
Lecture 3: Introduction to Deep Learning (continued)

Topics in AI (CPSC 532L): 
Multimodal Learning with Vision, Language and Sound



Course Logistics
- Update on course registrations - 6 seats left now  

- Microsoft Azure credits and tutorial  

- Assignment 1 … any questions?  

- Question about constants in a computational graph
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- Question about constants in a computational graph

f(x) = a · x+ b

f(x, a, b) = a · x+ b



- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …
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(ŷ,y)
laW · x+ b

yi

xi

sigmoid(o)



- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)



- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)



- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate) 

- Symbolic differential (intractable) 

- AutoDiff Forward (computationally expensive) 

- AutoDiff Backward / BackProp



- Introduced the basic building block of Neural Networks (MLP/FC) layer 

- How do we stack these layers up to make a Deep NN 

- Basic NN operations (implemented using computational graph)

Short Review …

Prediction / Inference

Function evaluation
(a.k.a. ForwardProp)

Parameter Learnings
(Stochastic) Gradient Descent (needs derivatives)

- Numerical differentiation (not accurate) 

- Symbolic differential (intractable) 

- AutoDiff Forward (computationally expensive) 

- AutoDiff Backward / BackProp

- Different activation functions and saturation problem
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- Another interpretation of the NN, affine combination of activation functions

- Affine transformation of the input, followed by an activation
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- Another interpretation of the NN, affine combination of activation functions
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ReLU Activation

a(x) = max(0, x)
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0 if x < 0

- Affine transformation of the input, followed by an activation



Regularization: L2 or L1 on the weights 

L2 Regularization: Learn a more (dense) distributed representation 

L1 Regularization: Learn a sparse representation (few non-zero wight elements)

R(W) = ||W||2 =
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(others regularizers are also possible)
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two networks will have identical loss
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L2 Regularizer: 

L1 Regularizer: 



Computational Graph: 1-layer with PReLU + Regularizer
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Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]
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Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate)

x̄

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Why?



Activation Function: Sigmoid

a(x) = sigmoid(x) =
1

1 + e

�x

a

0(x) = sigmoid(x) (1� sigmoid(x))

Sigmoid Activation

Cons:  
- Saturated neurons “kill” the gradients 
- Non-zero centered  
- Could be expensive to compute
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* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford



Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
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Typically inserted before activation layer



Activation Function: Sigmoid vs. Tanh

Tanh Activation

* slide adopted from Li, Karpathy, Johnson’s CS231n at Stanford

a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
2
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a(x) = tanh(x) = 2 · sigmoid(2x)� 1

a(x) = tanh(x) =
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Pros:  
- Squishes everything in the range [-1,1] 
- Centered around zero 
- Has well defined gradient everywhere

Cons:  
- Saturated neurons “kill” the gradients



 BN layer parameters

Regularization: Batch Normalization

[ Ioffe and Szegedy, NIPS 2015 ]

Normalize each mini-batch (using Batch Normalization layer) by 
subtracting empirically computed mean and dividing by variance for every 
dimension -> samples are approximately unit Gaussian

Benefit:

Improves learning (better gradients, 
higher learning rate)

x̄
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Var[x(k)]

y

(k) = �

(k)
x̄

(k) + �

(k)

In practice, also learn how  
to scale and offset: 

Typically inserted before activation layer



Regularization: Dropout 

Standar Neural Network After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford
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Regularization: Dropout 

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

Why is this a good idea?

Dropout is training an ensemble of models 
that share parameters 

Each binary mask (generated in the forward 
pass) is one model that is trained on 
(approximately) one data point 

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford



Regularization: Dropout (at test time)

After Applying Dropout

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

At test time, integrate out all the models 
in the ensemble

Monte Carlo approximation: many forward 
passes with different masks and average all 
predictions 

[ Srivastava et al,  JMLR 2014 ]
* adopted from slides of CS231n at Stanford
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Regularization: Dropout (at test time)

[ Srivastava et al,  JMLR 2014 ]

Randomly set some neurons to zero in the forward pass, with probability 
proportional to dropout rate (between 0 to 1)

Equivalent to forward pass with all connections 
on and scaling of the outputs by dropout rate 

At test time, integrate out all the models 
in the ensemble

Monte Carlo approximation: many forward 
passes with different masks and average all 
predictions 

For derivation see Lecture 6 of CS231n at Stanford
* adopted from slides of CS231n at Stanford
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Deep Learning Terminology

• Network structure: number and types of layers, forms of activation functions, 
dimensionality of each layer and connections (defines computational graph) 

• Loss function: objective function being optimized (softmax, cross entropy, etc.) 

• Parameters: trainable parameters of the network,  including weights/biases of 
linear/fc layers, parameters of the activation functions, etc. 
• Hyper-parameters: parameters, including for optimization, that are not optimized 

directly as part of training (e.g., learning rate, batch size, drop-out rate)

Google’s “Inception” network

generally kept fixed, requires some knowledge of the problem and NN to sensibly set 

optimized using SGD or variants 

grid search

requires knowledge of the nature of the problem

deeper = better



Loss Functions …

This is where all the fun is … but later … too many to cover …



Monitoring Learning: Visualizing the (training) loss

* slide from Li, Karpathy, Johnson’s CS231n at Stanford



Monitoring Learning: Visualizing the (training) loss

Big gap = overfitting 

Solution: increase regularization

No gap = undercutting

Solution: increase model capacity

Small gap = ideal

* slide from Li, Karpathy, Johnson’s CS231n at Stanford


