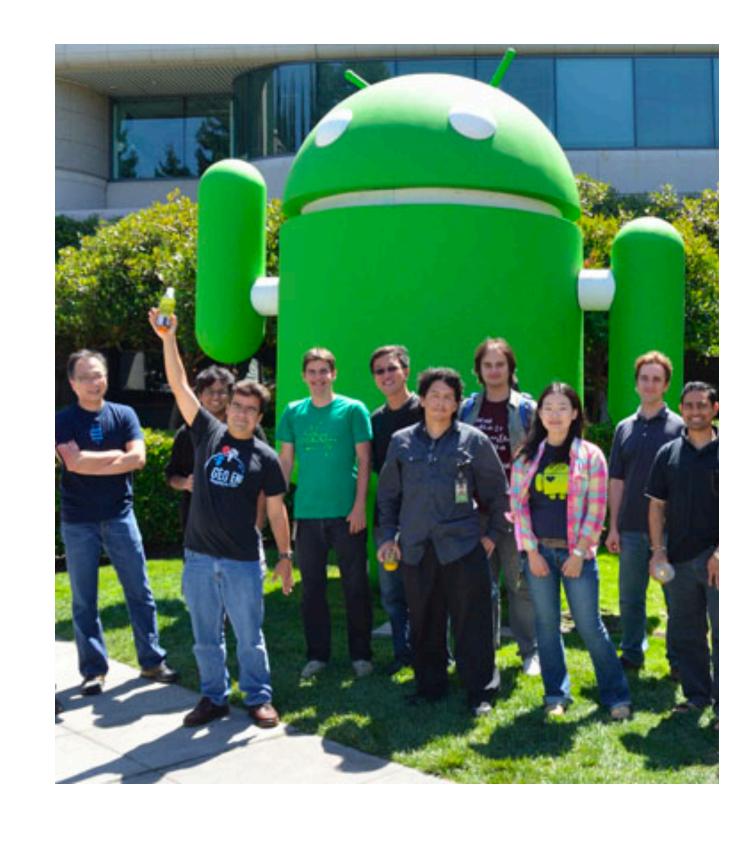
Human Vision



matrix of numbers

Computer Vision

Computer vs. human vision



objects, scenes, people

3 0 1 2 3 4 5 6 7
2 1 0 3 2 5 4 7 6
2 1 0 3 2 5 4 7 6
2 5 2 3 0 1 2 3 4 5
4 3 2 1 0 3 2 5 4
7 4 5 2 3 0 1 2 3
6 5 4 3 2 1 0 3 2
9 6 7 4 5 2 3 0 1
8 7 6 5 4 3 2 1 0

tensor of numbers

Human Vision

Computer Vision

Computer Vision

Computer vision studies the **tools and theories** that enable the design of machines that can **extract useful information from imagery data** (images and videos) toward the goal of **interpreting the world**

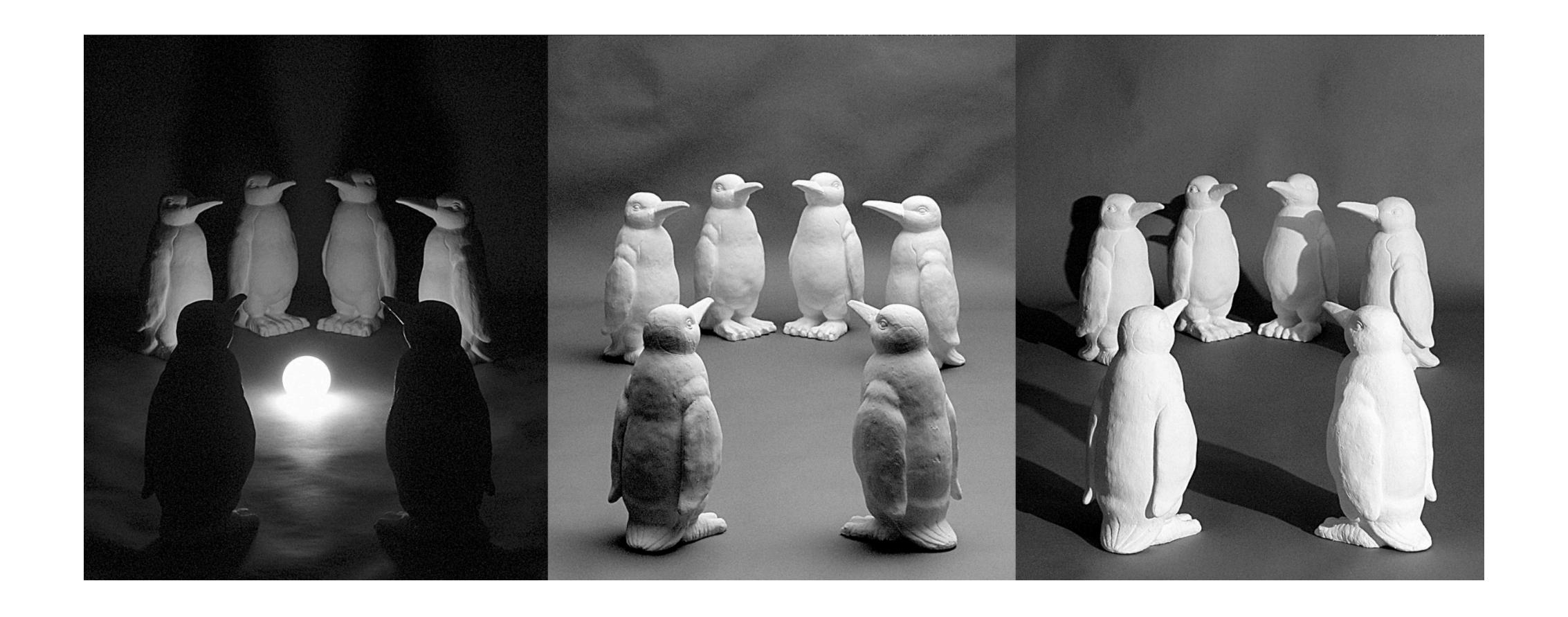
*curtesy of Peter Meer

Vision is Amazing Feat of Natural Intelligence

~ 55% of **cerebral cortex** in humans (13 billion neurons) are devoted to vision more human brain devoted to vision than anything else

Challenges: Viewpoint invariance

Challenges: Lighting

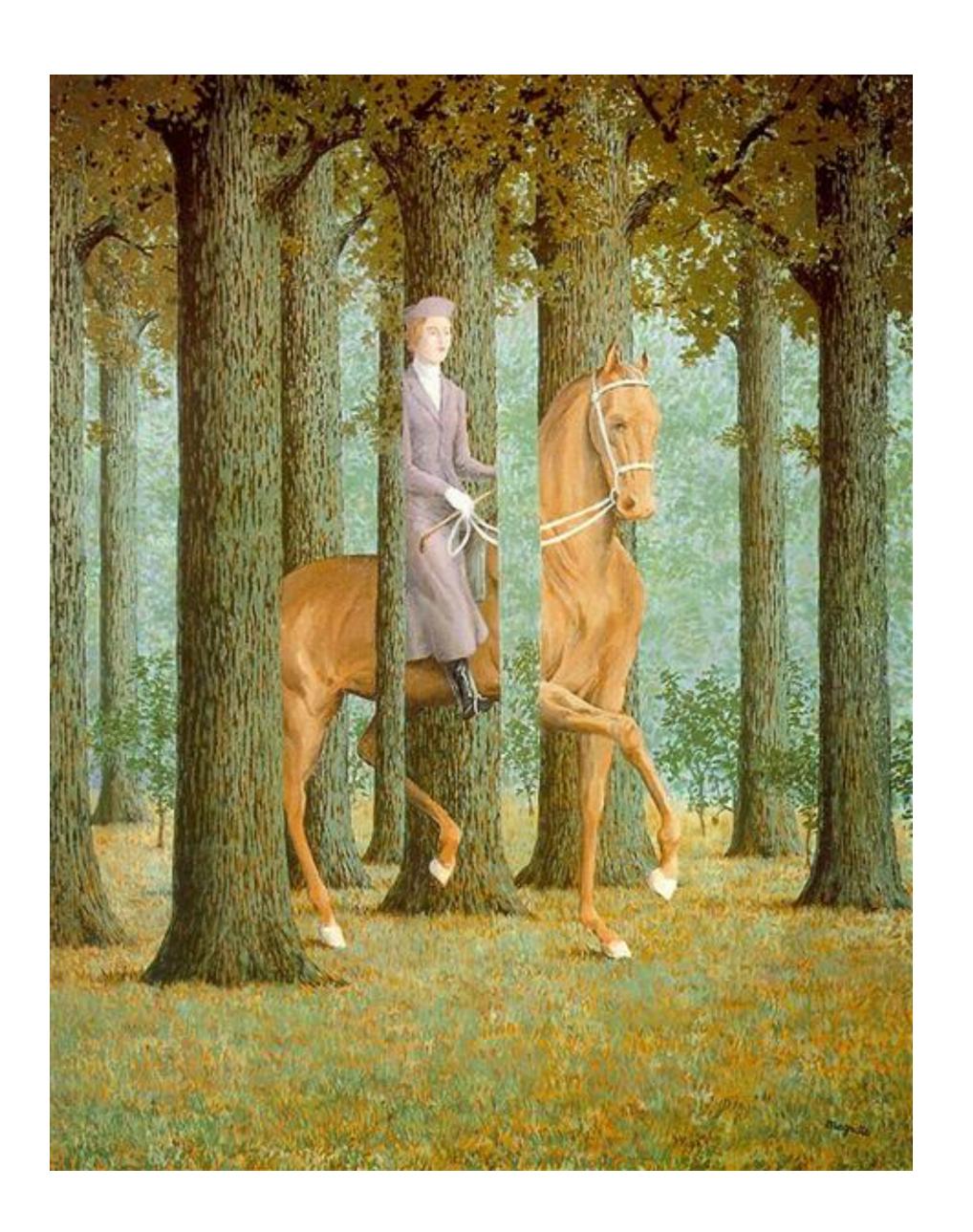


Challenges: Scale

Challenges: Deformation

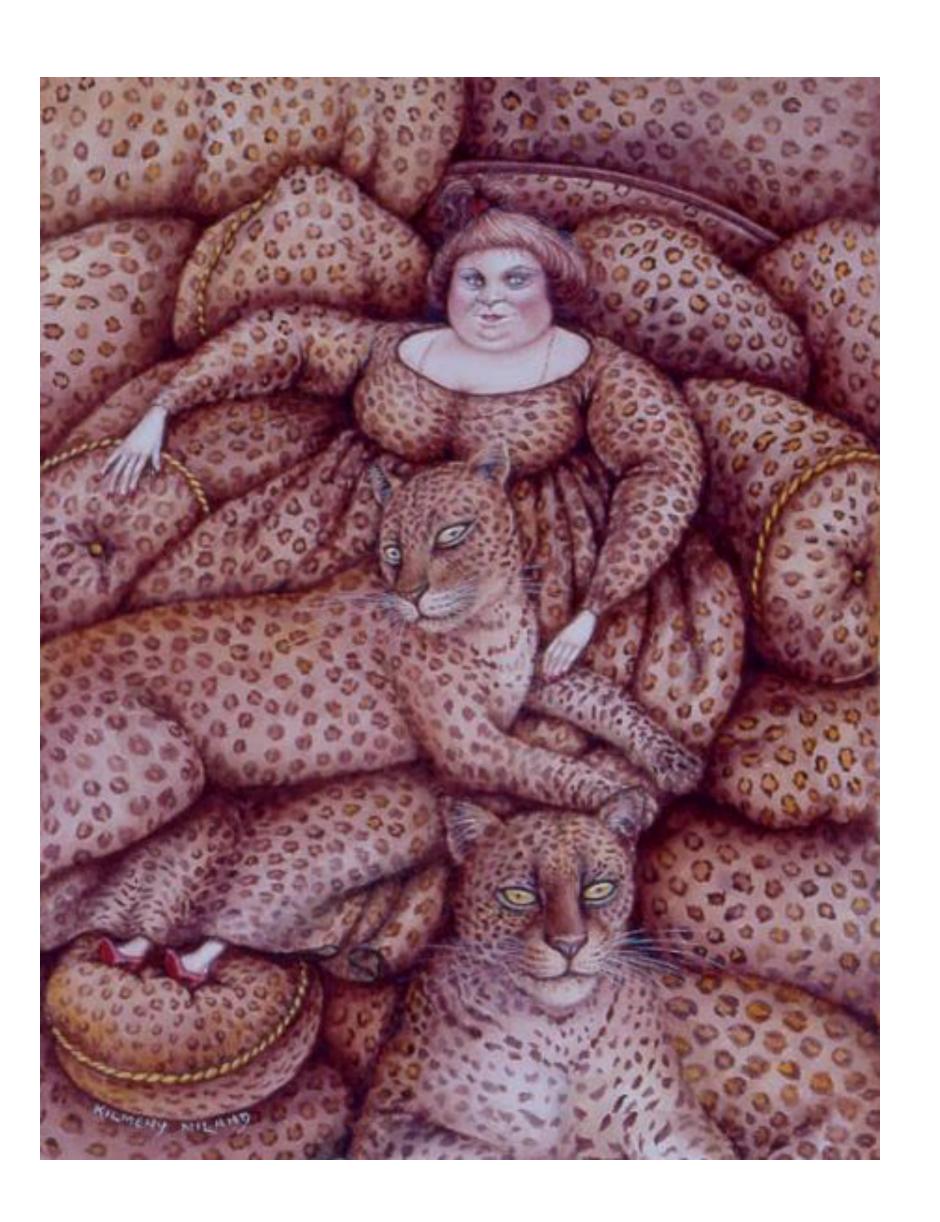
Challenges: Occlusions

Rene Magritte 1965



Challenges: Background clutter

Kilmeny Niland 1995



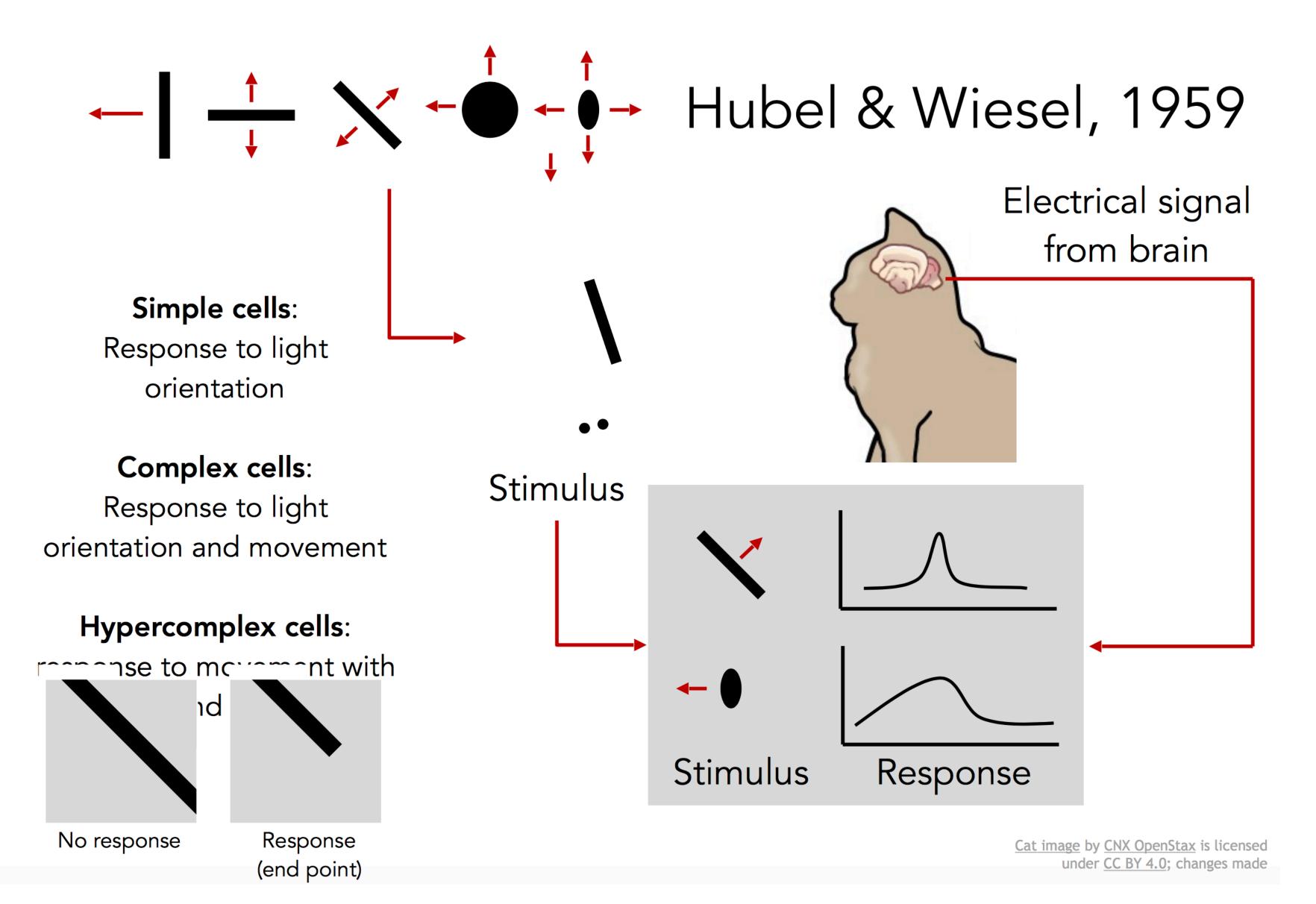
Challenges: Local ambiguity and context

Challenges: Local ambiguity and context

Challenges: Motion

Challenges: Object inter-class variation

Human vision ...

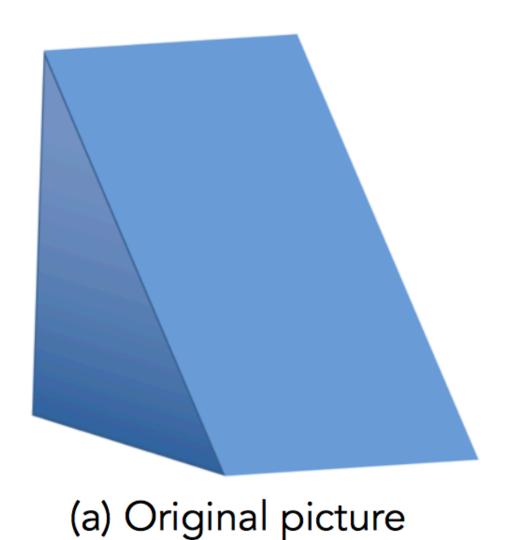


^{*} slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

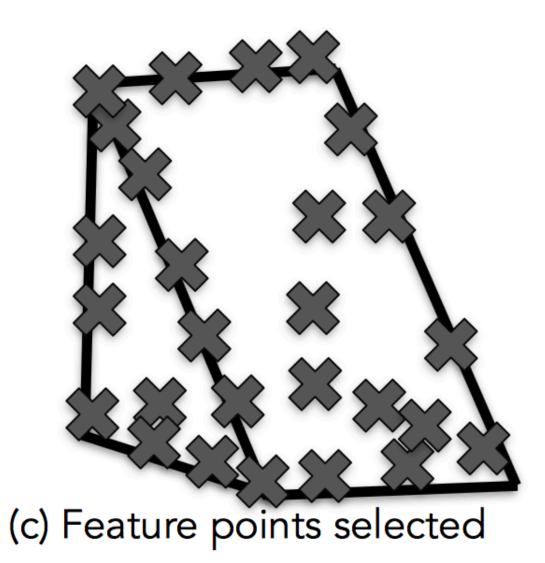
Blocks World. first thesis in computer vision, 1963

Larry Roberts

"the perception of **solid objects** is a process which can be based on the **properties of three-dimensional** transformations and **the** laws of nature"



(b) Differentiated picture



Blocks World. first thesis in computer vision, 1963

Larry Roberts

"the perception of **solid objects** is a process which can be based on the **properties of three-dimensional** transformations and **the** laws of nature"

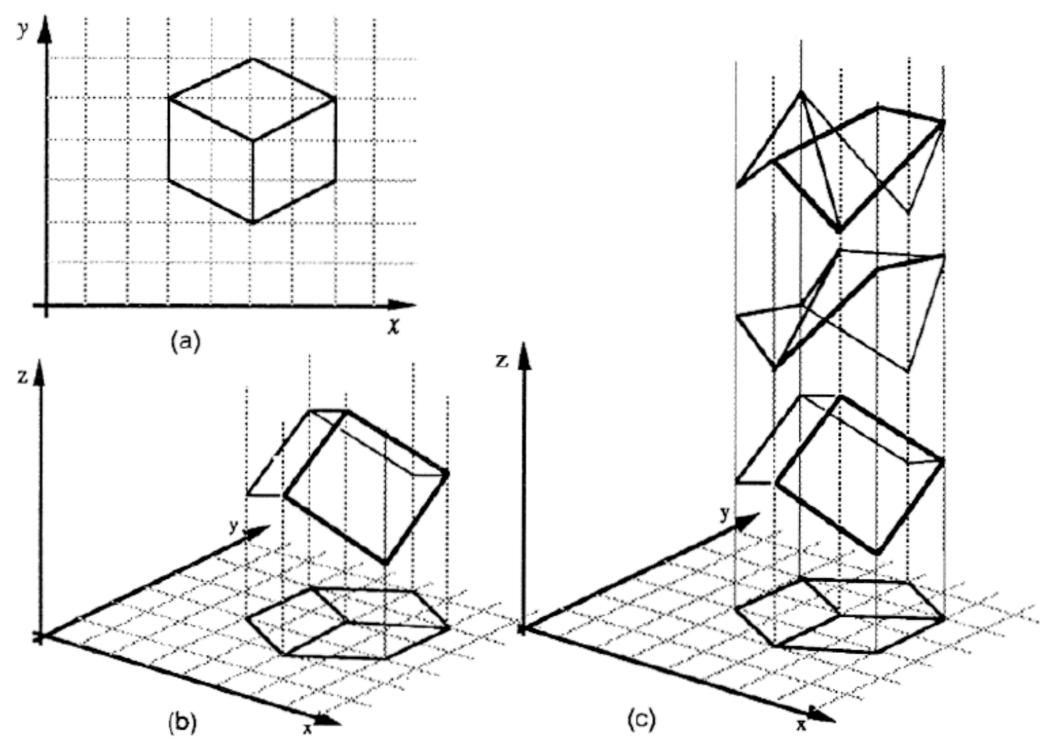
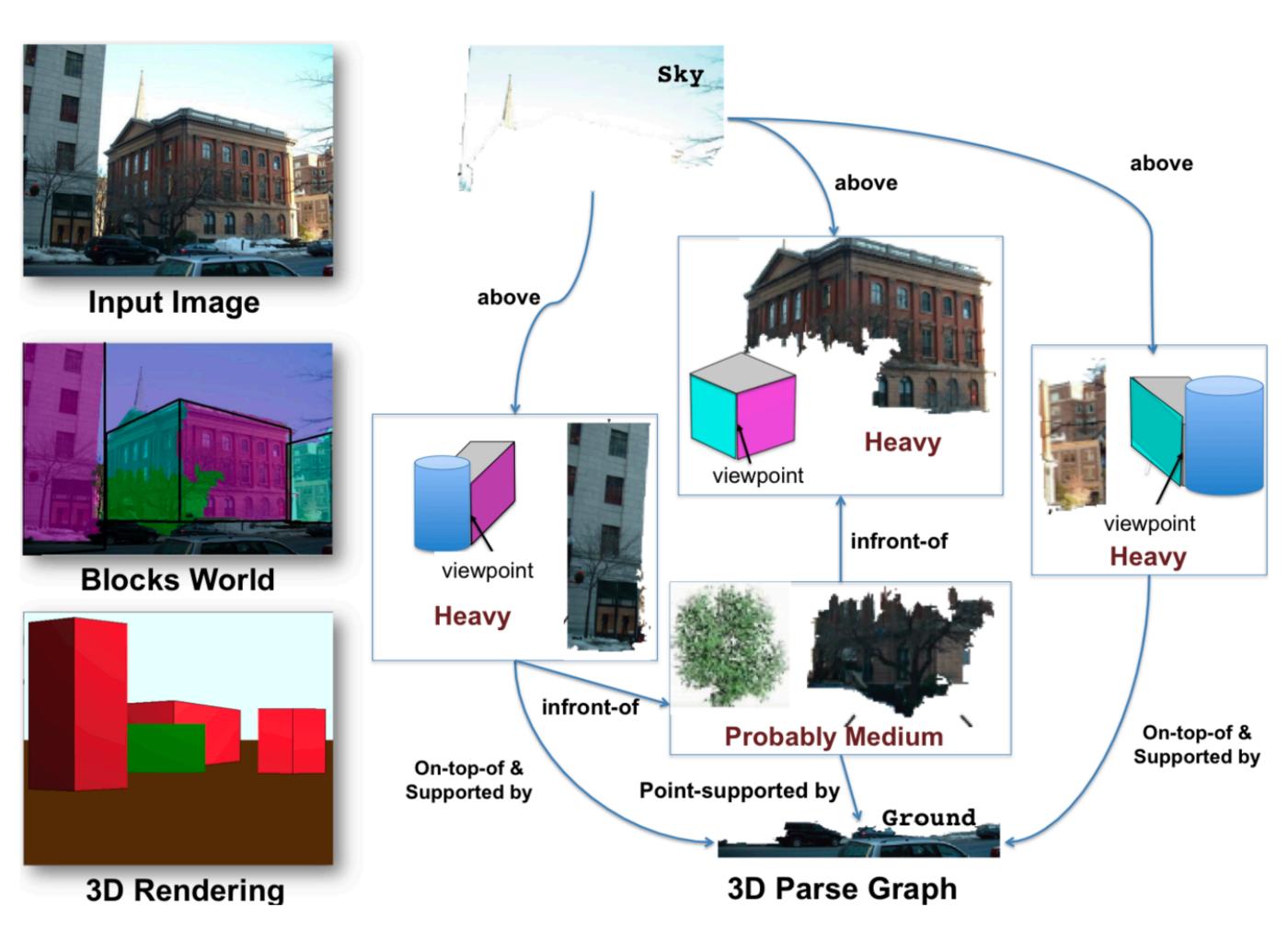


Figure 1. (a) A line drawing provides information only about the x, y coordinates of points lying along the object contours. (b) The human visual system is usually able to reconstruct an object in three dimensions given only a single 2D projection (c) Any planar line-drawing is geometrically consistent with infinitely many 3D structures.



Static Equilibrium: Forces and torques acting on a block should cancel each other out.

Support Force Constraint: Supporting object should have enough strength to provide contact reactionary forces

Volumetric Constraints: All objects in the world must have finite volume & cannot penetrate each other

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100.

July 7, 1966

THE SUMMER VISION PROJECT

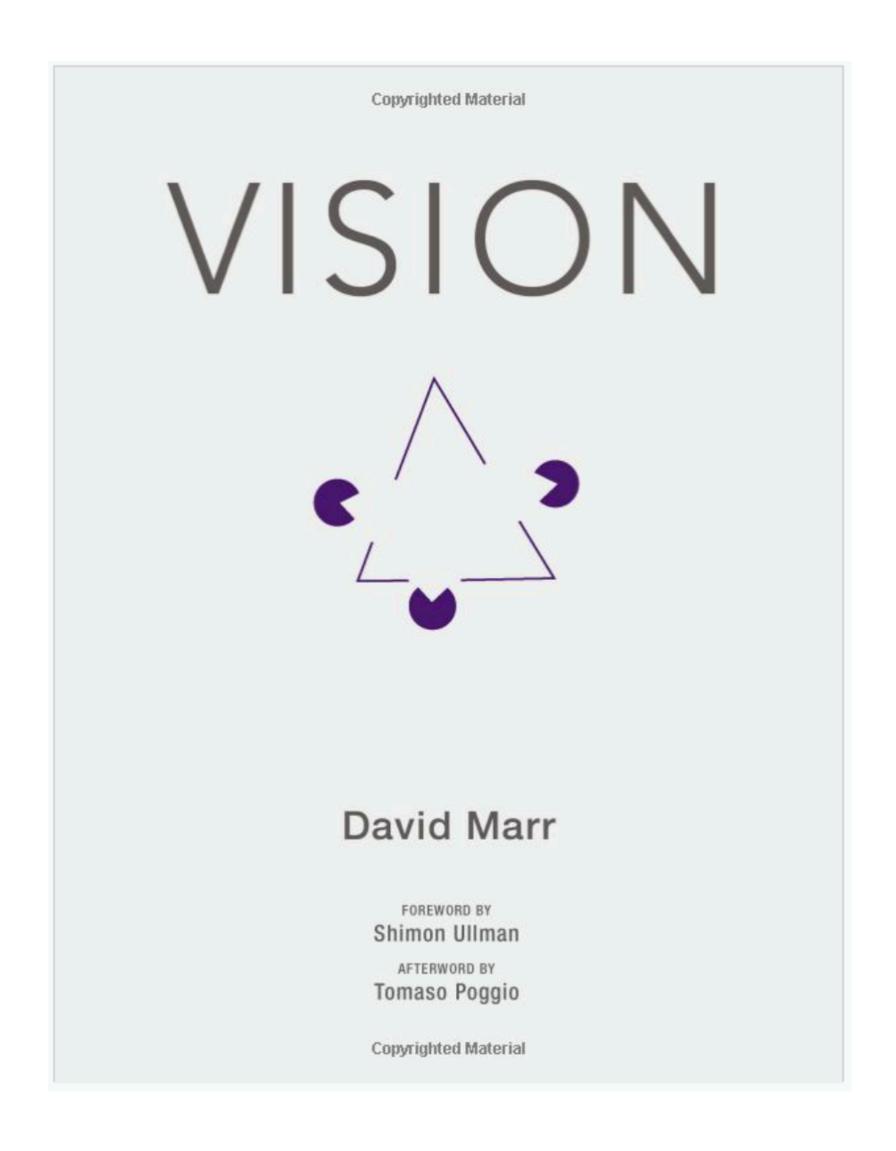
Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

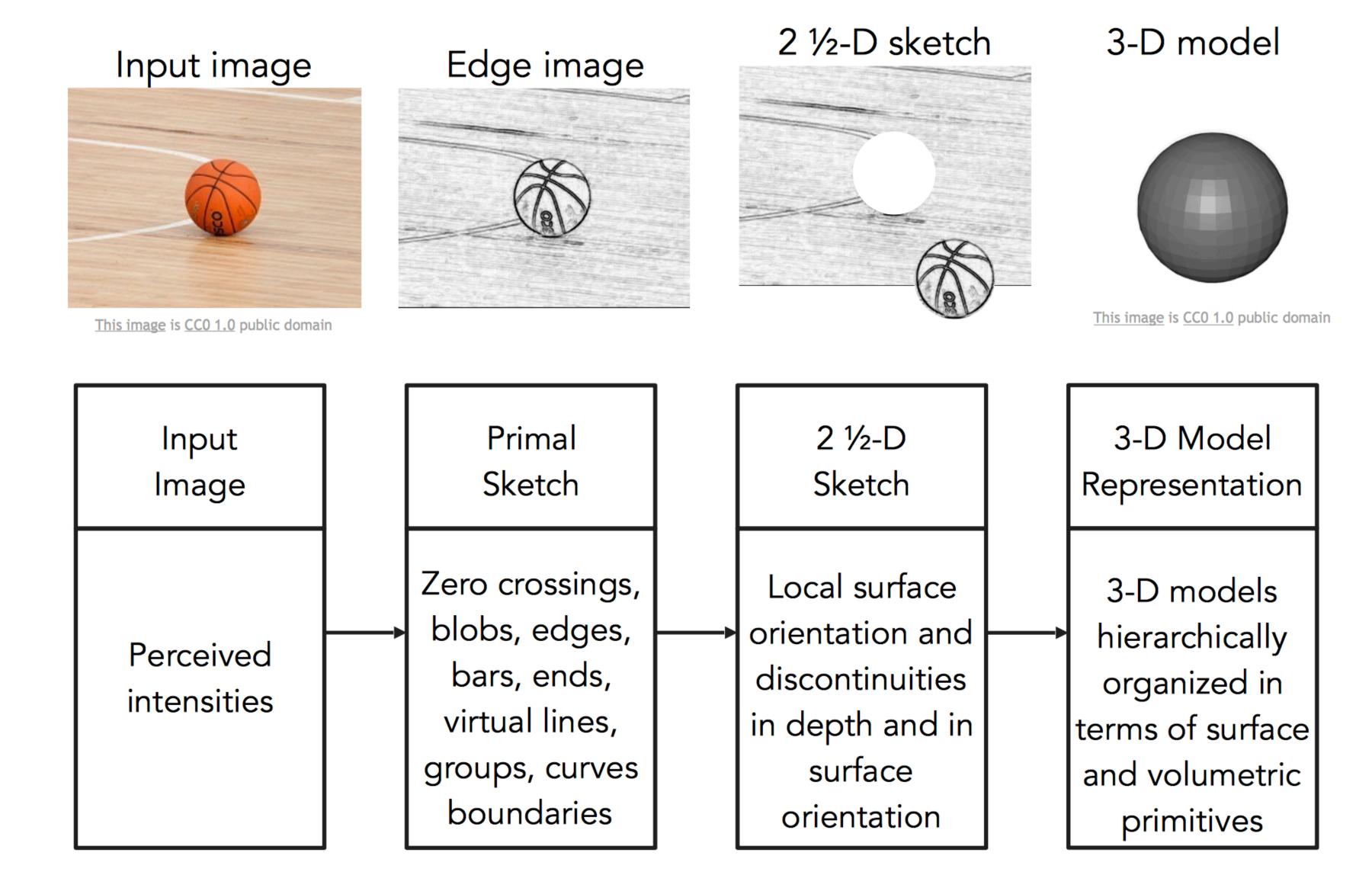
In 1966, Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman to "spend the summer linking a camera to a computer and getting the computer to describe what it saw"

[Szeliski 2009, Computer Vision]

David Marr, 1970s

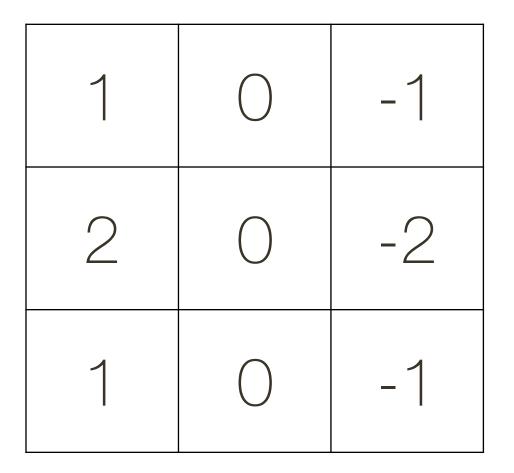


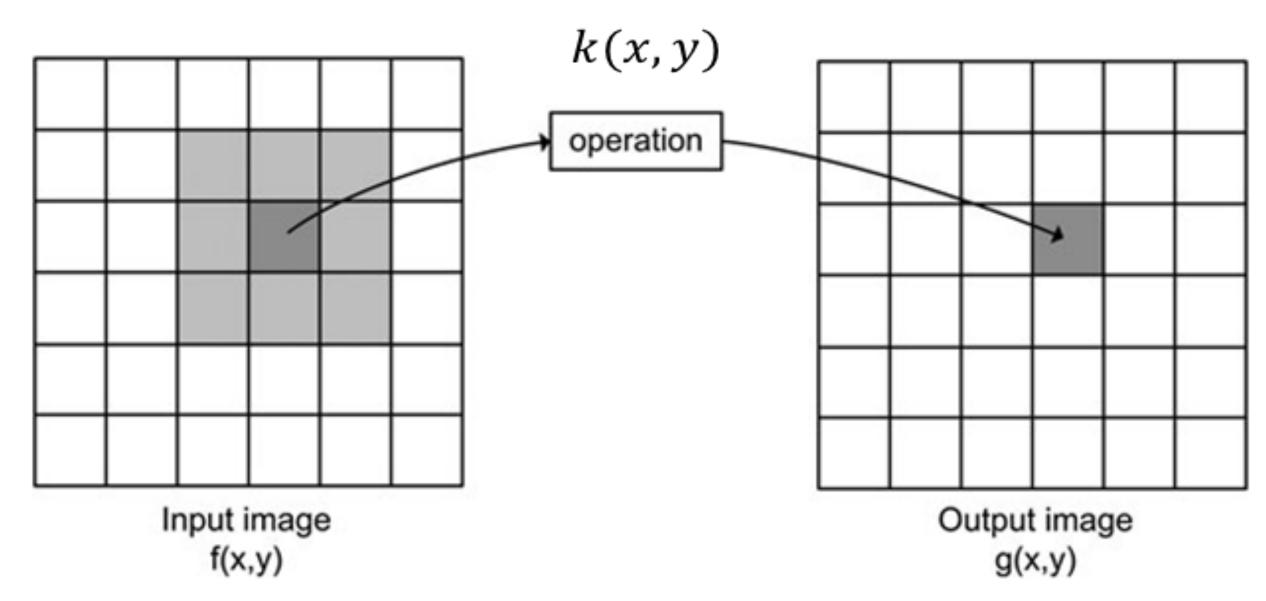
David Marr, 1970s

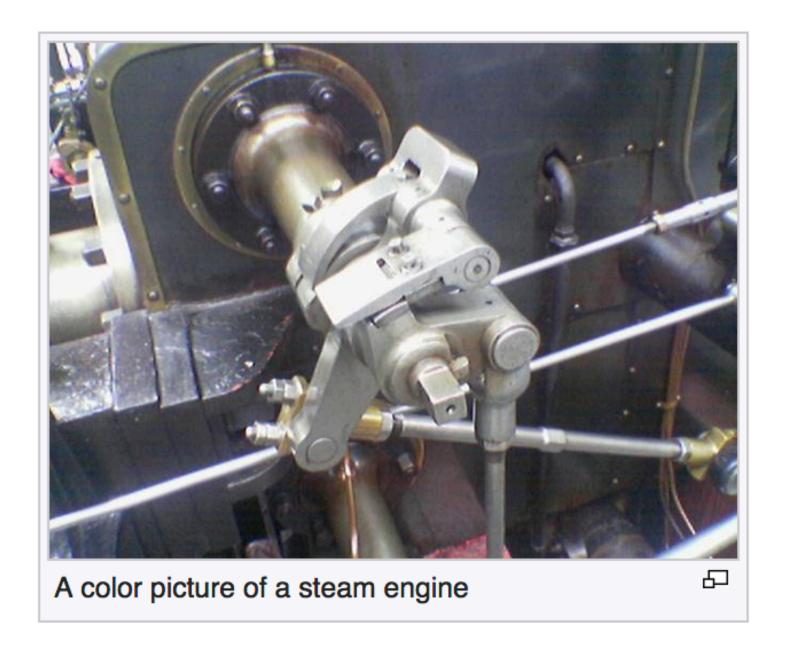


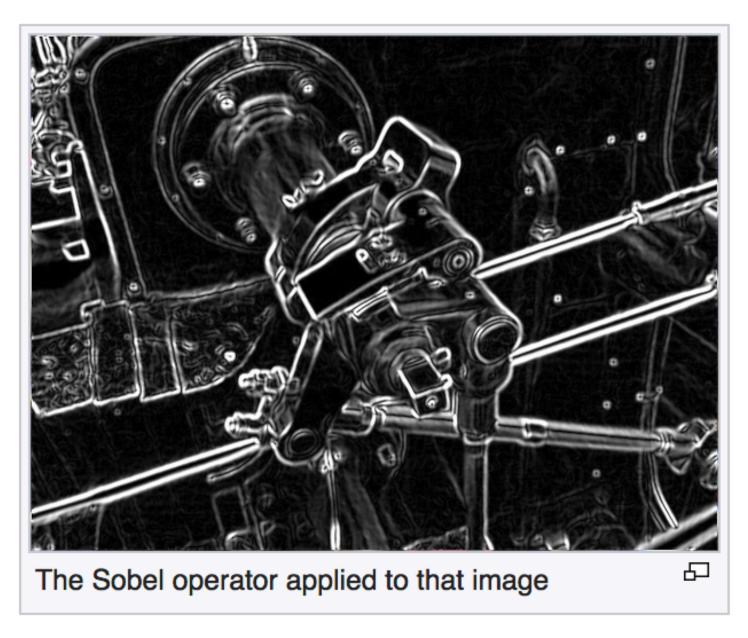
[[]Stages of Visual Representation, David Marr]

Edges

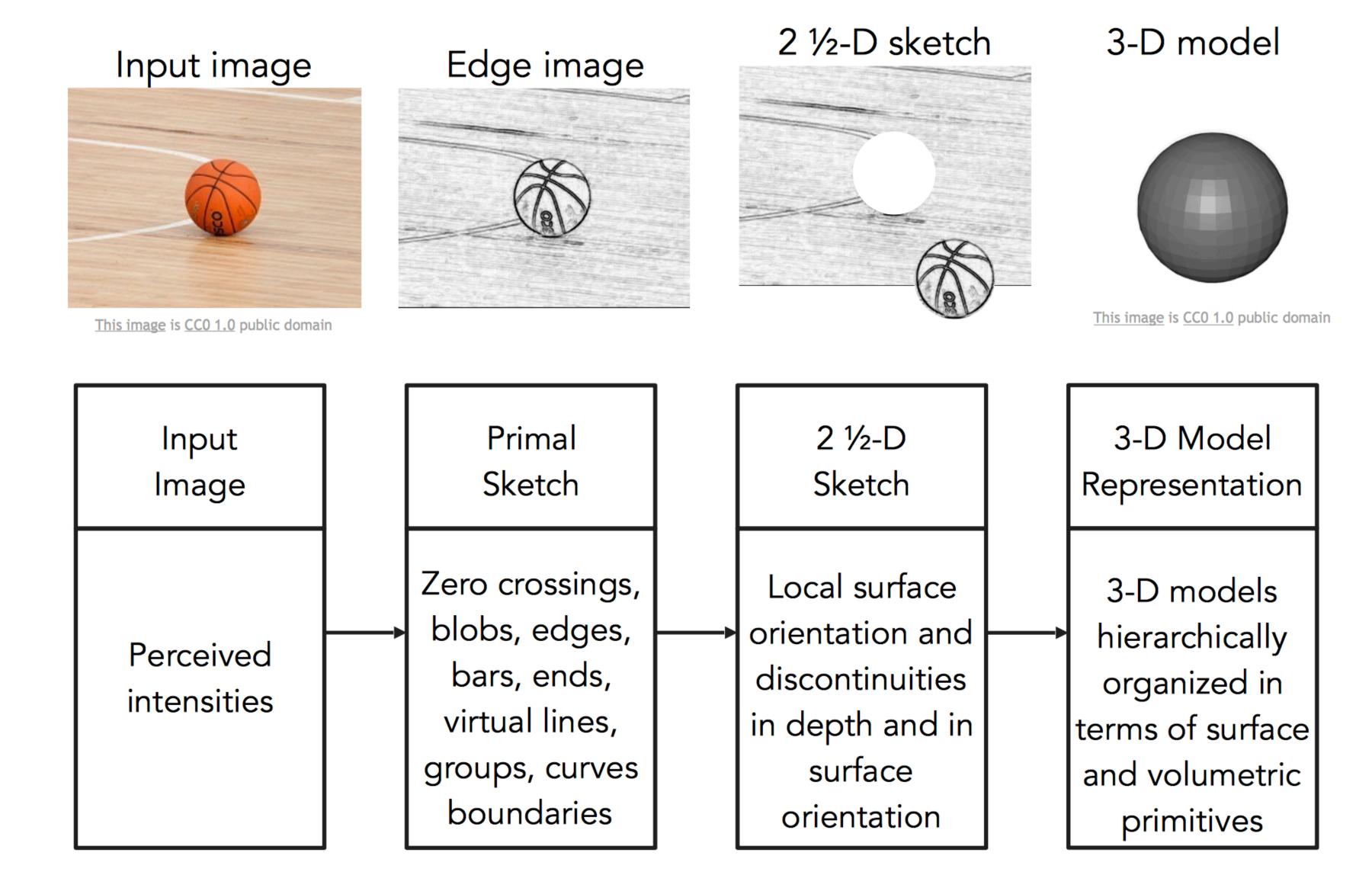








David Marr, 1970s

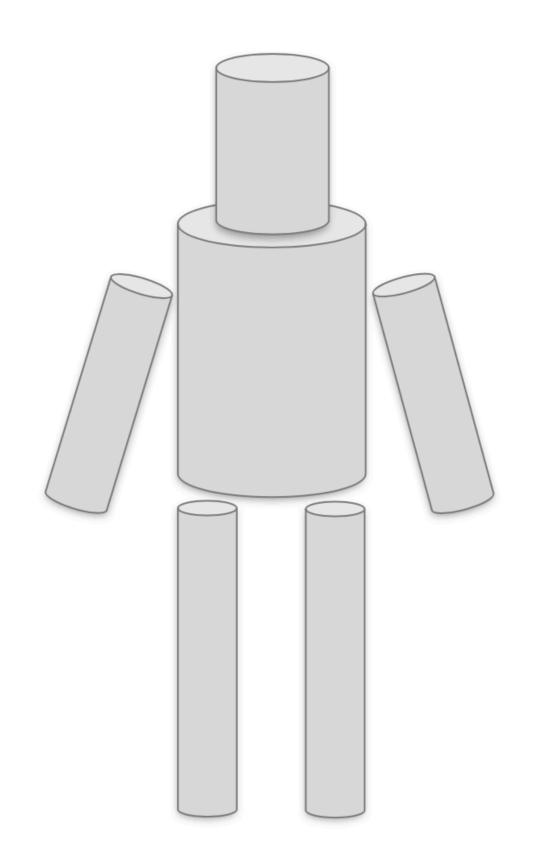


[[]Stages of Visual Representation, David Marr]

Segmentation - GraphCuts

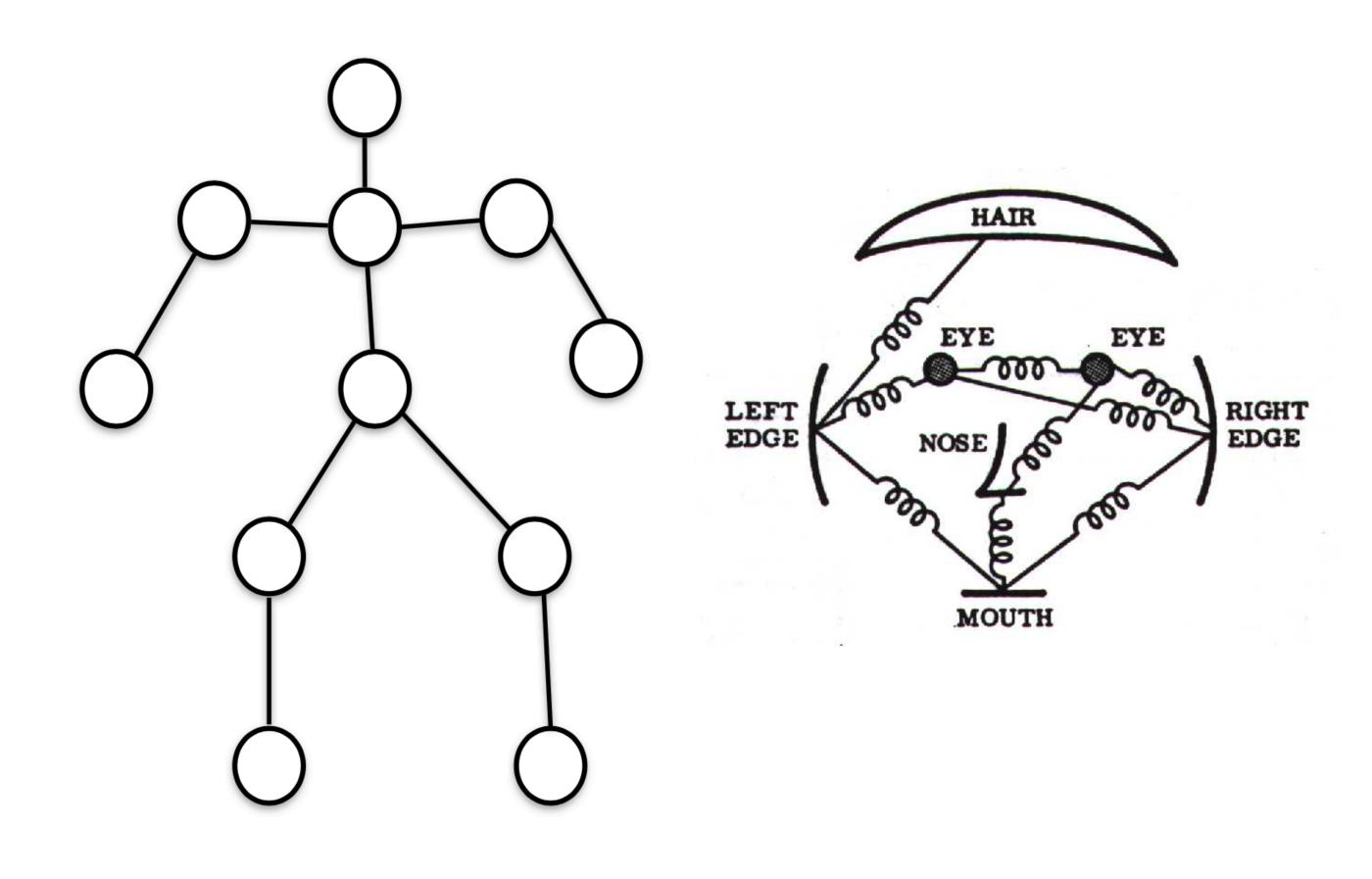
Part-based Models

Generalized Cylinders



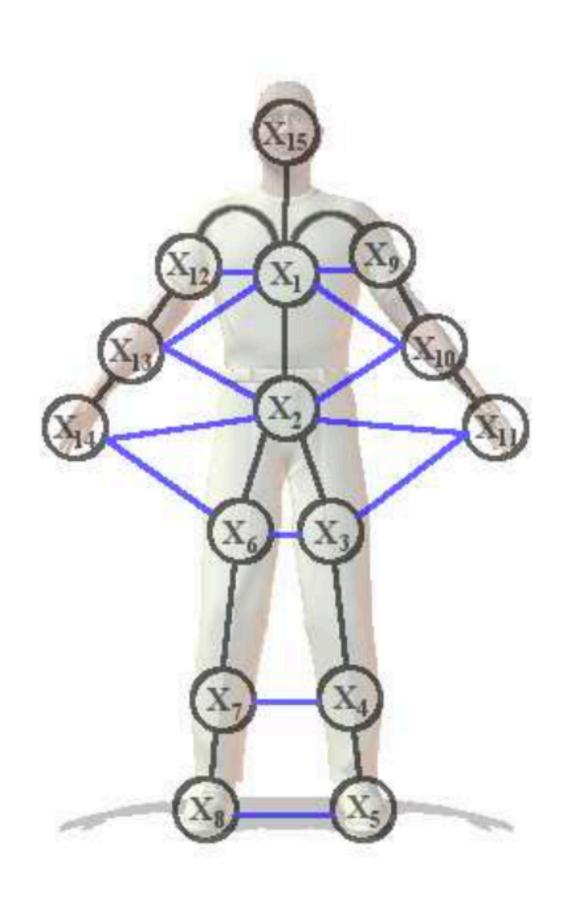
[Brooks & Binford, 1979]

Pictorial Structures



[Fischler & Elschlager, 1973]

Part-based Models

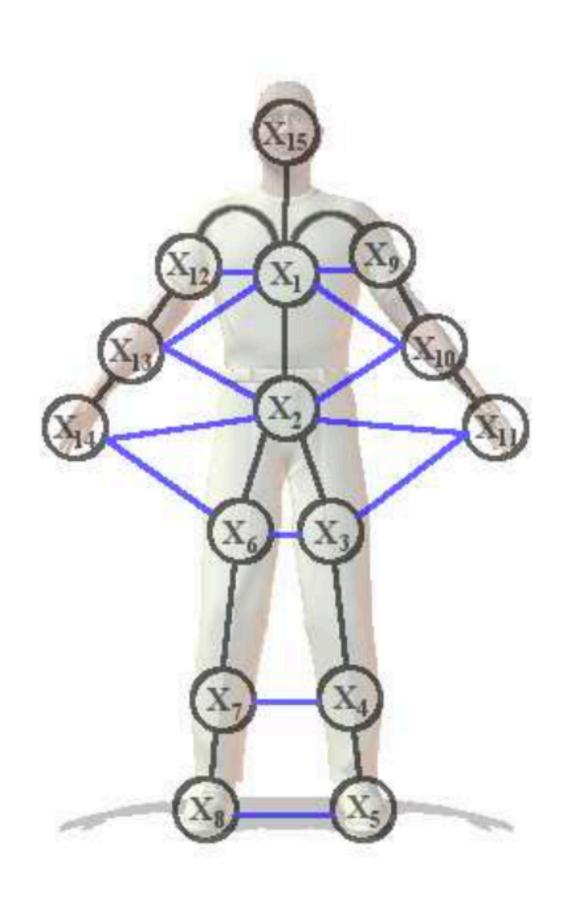




Monty Python's Ministry of Silly Walks

[Sigal et al. 2004]

Part-based Models

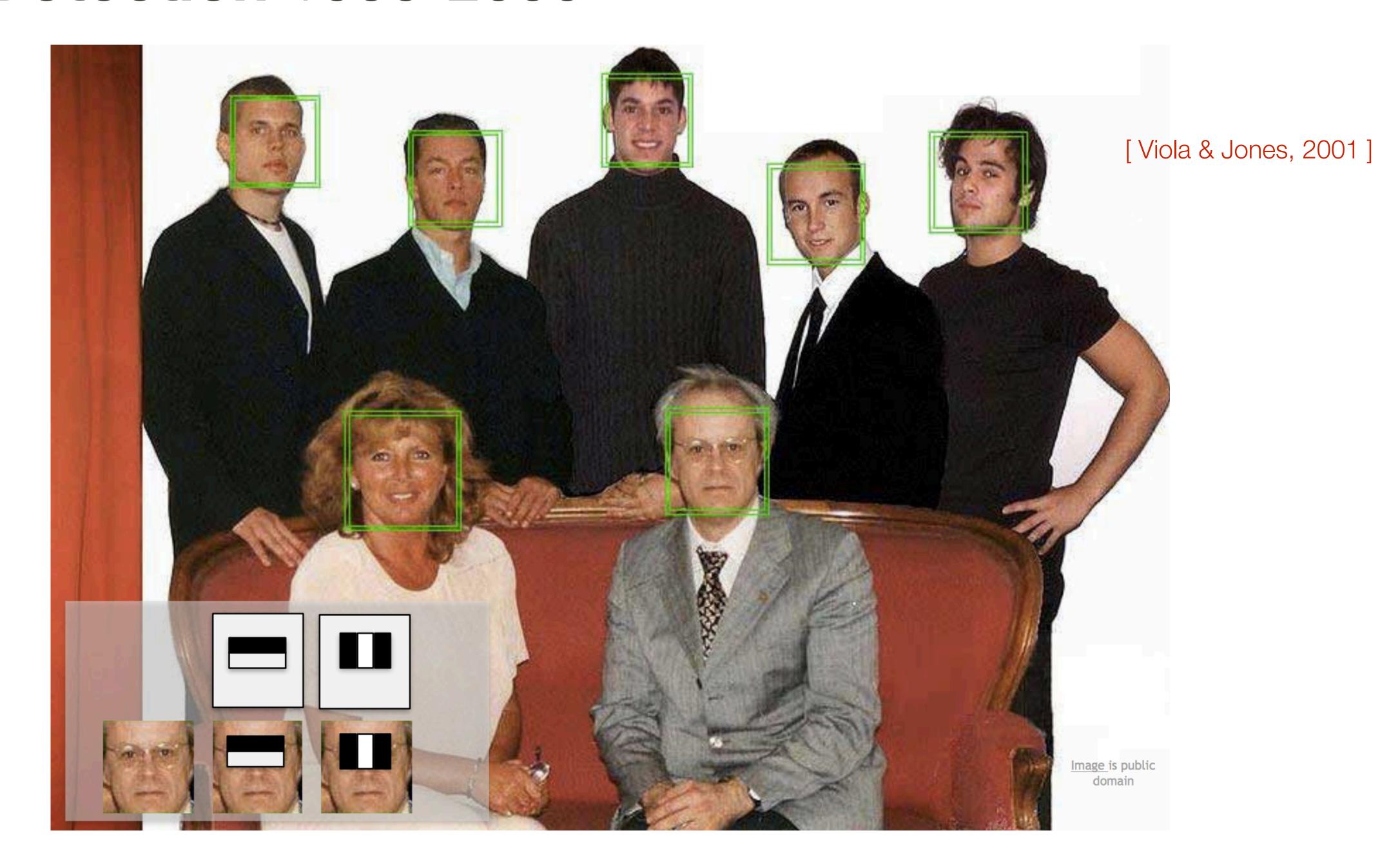




Monty Python's Ministry of Silly Walks

[Sigal et al. 2004]

Face Detection 1999-2000



Feature-based Vision

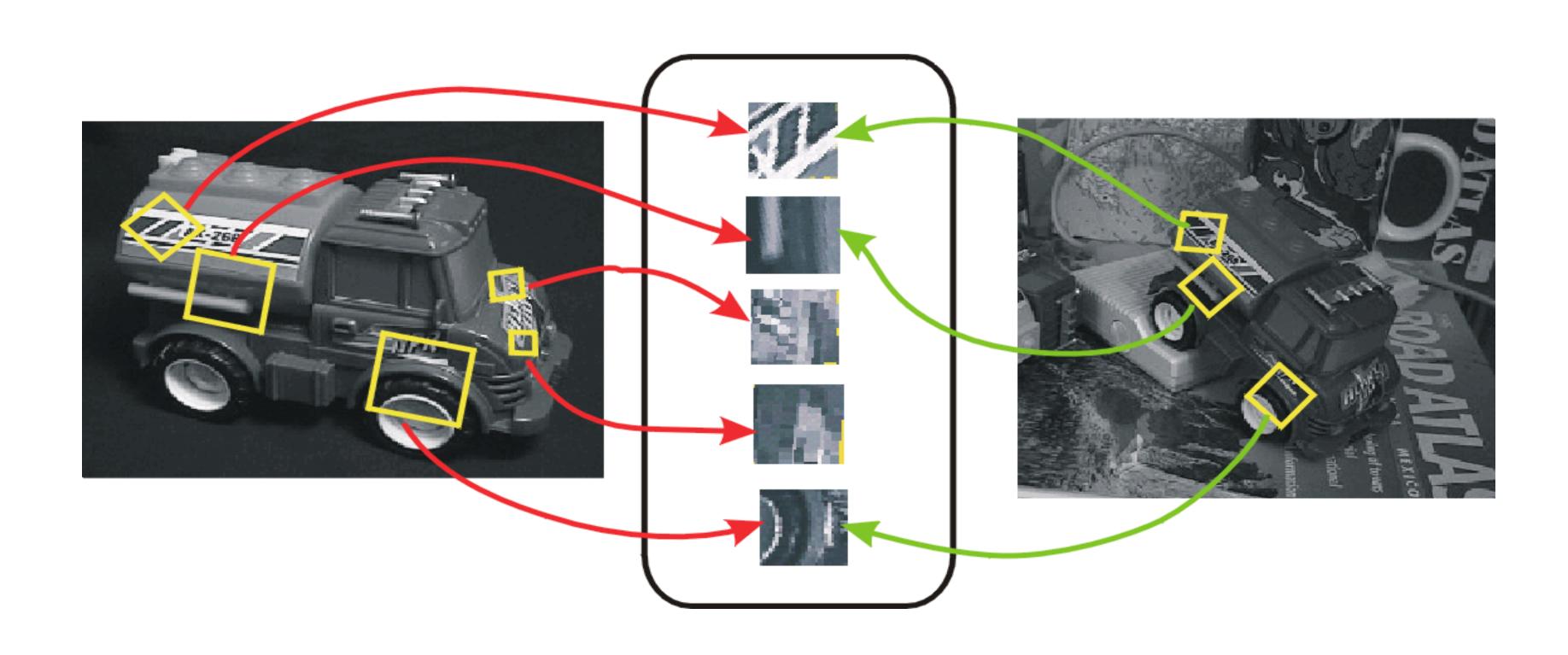
Image is public domain

Image is CC BY-SA 2.0

[David Lowe, 1999]

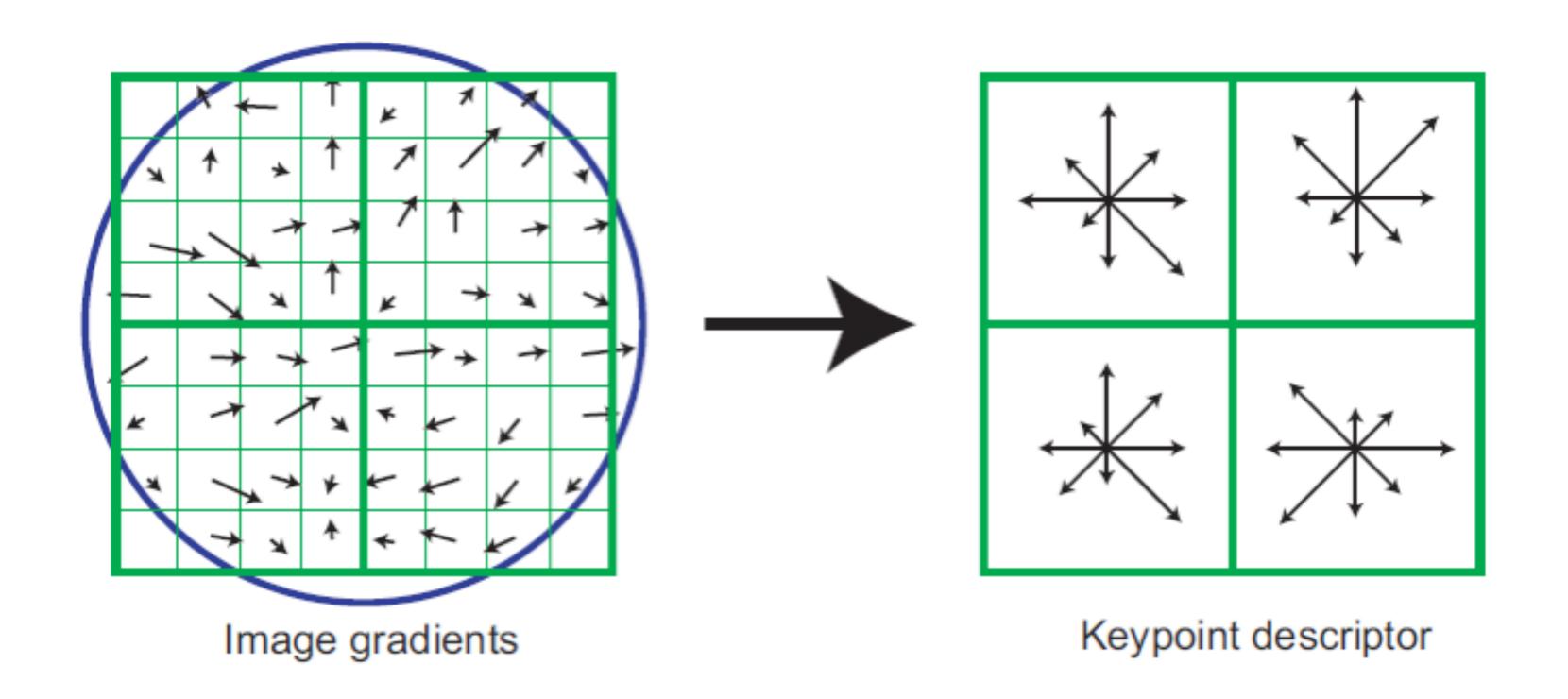
SIFT Idea

Image content is transformed into local feature coordinates that are **invariant** to translation, rotation, scale and imaging parameters



[David Lowe, 1999]

SIFT Discriptor



[David Lowe, 1999]

Massive 3D Reconstructions

[Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010]

Massive 3D Reconstructions

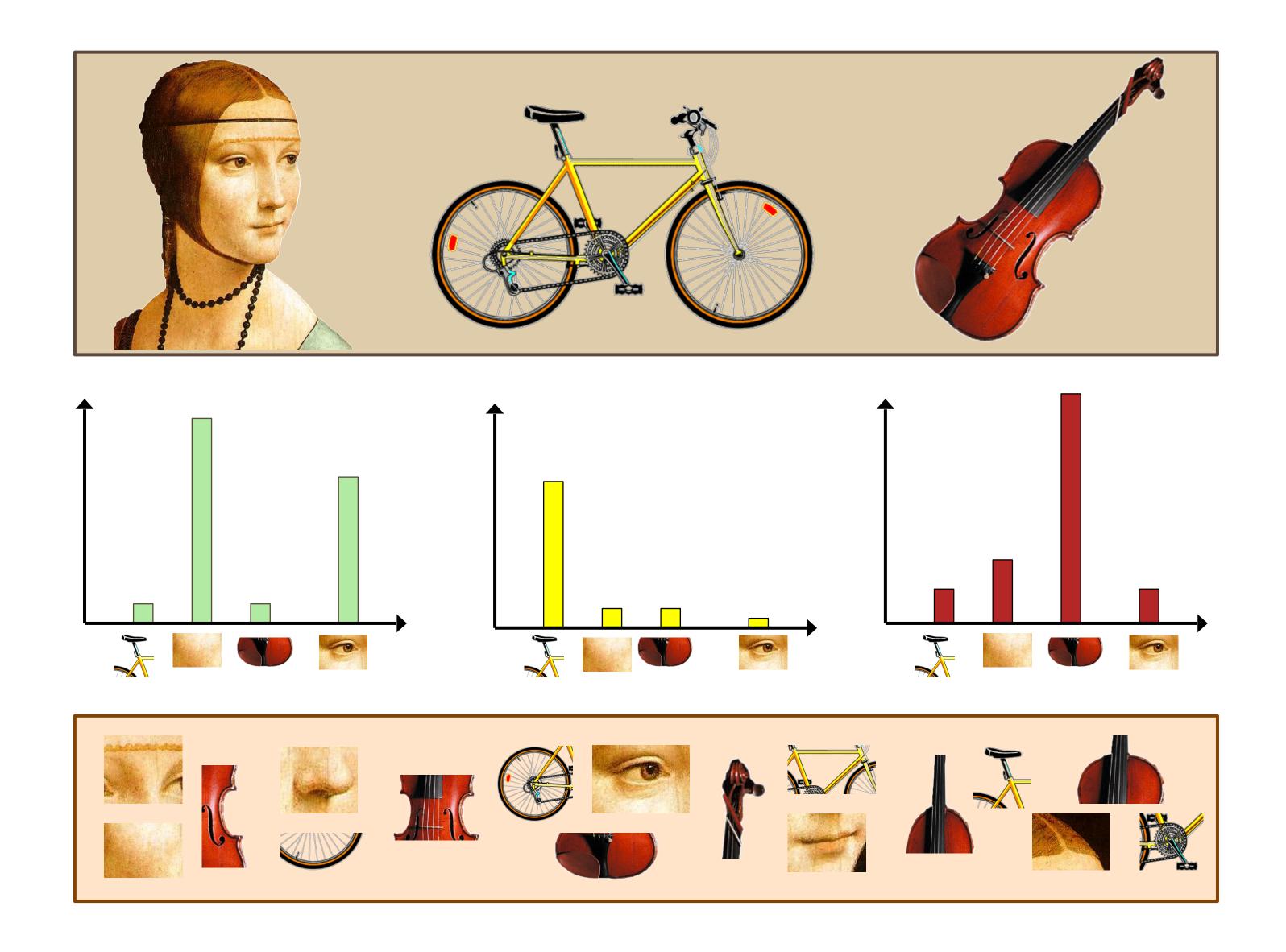
[Agarwal, Furukawa, Snavely, Curless, Seitz, Szeliski, 2010]

Bag-of-Words

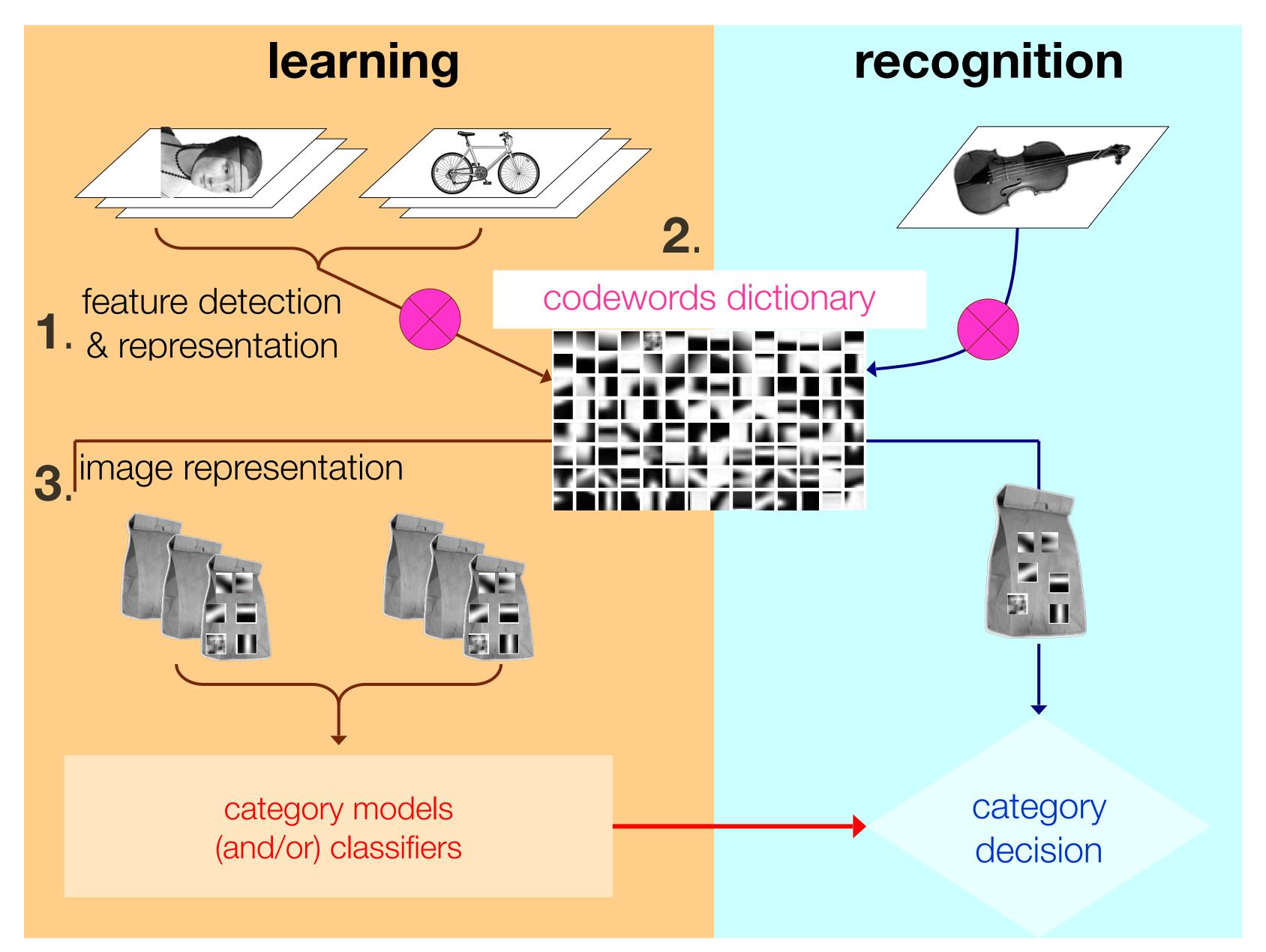
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based a not the messages that our eyes. etinal For a long to sensory, brain, image was isual visual, perception, centers sa movie s retinal, cerebral cortex, image i eye, cell, optical discove nerve, image that behi Hubel, Wiesel in the brain the complicated arious visual impulses and more variety cell layers of the opnd Wiesel have been able to demons hat the message about the image falling on tina undergoes a step-wise analysis in a S of nerve cells stored in columns. In this s each cell has its specific function and is responsible for a specific detail in the pati of the retinal image.

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the e created by a predicted 3 750bn, compared China, trade, \$660bn. surplus, commerce, annoy t exports, imports, US, China's delibera yuan, bank, domestic, agrees foreign, increase, yuan is c trade, value governor 2 also needed demand so mo. country. China increa yuan against the dollar by 2.1% in permitted it to trade within a narrow but the US wants the yuan to be allowed freely. However, Beijing has made it cle that it will take its time and tread carefull before allowing the yuan to rise further in value.

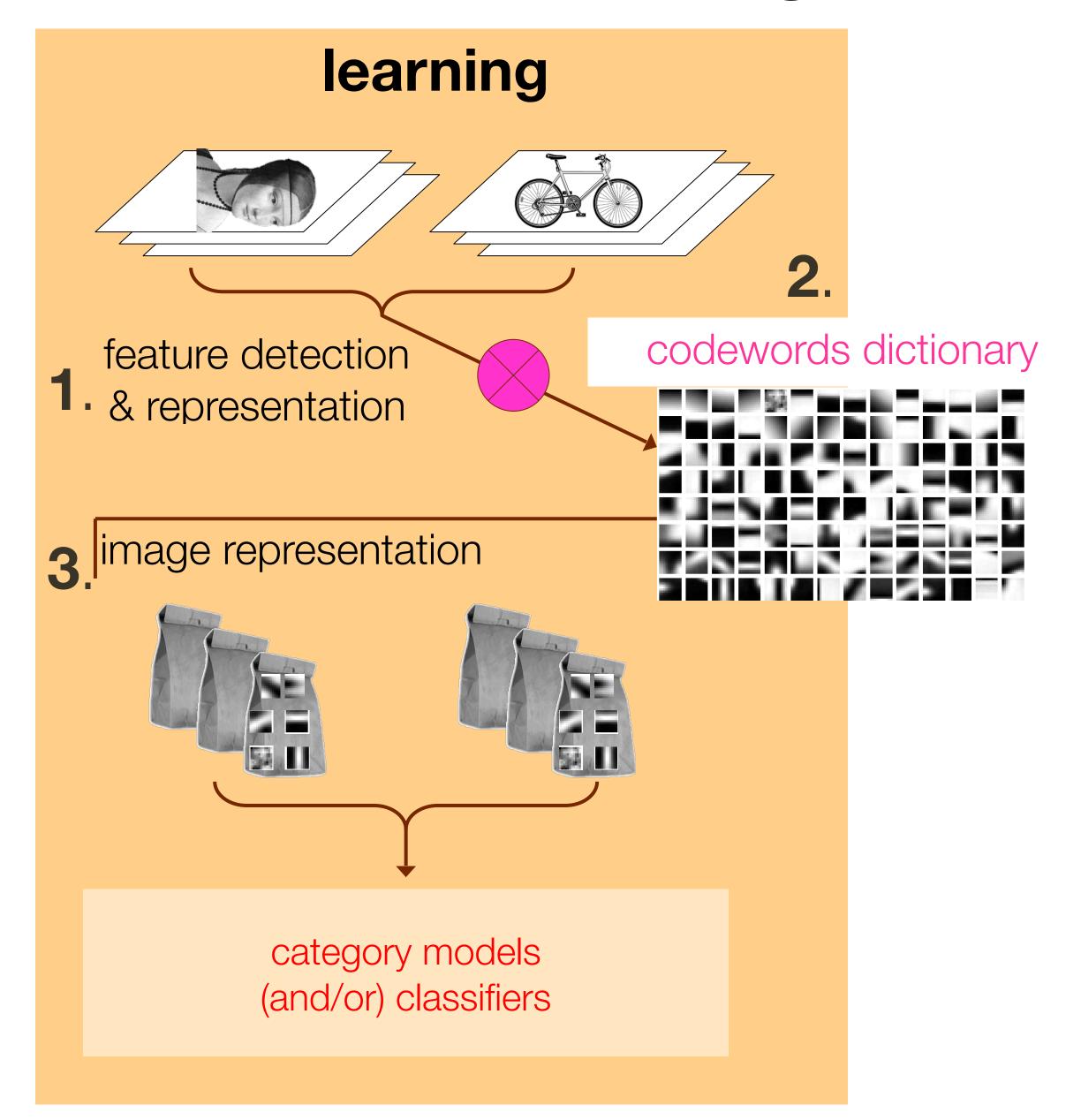
Bag-of-Visual-Words



Bag-of-Visual-Words



Bag-of-Visual-Words: Learning

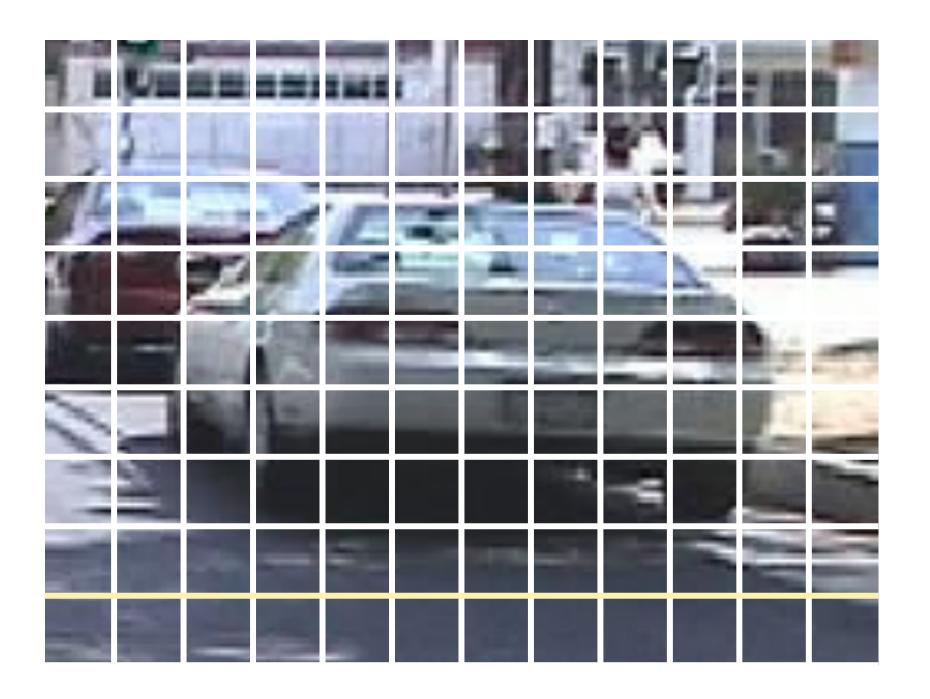


Regular Grid

- Vogel et al. 2003
- Fei-Fei et al. 2005

Regular Grid

- Vogel et al. 2003
- Fei-Fei et al. 2005



Regular Grid

- Vogel et al. 2003
- Fei-Fei et al. 2005

Interest Point Detector

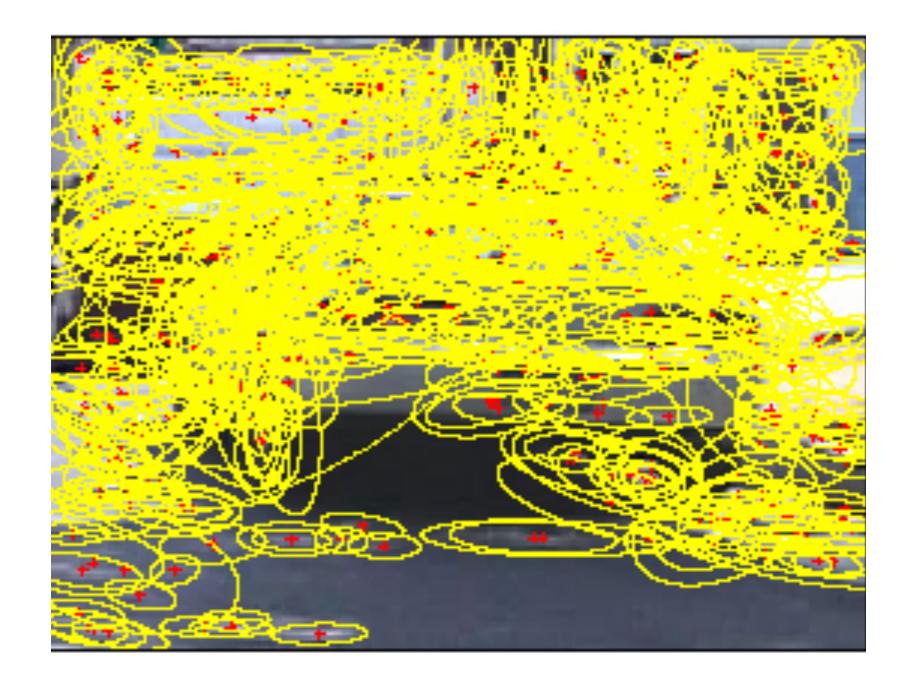
- Csurka et al. 2004
- Fei-Fei et al. 2005
- Sivic et al. 2005

Regular Grid

- Vogel et al. 2003
- Fei-Fei et al. 2005

Interest Point Detector

- Csurka et al. 2004
- Fei-Fei et al. 2005
- Sivic et al. 2005



Regular Grid

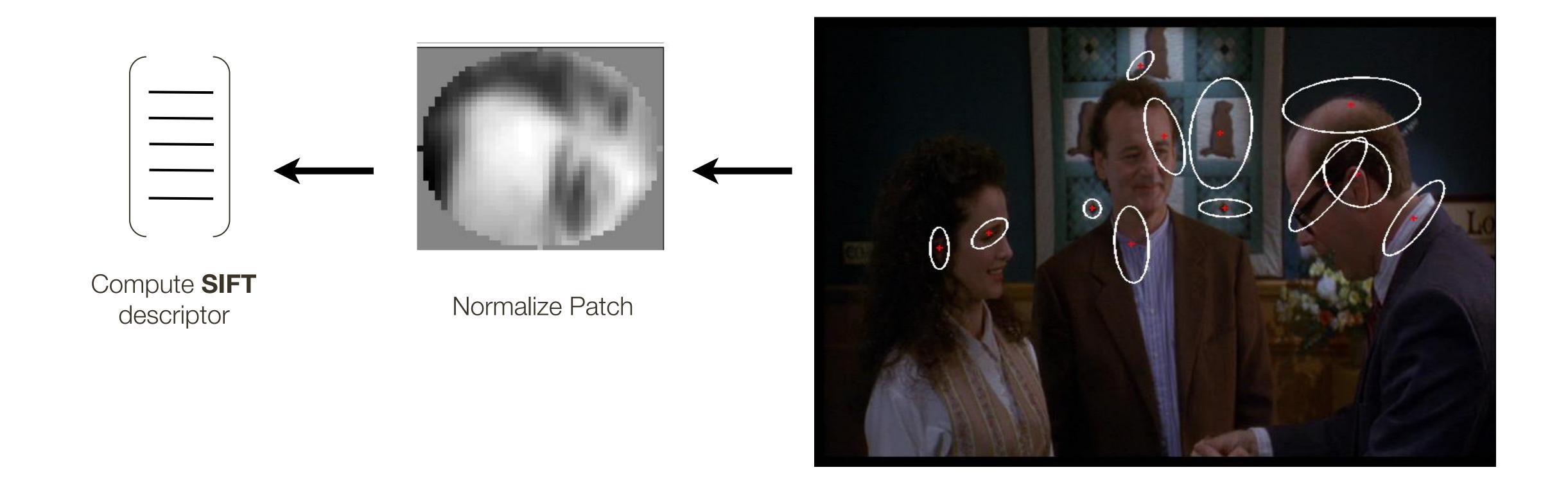
- Vogel et al. 2003
- Fei-Fei et al. 2005

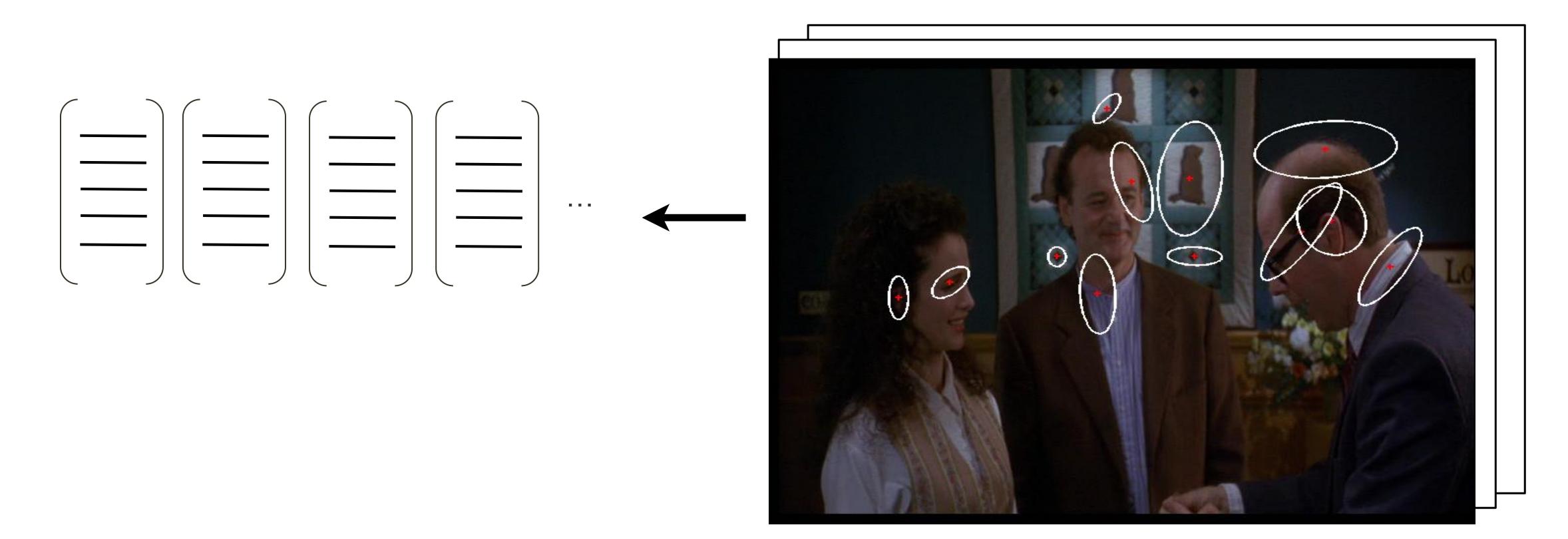
Interest Point Detector

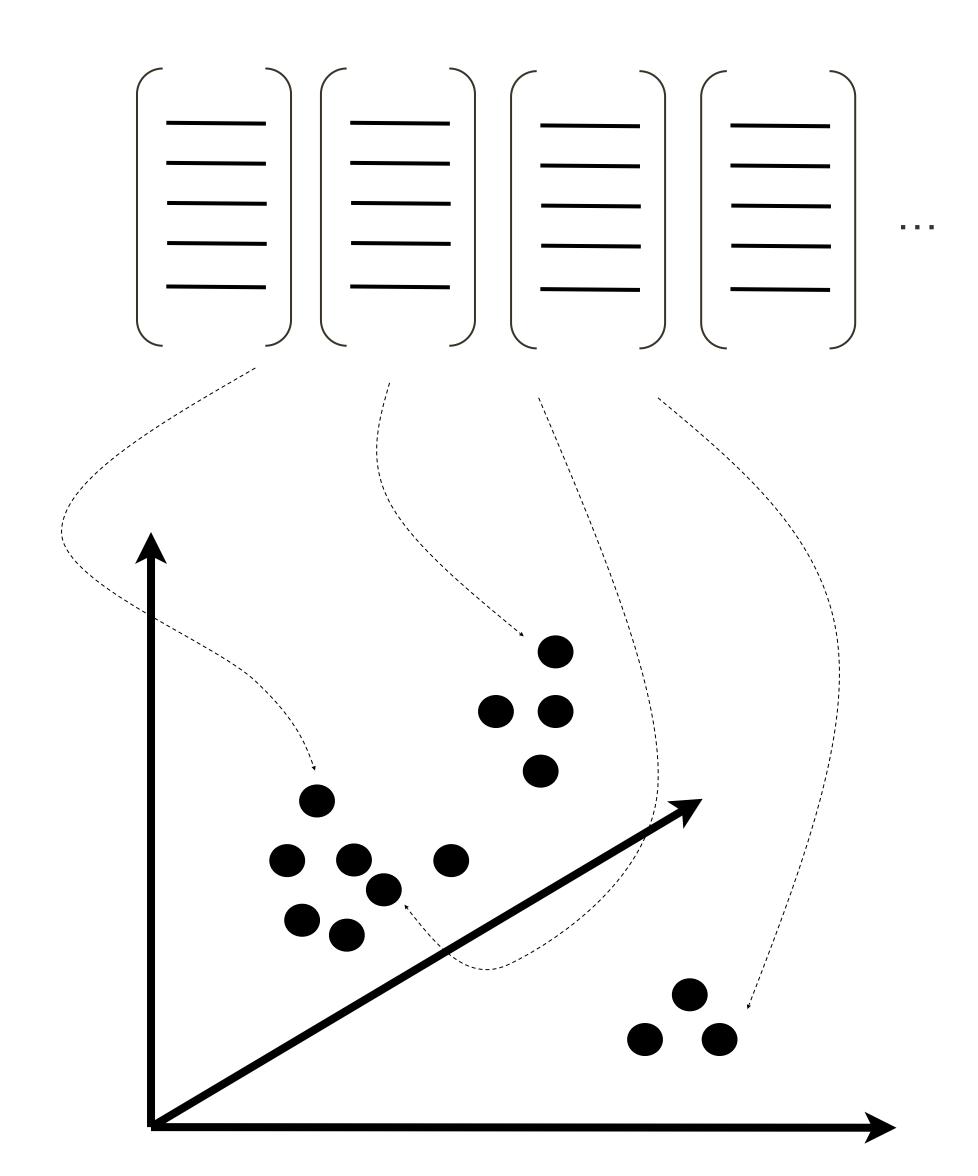
- Csurka et al. 2004
- Fei-Fei et al. 2005
- Sivic et al. 2005

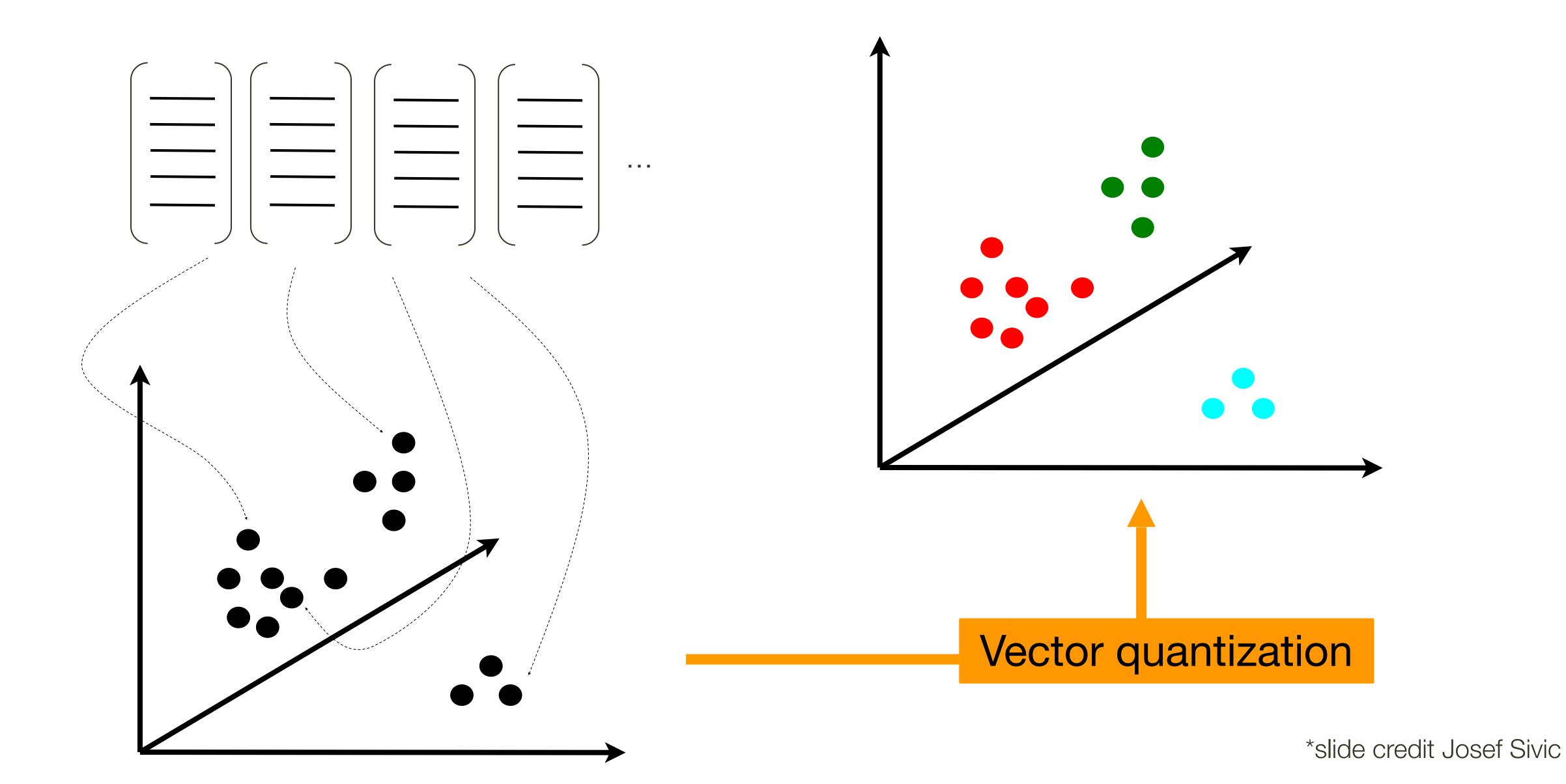
Other Methods

- Randome sampling (Ullman et al. 2002)
- Segmentation based patches (Barnard et al. 2003)









Codeword Dictionary

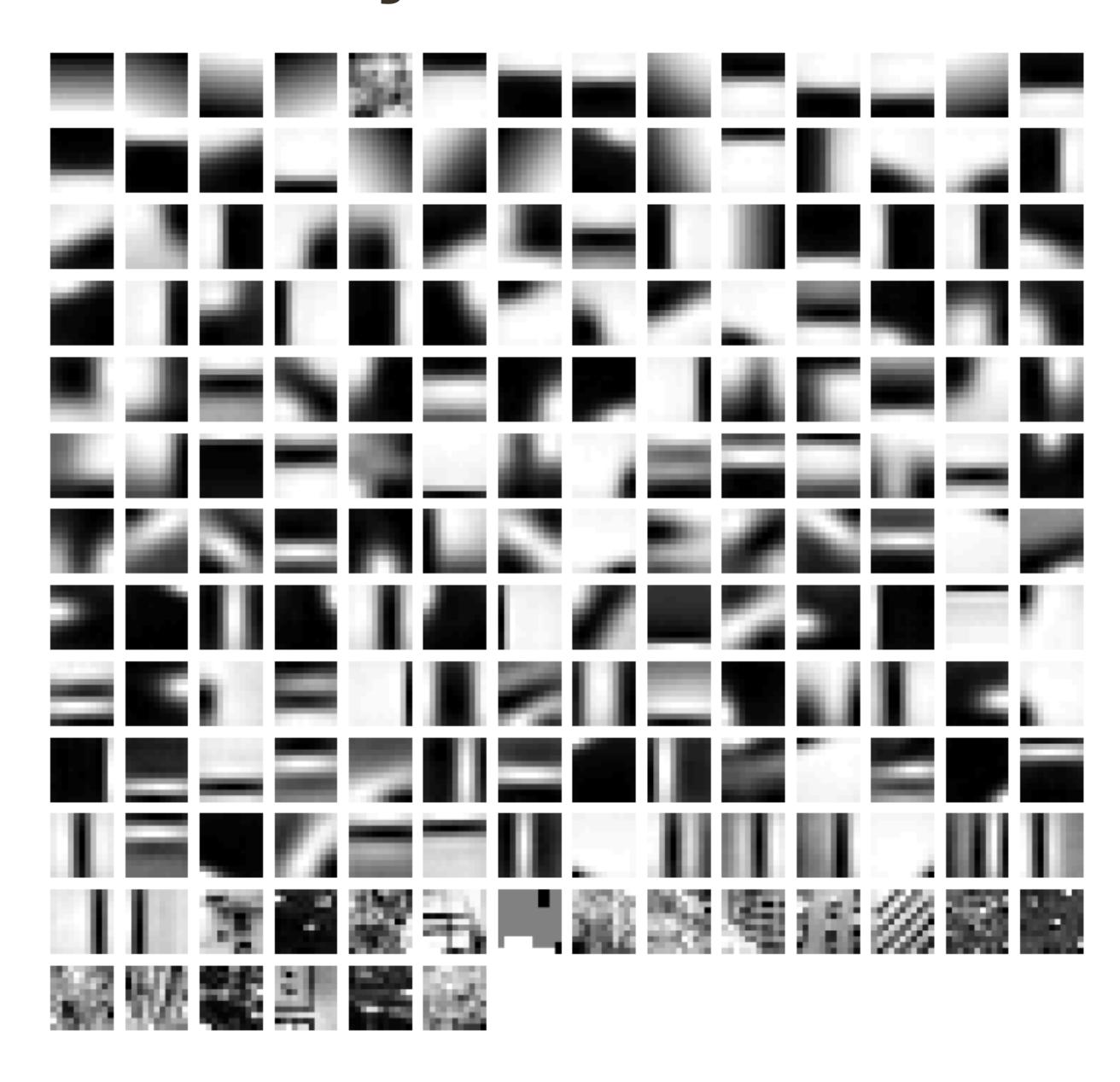


Image Patch Examples of Code Words

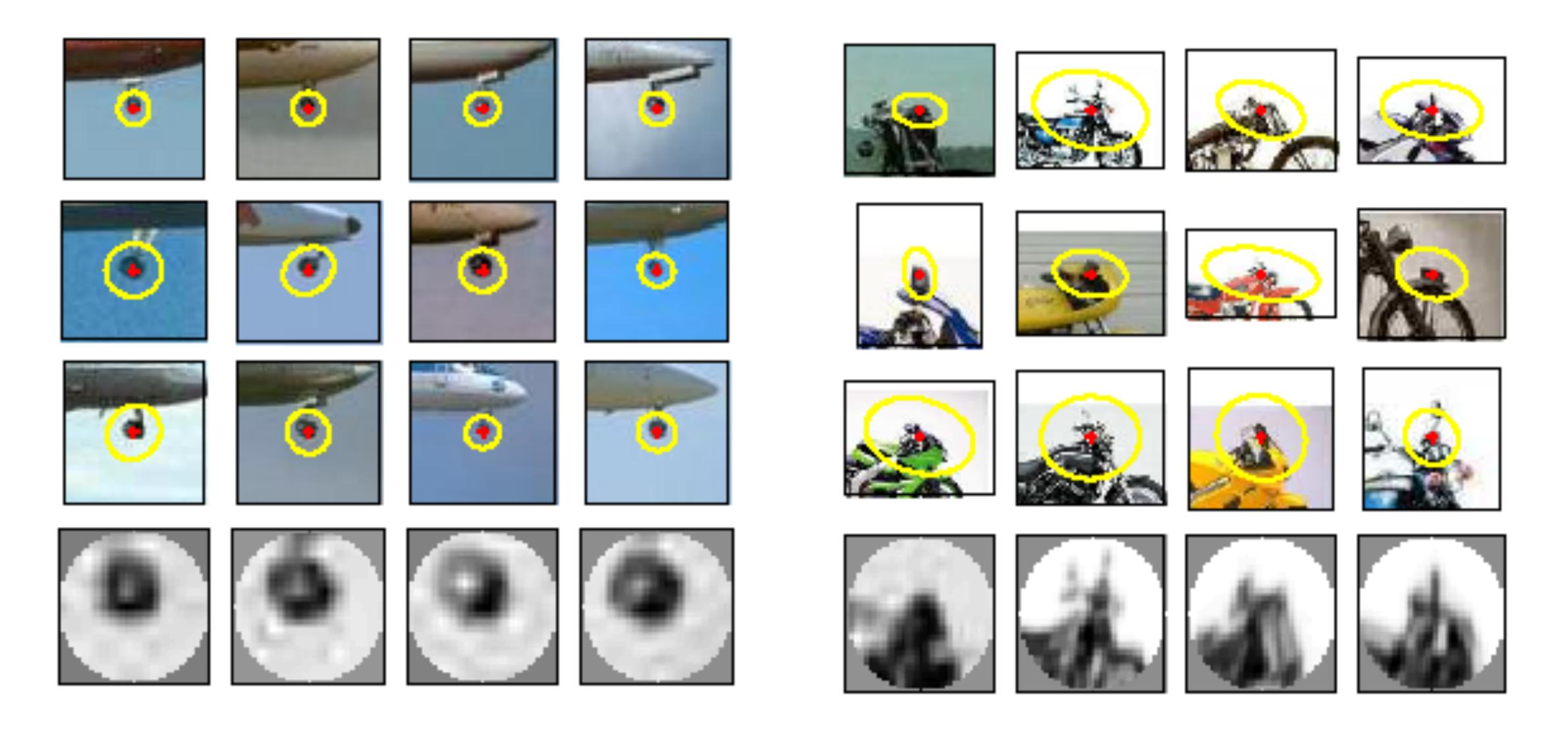
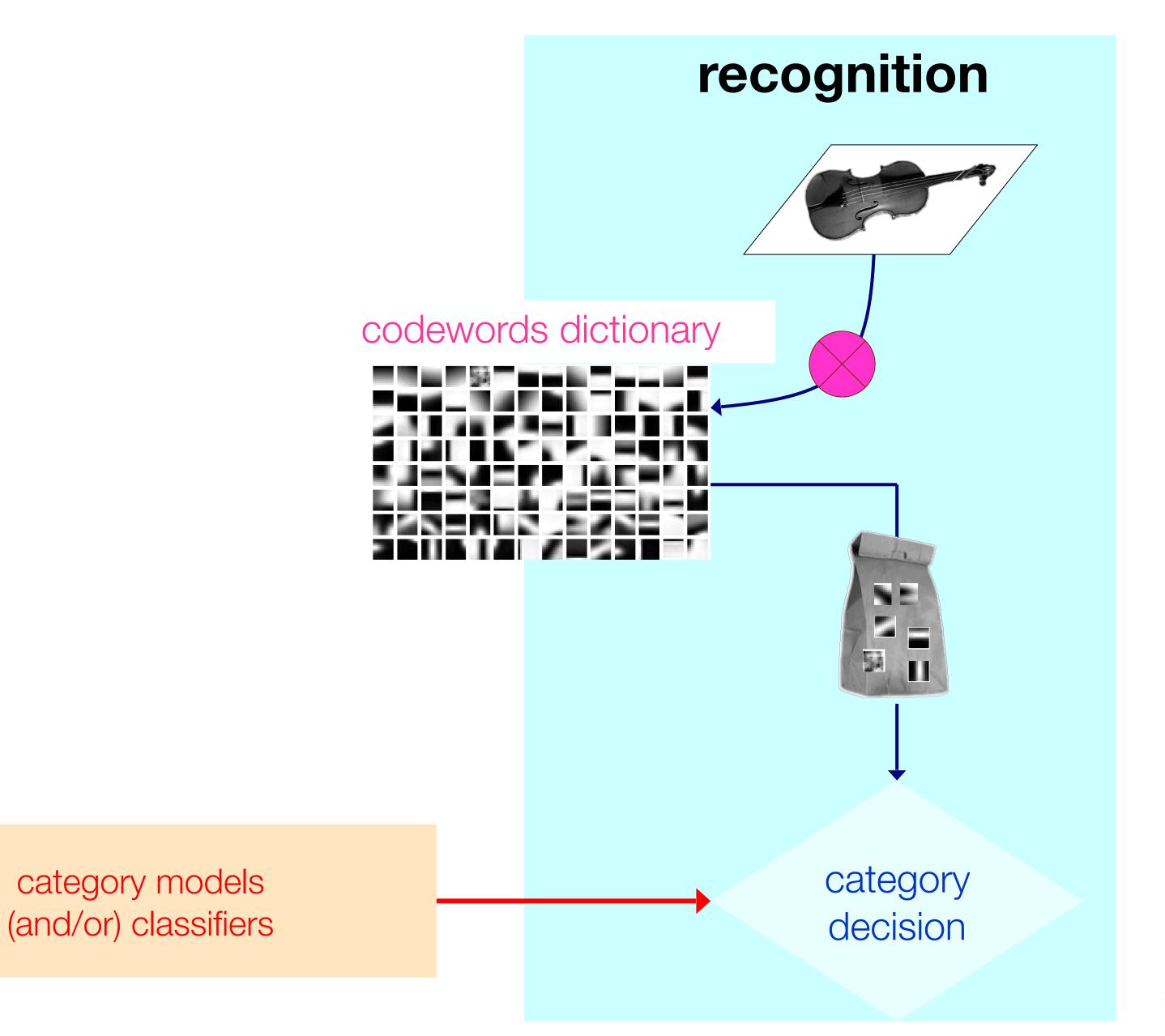
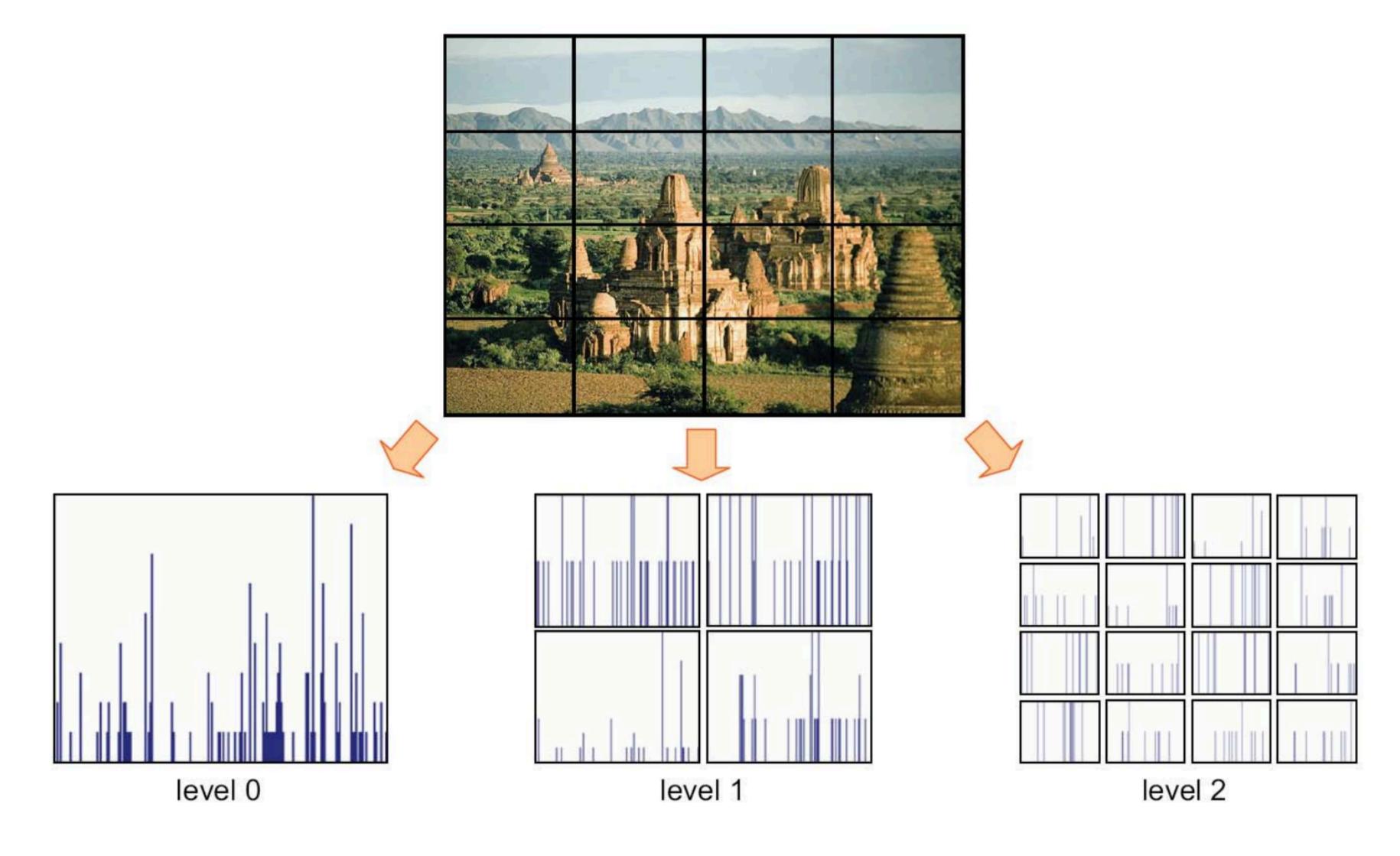


Image Representation

Bag-of-Visual-Words

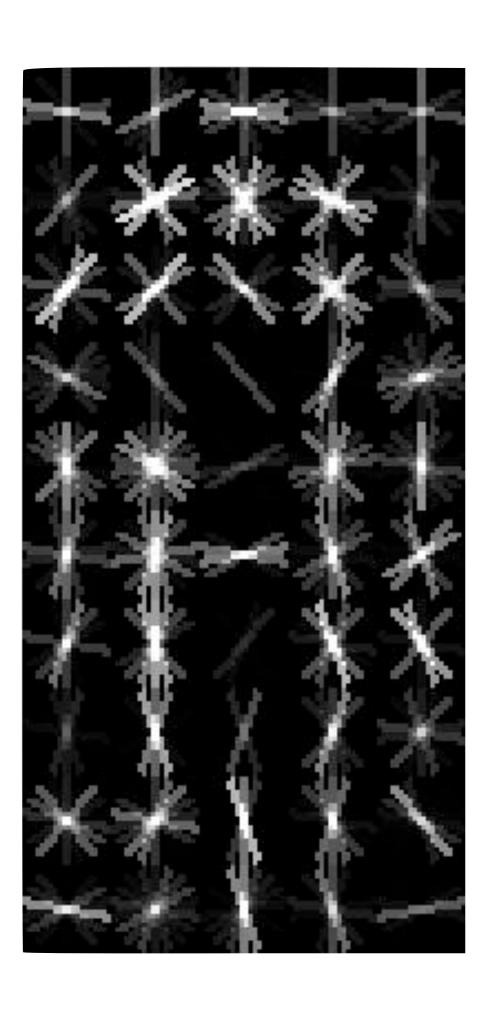


Beyond Bag of Features

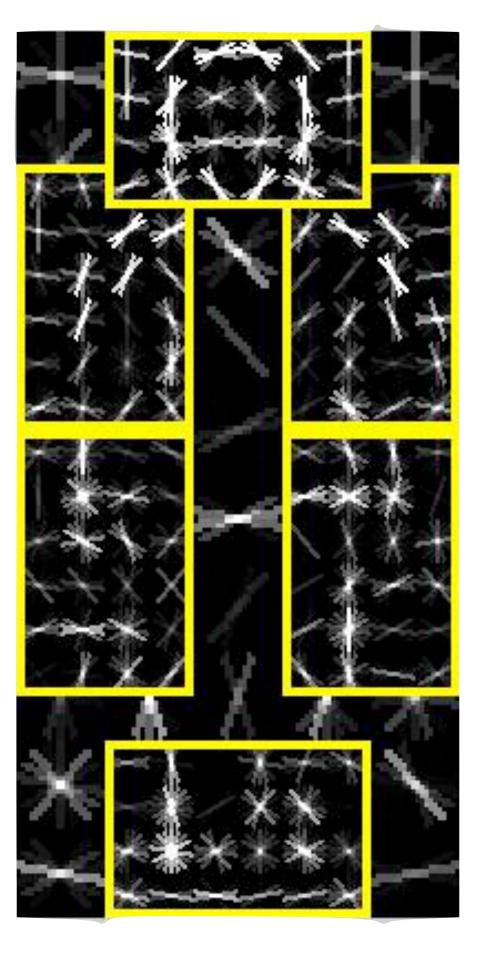


Deformable Part Models

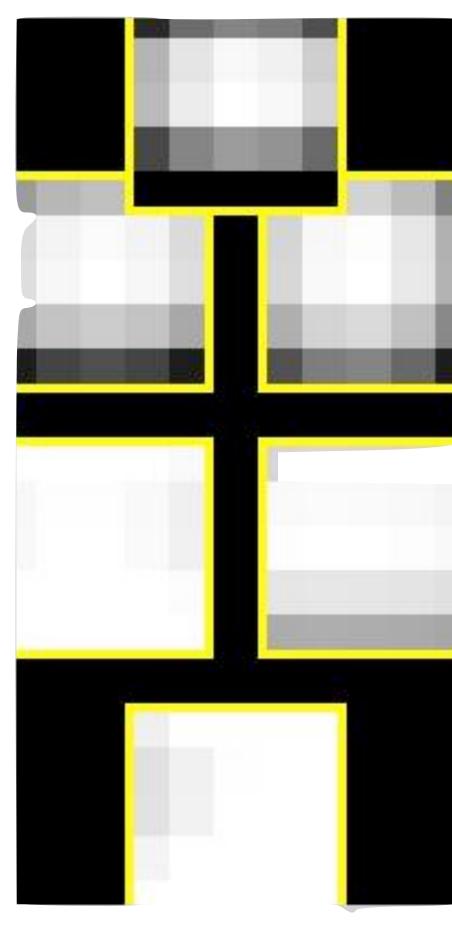
Detection



Root Filter

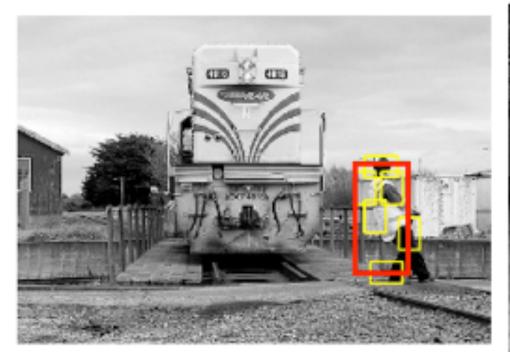


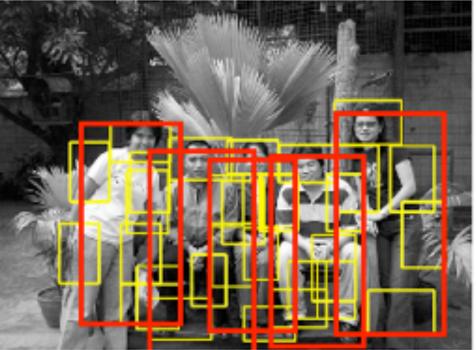
Part Filters

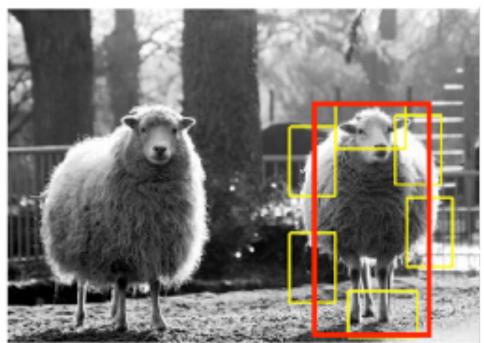


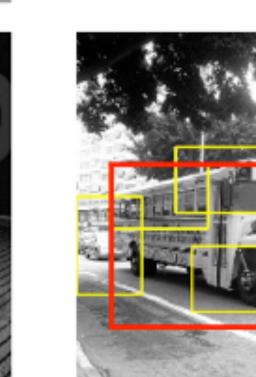
Deformations

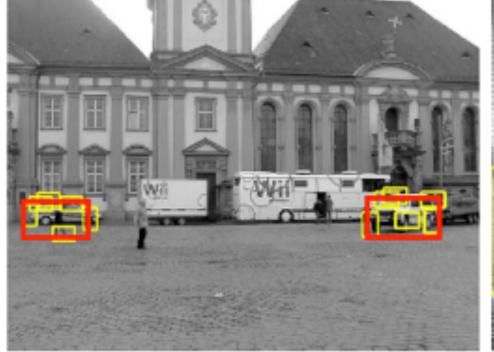
Deformable Part Models

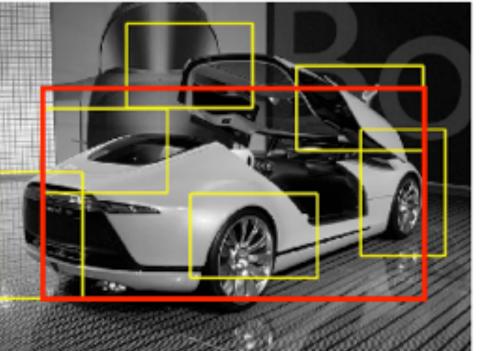




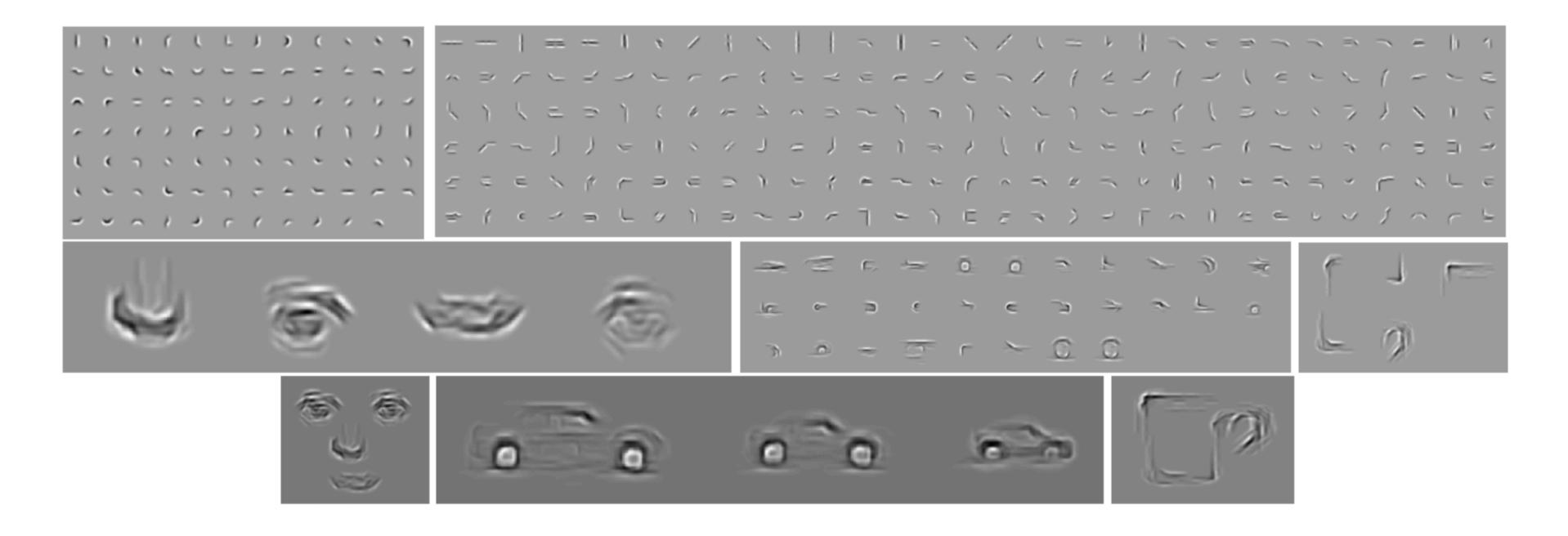


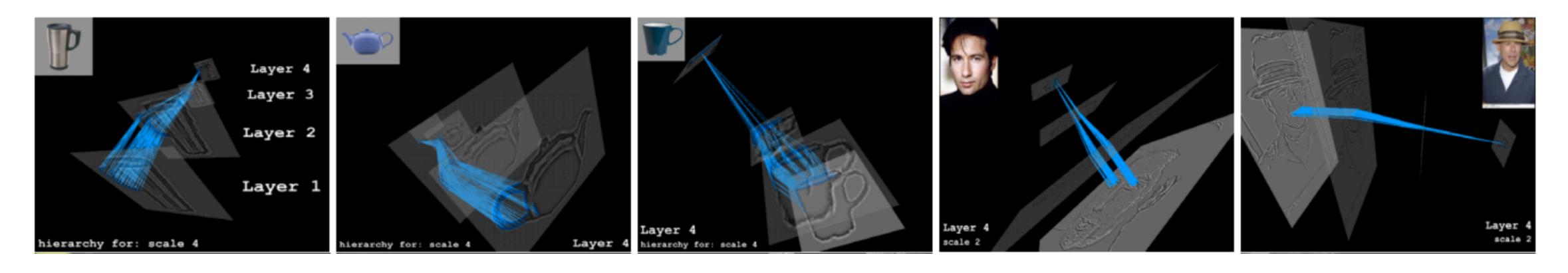






Hierarchical Models





PASCAL Visual Object Challenge (VOC)

Image is CC BY-SA 3.0

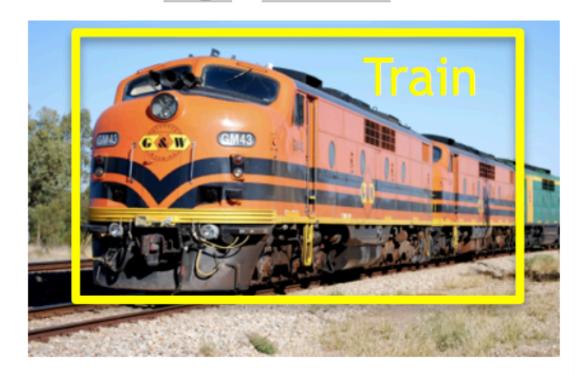
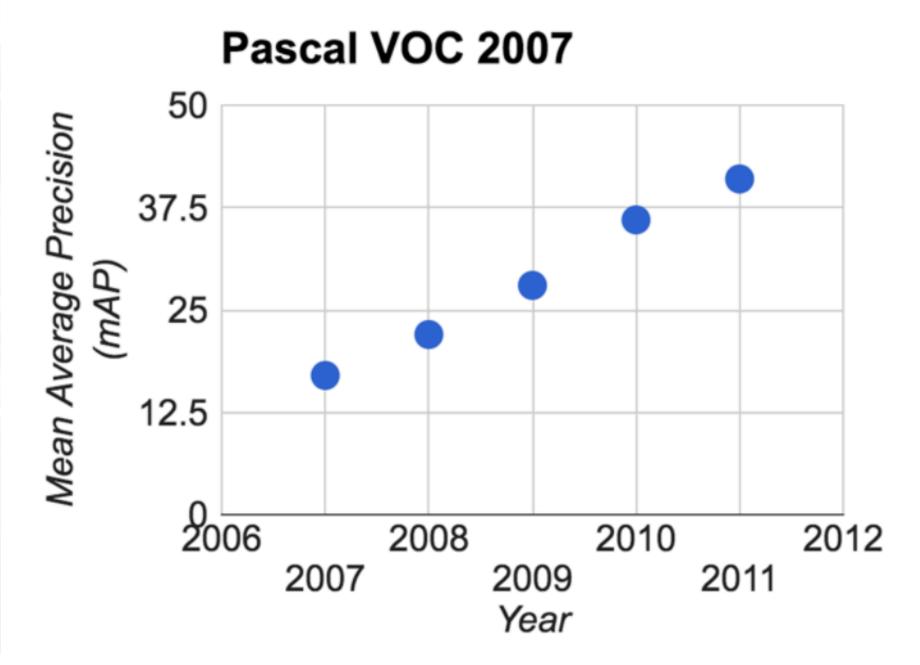
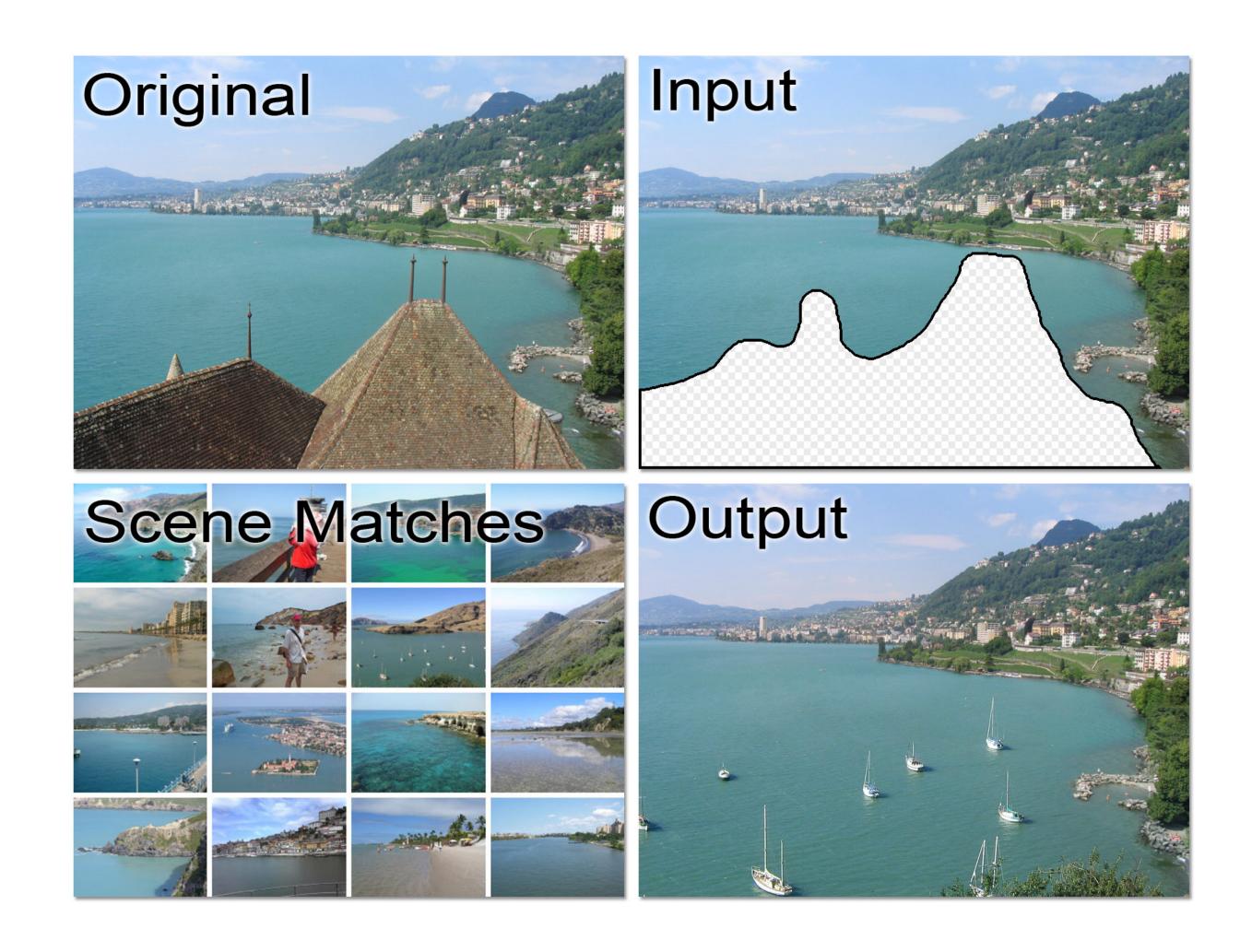


Image is CC0 1.0 public domain

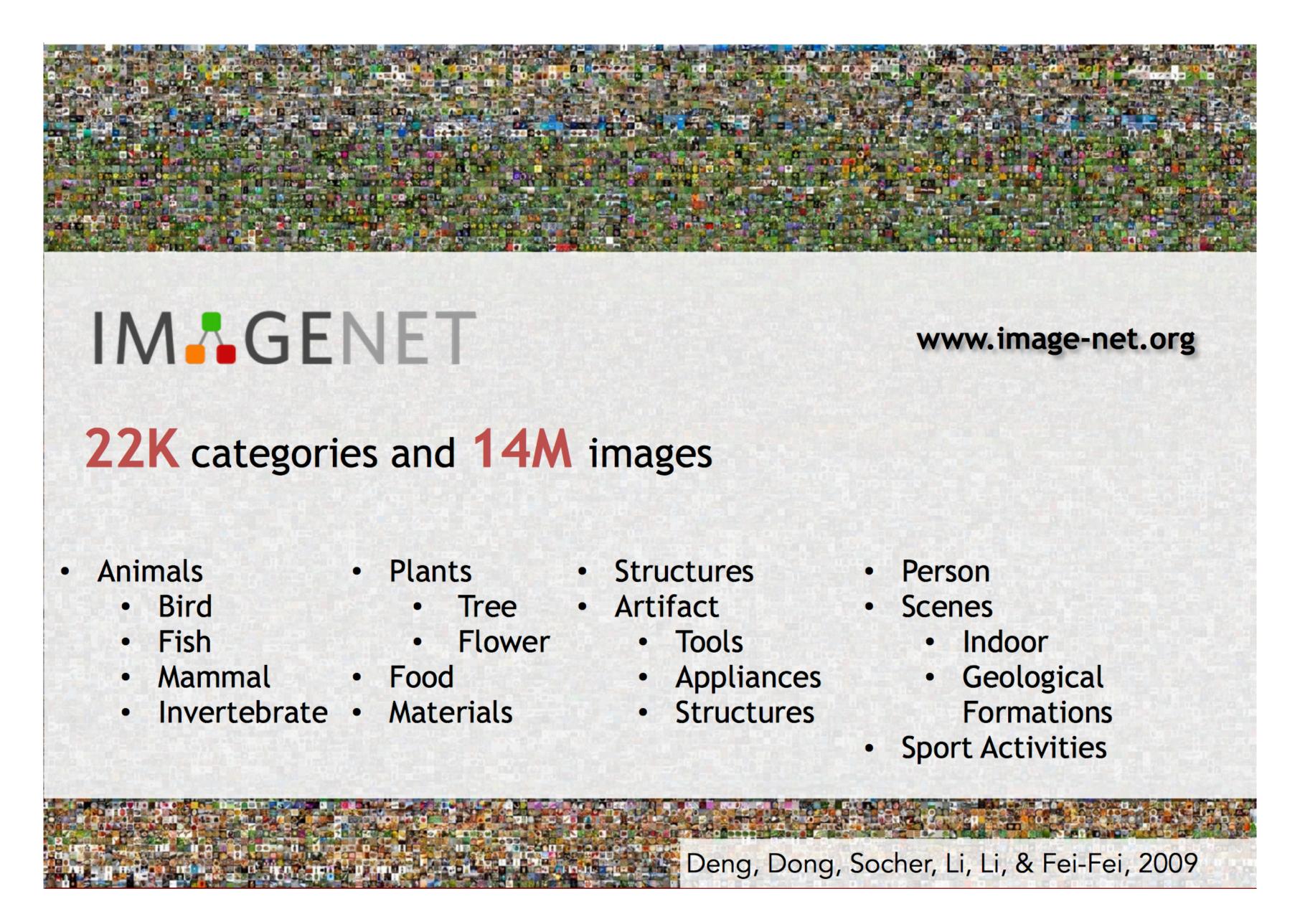
This image is licensed under CC BY-SA 2.0; changes made



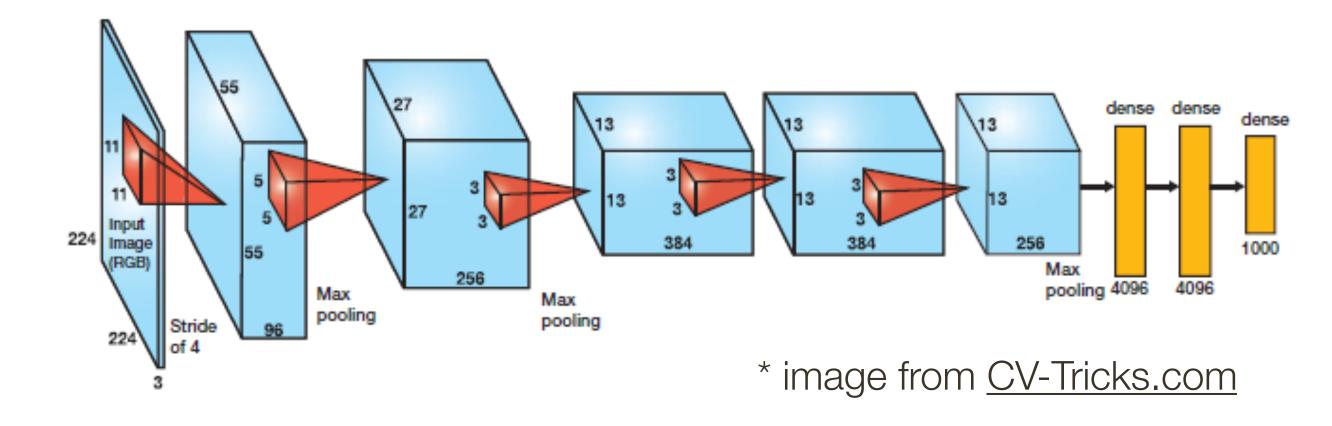
Effectiveness of Data



ImageNet Bechmark



AlexNet on ImageNet



Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

ImageNet Classification with Deep Convolutional Neural Networks

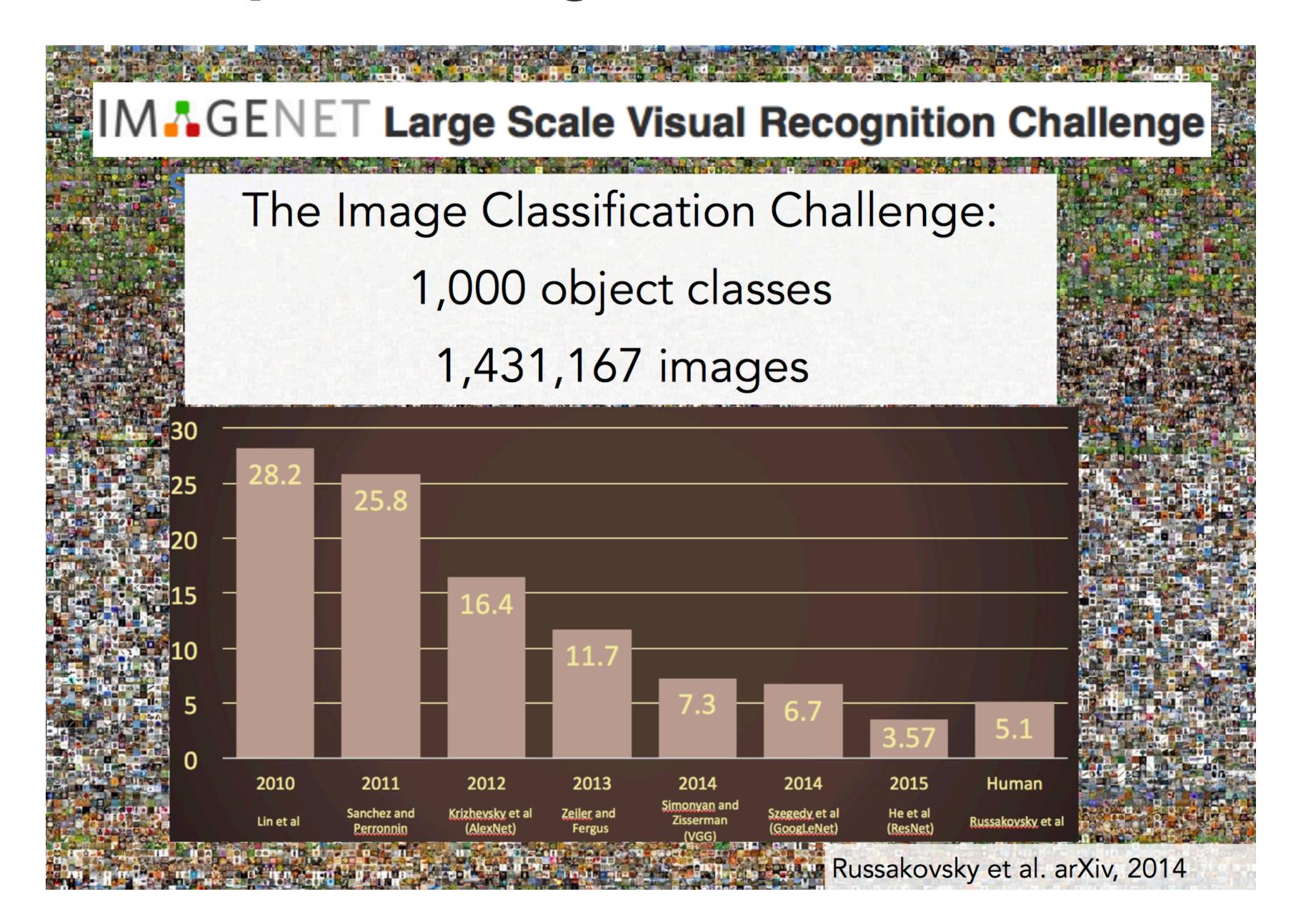
Alex Krizhevsky	Ilya Sutskever	Geoffrey E. Hinton	
University of Toronto	University of Toronto	University of Toronto	
kriz@cs.utoronto.ca	ilya@cs.utoronto.ca	hinton@cs.utoronto.ca	

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Success of Deep Learning

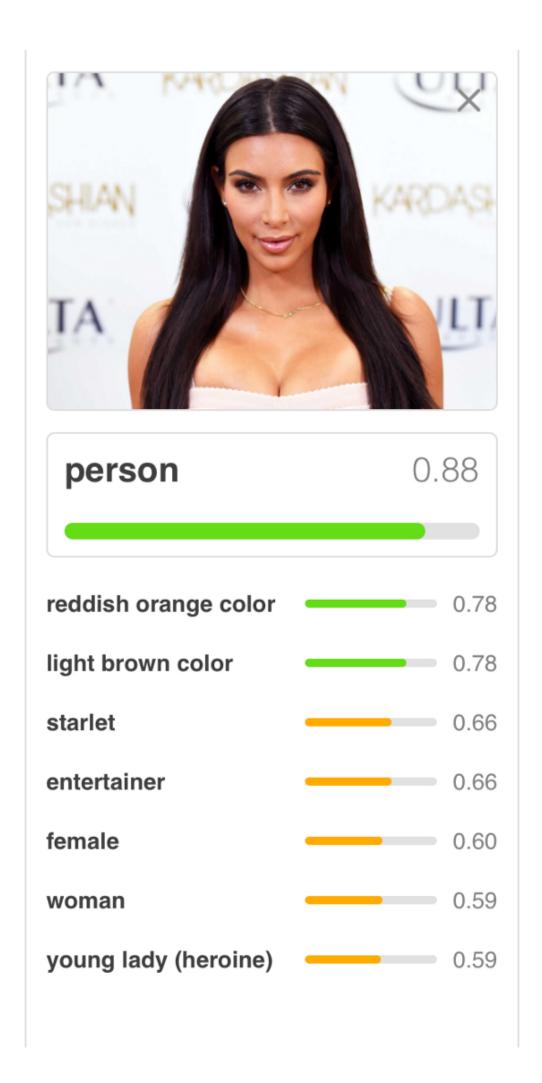


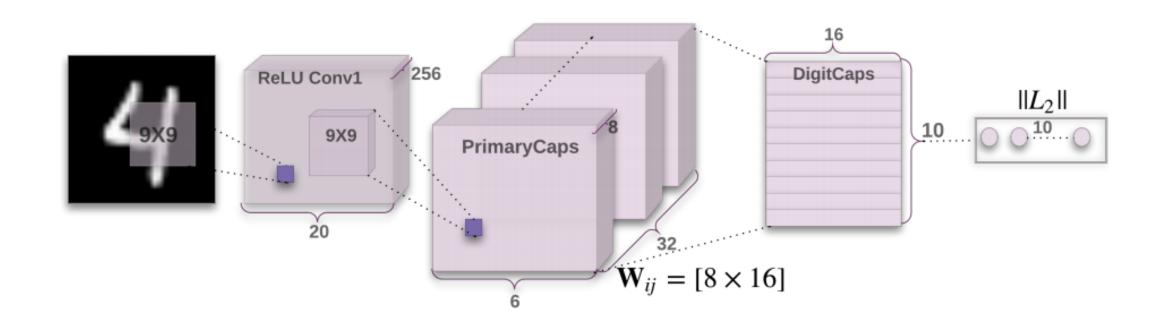
Final thought ...

- Model based, compositional, primitives, inverse graphics
- Hand-crafted features for given invariances & matching
- Hand-crafted features with learned statistical models on top
- Joint learning of features and statistical models for recognition

CapsuleNET

Going back to inverse graphics

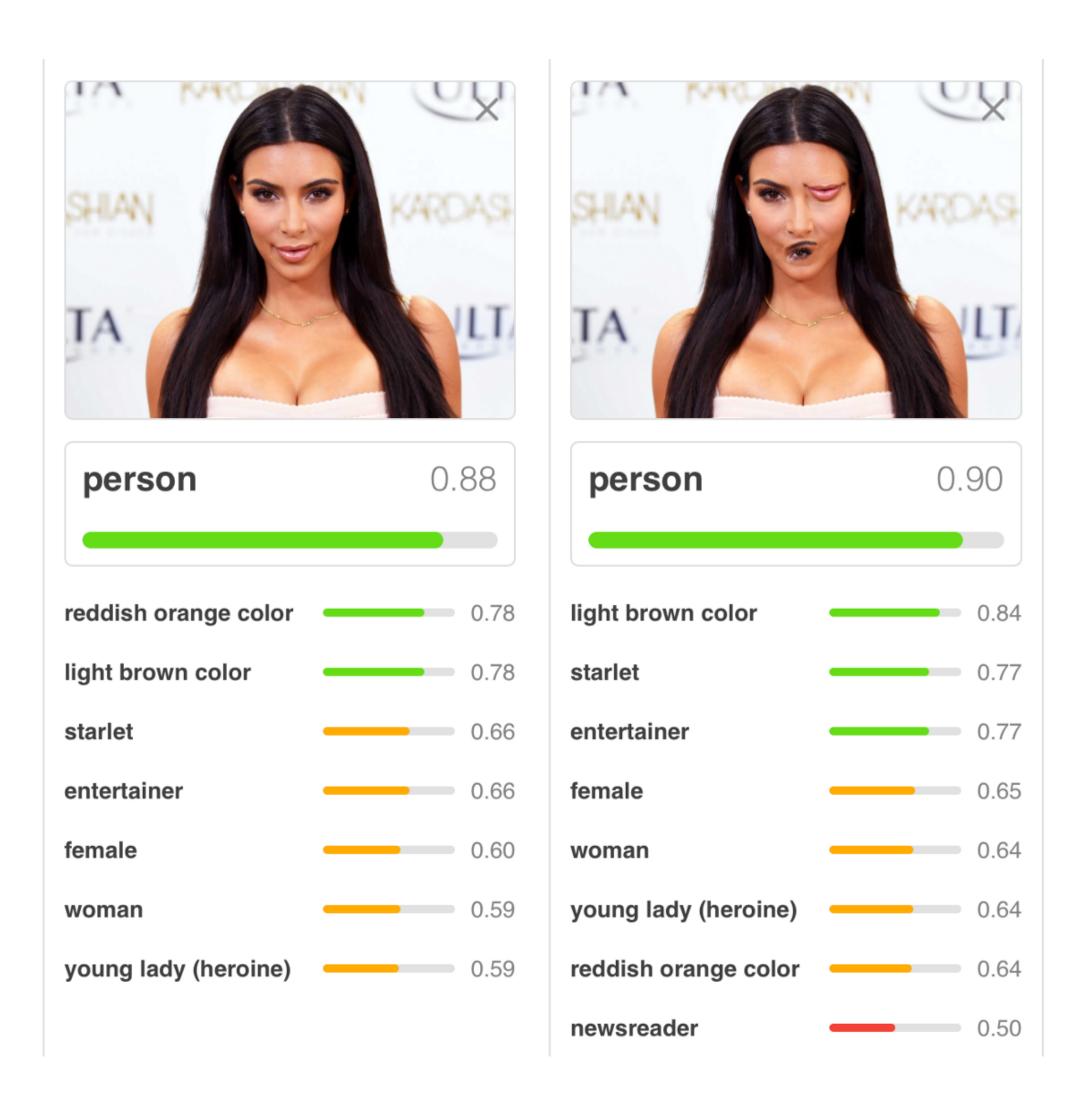


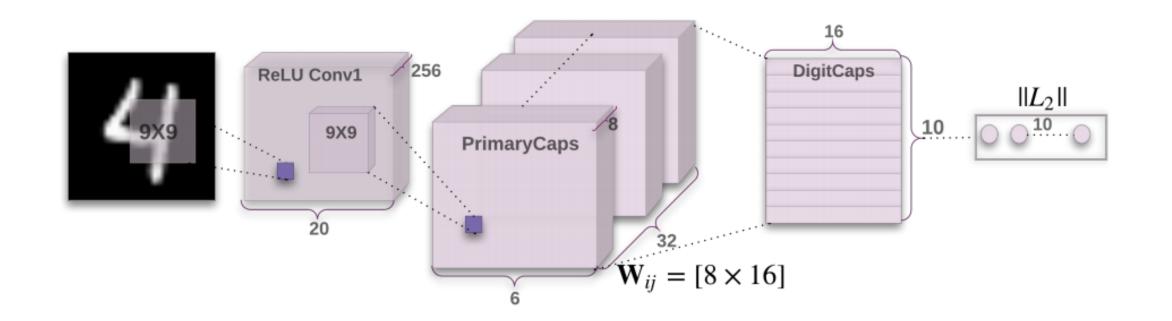


[Sabour, Frosst, Hinton, NIPS 2017]

CapsuleNET

Going back to inverse graphics



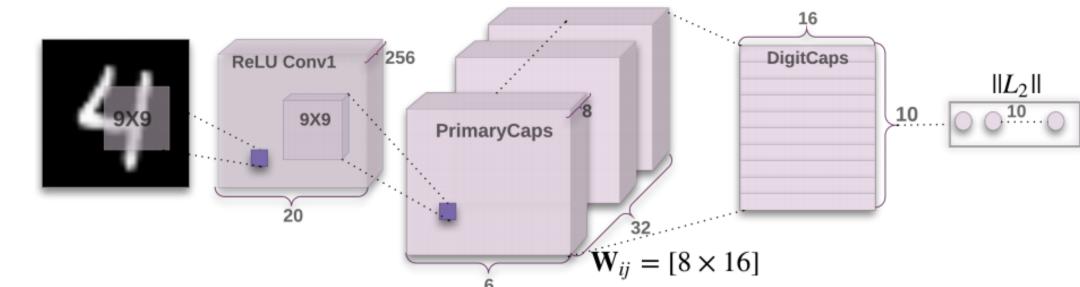


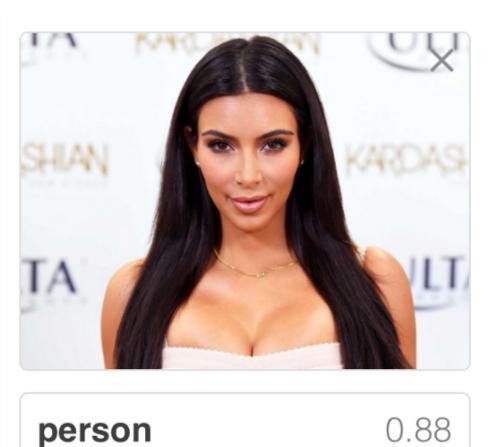
[Sabour, Frosst, Hinton, NIPS 2017]

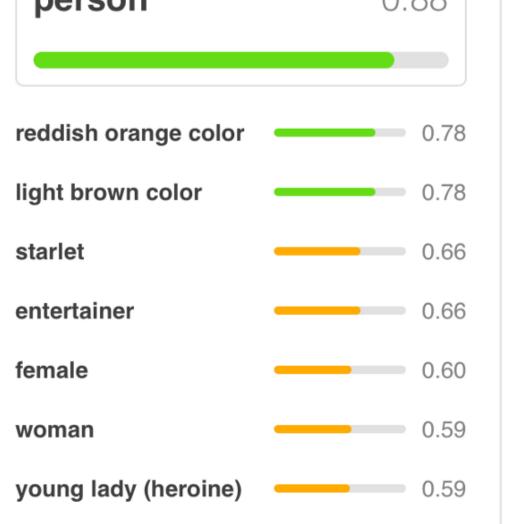
*image credit medium.com

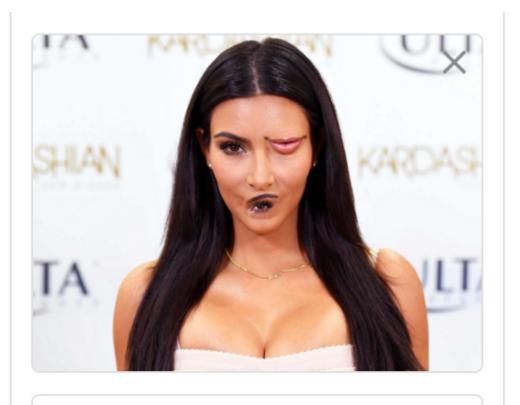
CapsuleNET

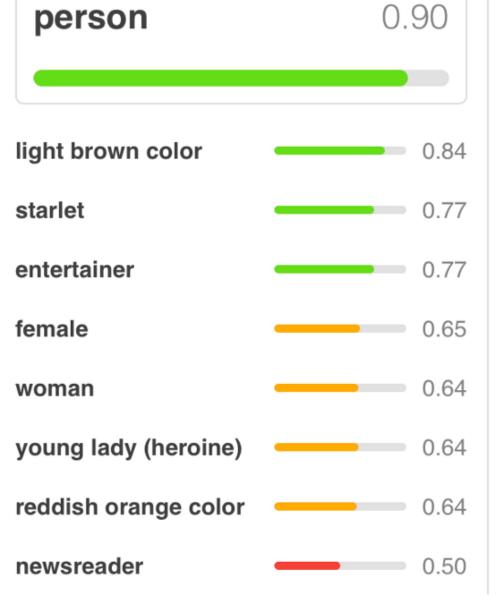
Going back to inverse graphics

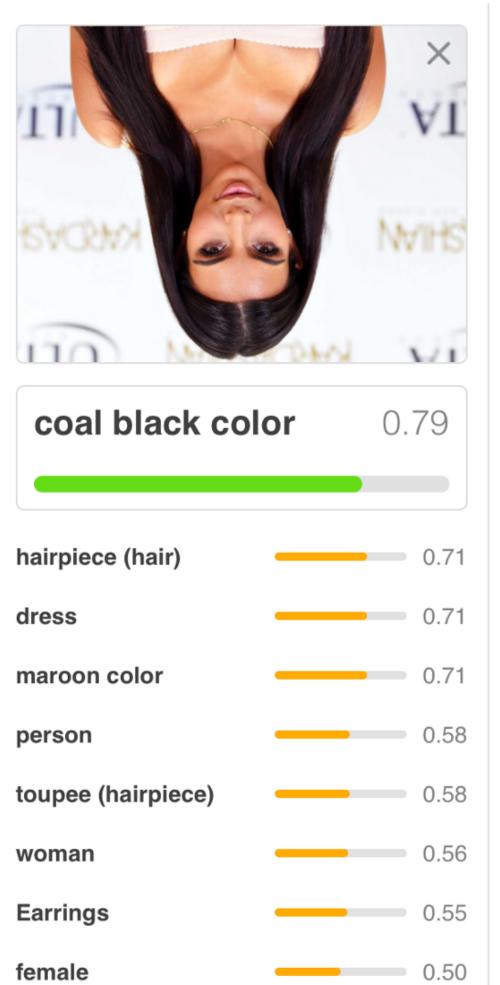












[Sabour, Frosst, Hinton, NIPS 2017]

Neural Modular Networks

