
Lecture 3: Introduction to Deep Learning (continued)

Topics in AI (CPSC 532L):
Multimodal Learning with Vision, Language and Sound

Course Logistics
- Update on course registrations - 6 seats left now

- Microsoft Azure credits and tutorial

- Assignment 1 … any questions?

- Question about constants in a computational graph

Course Logistics
- Update on course registrations - 6 seats left now

- Microsoft Azure credits and tutorial

- Assignment 1 … any questions?

- Question about constants in a computational graph

f(x) = a · x+ b

Course Logistics
- Update on course registrations - 6 seats left now

- Microsoft Azure credits and tutorial

- Assignment 1 … any questions?

- Question about constants in a computational graph

f(x) = a · x+ b

f(x, a, b) = a · x+ b

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

W

b

o

MSE
loss

(ŷ,y)
laW · x+ b

yi

xi

sigmoid(o)

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate)

- Symbolic differential (intractable)

- AutoDiff Forward (computationally expensive)

- AutoDiff Backward / BackProp

- Introduced the basic building block of Neural Networks (MLP/FC) layer

- How do we stack these layers up to make a Deep NN

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate)

- Symbolic differential (intractable)

- AutoDiff Forward (computationally expensive)

- AutoDiff Backward / BackProp

- Different activation functions and saturation problem

Follow up (some intuition)

0.6

1.2

Linear Activation

a(x) = x

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

Linear Activation

a(x) = x

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

Linear Activation

a(x) = x

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

Linear Activation

a(x) = x

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

Linear Activation

a(x) = x

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

Linear Activation

a(x) = x

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

ReLU Activation

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

0.6

1.2

ReLU Activation

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation

Follow up (some intuition)

- Another interpretation of the NN, affine combination of activation functions

0.6

1.2

ReLU Activation

a(x) = max(0, x)

a

0(x) =

(
1 if x � 0

0 if x < 0

- Affine transformation of the input, followed by an activation

Regularization: L2 or L1 on the weights

L2 Regularization: Learn a more (dense) distributed representation

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
X

i

X

j

W2
i,j

R(W) = ||W||1 =
X

i

X

j

|Wi,j |
(others regularizers are also possible)

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

Example:

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · xT = W2 · xT

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

two networks will have identical loss

x = [1, 1, 1, 1]

W1 = [1, 0, 0, 0]

W2 =


1

4
,
1

4
,
1

4
,
1

4

�

W1 · x = W2 · x

RL2(W1) = 1
RL2(W2) = 0.25
RL1(W1) = 1
RL1(W2) = 1

L2 Regularizer:

L1 Regularizer:

Computational Graph: 1-layer with PReLU + Regularizer

W

b

R(W)

o

↵

PReLU(↵, ·) MSE
loss

(ŷ,y)
laW · x+ b

r

l
tot

+

yi

xi

Regularization: Batch Normalization

[Ioffe and Szegedy, NIPS 2015]

Normalize each mini-batch (using Batch Normalization layer) by
subtracting empirically computed mean and dividing by variance for every
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients,
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Regularization: Batch Normalization

[Ioffe and Szegedy, NIPS 2015]

Normalize each mini-batch (using Batch Normalization layer) by
subtracting empirically computed mean and dividing by variance for every
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients,
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Why?

Activation Function: Sigmoid

a(x) = sigmoid(x) =
1

1 + e

�x

a

0(x) = sigmoid(x) (1� sigmoid(x))

Sigmoid Activation

Cons:
- Saturated neurons “kill” the gradients
- Non-zero centered
- Could be expensive to compute

Sigmoid
Gate

a =

@L
@x

=
@ sigmoid(x)

@x

@L
@a

@L
@x

=
@ sigmoid(x)

@x

@L
@a

a(x) = sigmoid(x) =
1

1 + e

�x

a

0(x) = sigmoid(x) (1� sigmoid(x))

x

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

Regularization: Batch Normalization

[Ioffe and Szegedy, NIPS 2015]

Normalize each mini-batch (using Batch Normalization layer) by
subtracting empirically computed mean and dividing by variance for every
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients,
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Typically inserted before activation layer

Activation Function: Sigmoid vs. Tanh

Tanh Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2

1 + e

�2x
� 1

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2

1 + e

�2x
� 1

Pros:
- Squishes everything in the range [-1,1]
- Centered around zero
- Has well defined gradient everywhere

Cons:
- Saturated neurons “kill” the gradients

 BN layer parameters

Regularization: Batch Normalization

[Ioffe and Szegedy, NIPS 2015]

Normalize each mini-batch (using Batch Normalization layer) by
subtracting empirically computed mean and dividing by variance for every
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients,
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

y

(k) = �

(k)
x̄

(k) + �

(k)

In practice, also learn how
to scale and offset:

Typically inserted before activation layer

Regularization: Dropout

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

[Srivastava et al, JMLR 2014]
* adopted from slides of CS231n at Stanford

Regularization: Dropout

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

1. Compute output of the linear/fc layer

2. Compute a mask with probability proportional to dropout rate

3. Apply the mask to zero out certain outputs

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

[Srivastava et al, JMLR 2014]
* adopted from slides of CS231n at Stanford

Regularization: Dropout

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

Why is this a good idea?

[Srivastava et al, JMLR 2014]
* adopted from slides of CS231n at Stanford

Regularization: Dropout

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

Why is this a good idea?

Dropout is training an ensemble of models
that share parameters

Each binary mask (generated in the forward
pass) is one model that is trained on
(approximately) one data point

[Srivastava et al, JMLR 2014]
* adopted from slides of CS231n at Stanford

Regularization: Dropout (at test time)

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

At test time, integrate out all the models
in the ensemble

Monte Carlo approximation: many forward
passes with different masks and average all
predictions

[Srivastava et al, JMLR 2014]
* adopted from slides of CS231n at Stanford

x dropout rate

x dropout rate

x dropout rate

Regularization: Dropout (at test time)

[Srivastava et al, JMLR 2014]

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

Equivalent to forward pass with all connections
on and scaling of the outputs by dropout rate

At test time, integrate out all the models
in the ensemble

Monte Carlo approximation: many forward
passes with different masks and average all
predictions

For derivation see Lecture 6 of CS231n at Stanford
* adopted from slides of CS231n at Stanford

Regularization: Dropout

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability
proportional to dropout rate (between 0 to 1)

1. Compute output of the linear/fc layer

2. Compute a mask with probability proportional to dropout rate

3. Apply the mask to zero out certain outputs

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

oi = Wi · x+ bi

mi = rand(1, |oi|) < dropout rate

oi = oi �mi

[Srivastava et al, JMLR 2014]
* adopted from slides of CS231n at Stanford

Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions,
dimensionality of each layer and connections (defines computational graph)

• Loss function: objective function being optimized (softmax, cross entropy, etc.)

• Parameters: trainable parameters of the network, including weights/biases of
linear/fc layers, parameters of the activation functions, etc.
• Hyper-parameters: parameters, including for optimization, that are not optimized

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set

optimized using SGD or variants

grid search

requires knowledge of the nature of the problem

deeper = better

Loss Functions …

This is where all the fun is … but later … too many to cover …

Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford

Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford

