Topics in AI (CPSC 532L):
Multimodal Learning with Vision, Language and Sound

Lecture 12: Deep Reinforcement Learning
Types of **Learning**

Supervised training
- Learning from the teacher
- Training data includes desired output

Unsupervised training
- Training data does not include desired output

Reinforcement learning
- Learning to act under evaluative feedback (rewards)

* slide from Dhruv Batra
What is Reinforcement Learning

Agent-oriented learning — learning by interacting with an environment to achieve a goal
- More realizing and ambitious than other kinds of machine learning

Learning **by trial and error**, with only delayed evaluative feedback (reward)
- The kind go machine learning most like natural learning
- Learning that can tell for itself when it is right or wrong

slide from David Silver
Example: Hajime Kimura’s RL Robot
Example: Hajime Kimura’s RL Robot

Before

After

* slide from Rich Sutton
Example: Hajime Kimura’s RL Robot

Before

After

* slide from Rich Sutton
Challenges of RL

– Evaluative feedback (reward)
– Sequentiality, delayed consequences
– Need for trial and error, to explore as well as exploit
– Non-stationarity
– The fleeting nature of time and online data

* slide from Rich Sutton
How does RL work?

* slide from David Silver

- At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
- The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}
Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright + forward movement

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise
Markov Decision Processes

— Mathematical **formulation** of the RL problem

Defined by:

\[S: \text{set of possible states} \]
\[A: \text{set of possible actions} \]
\[R: \text{distribution of reward given (state, action) pair} \]
\[P: \text{transition probability i.e. distribution over next state given (state, action) pair} \]
\[\gamma: \text{discount factor} \]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Markov Decision Processes

— Mathematical **formulation** of the RL problem

Defined by:

- \(S \): set of possible states
- \(A \): set of possible actions
- \(\mathcal{R} \): distribution of reward given (state, action) pair
- \(\mathbb{P} \): transition probability i.e. distribution over next state given (state, action) pair
- \(\gamma \): discount factor

— Life is **trajectory**: \[\ldots S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2}, \ldots \]
Markov Decision Processes

— Mathematical **formulation** of the RL problem

Defined by:

- S: set of possible states
- A: set of possible actions
- R: distribution of reward given (state, action) pair
- P: transition probability i.e. distribution over next state given (state, action) pair
- γ: discount factor

— Life is **trajectory**: $\ldots S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2}, \ldots$

— **Markov property**: Current state completely characterizes the state of the world

$$p(r, s'|s, a) = \text{Prob}\left[R_{t+1} = r, S_{t+1} = s' \mid S_t = s, A_t = a \right]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Components of the RL Agent

Policy
 — How does the agent behave?

Value Function
 — How good is each state and/or action pair?

Model
 — Agent’s representation of the environment
Policy

— The policy is how the agent acts
— Formally, map from states to actions:

Deterministic policy: \(a = \pi(s) \)

Stochastic policy: \(\pi(a|s) = \mathbb{P}[A_t = a|S_t = s] \)

* slide from Dhruv Batra*
Policy

— The policy is how the agent acts
— Formally, map from states to actions:

Deterministic policy: \(a = \pi(s) \)

Stochastic policy: \(\pi(a|s) = \mathbb{P}[A_t = a|S_t = s] \)

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

e.g.

* slide from Dhruv Batra*
The **Optimal** Policy

What is a good policy?
The **Optimal** Policy

What is a good policy?

Maximizes current reward? Sum of all future rewards?

* slide from Dhruv Batra*
The **Optimal** Policy

What is a good policy?

Maximizes current reward? Sum of all future rewards?

Discounted future rewards!
The **Optimal** Policy

What is a good policy?

Maximizes current reward? Sum of all future rewards?

Discounted future rewards!

Formally: \[\pi^* = \arg \max_\pi \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi \right] \]

with \(s_0 \sim p(s_0), a_t \sim \pi(\cdot | s_t), s_{t+1} \sim p(\cdot | s_t, a_t) \)

* slide from Dhruv Batra
Components of the RL Agent

✓ Policy
 — How does the agent behave?

Value Function
 — How good is each state and/or action pair?

Model
 — Agent’s representation of the environment

* slide from Dhruv Batra
Value Function

A value function is a prediction of future reward

“State Value Function” or simps “Value Function”
 — How good is a state?
 — Am I screwed? Am I winning this game?

“Action Value Function” or Q-function
 — How good is a state action-pair?
 — Should I do this now?

* slide from Dhruv Batra
Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

— The **value function** (how good is the state) at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, *cs231n Stanford*
Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

— The **value function** (how good is the state) at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

— The **Q-value function** (how good is a state-action pair) at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Components of the RL Agent

✓ Policy
 - How does the agent behave?

✓ Value Function
 - How good is each state and/or action pair?

Model
 - Agent’s representation of the environment

* slide from Dhruv Batra
Model

Model predicts what the world will do next

* slide from David Silver
Model

Model predicts what the world will do next

* slide from David Silver
Components of the RL Agent

✓ Policy
 - How does the agent behave?

✓ Value Function
 - How good is each state and/or action pair?

✓ Model
 - Agent’s representation of the environment

* slide from Dhruv Batra
Maze Example

Reward: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

* slide from David Silver
Maze Example: Policy

Arrows represent a policy $\pi(s)$ for each state s.

* slide from David Silver
Maze Example: Value

Numbers represent value $V_\pi(s)$ of each state s
Maze Example: Model

Grid layout represents transition model

Numbers represent the immediate reward for each state (same for all states)

* slide from David Silver
Components of the RL Agent

Policy
- How does the agent behave?

Value Function
- How good is each state and/or action pair?

Model
- Agent’s representation of the environment
Approaches to RL: Taxonomy

Model-free RL

Value-based RL
- Estimate the optimal action-value function $Q^*(s, a)$
- No policy (implicit)

Policy-based RL
- Search directly for the optimal policy π^*
- No value function

Model-based RL
- Build a model of the world
- Plan (e.g., by look-ahead) using model

* slide from Dhruv Batra
Approaches to RL: Taxonomy

<table>
<thead>
<tr>
<th>Model-free RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value-based RL</td>
</tr>
<tr>
<td>- Estimate the optimal action-value function $Q^*(s, a)$</td>
</tr>
<tr>
<td>- No policy (implicit)</td>
</tr>
<tr>
<td>Policy-based RL</td>
</tr>
<tr>
<td>- Search directly for the optima policy π^*</td>
</tr>
<tr>
<td>- No value function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model-based RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Build a model of the world</td>
</tr>
<tr>
<td>- Plan (e.g., by look-ahead) using model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actor-critic RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Value function</td>
</tr>
<tr>
<td>- Policy function</td>
</tr>
</tbody>
</table>

* slide from Dhruv Batra
Deep RL

Value-based RL
- Use neural nets to represent Q function
 \[Q(s, a; \theta) \]
 \[Q(s, a; \theta^*) \approx Q^*(s, a) \]

Policy-based RL
- Use neural nets to represent the policy
 \[\pi_\theta \]
 \[\pi_\theta^* \approx \pi^* \]

Model-based RL
- Use neural nets to represent and learn the model

* slide from Dhruv Batra
Approaches to RL

Value-based RL
- Estimate the optimal action-value function $Q^*(s, a)$
- No policy (implicit)
Optimal Value Function

Optimal Q-function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]
Optimal Value Function

Optimal Q-function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a)$$

Once we have it, we can act optimally

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

* slide from David Silver
Optimal Value Function

Optimal Q-function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

Once we have it, we can act optimally

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

Optimal value maximizes over all future decisions

\[
Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + ... \\
= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})
\]

* slide from David Silver
Optimal Value Function

Optimal Q-function is the maximum achievable value

\[Q^*(s, a) = \max_\pi Q^\pi(s, a) = Q^\pi^*(s, a) \]

Once we have it, we can act optimally

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

Optimal value maximizes over all future decisions

\[
Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \ldots
\]

\[= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]

Formally, \(Q^* \) satisfied Bellman Equations

\[
Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]
\]

* slide from David Silver*
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') | s, a \right] \]

Q_i will converge to Q* as i -> infinity
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q_i(s', a') | s, a] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to \infty \)

What’s the problem with this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, *cs231n Stanford*
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') | s, a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to infinity \)

What’s the problem with this?

Not scalable. Must compute \(Q(s, a) \) for every state-action pair. If state is e.g. game pixels, computationally infeasible to compute for entire state space!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Solving for the Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s,a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s',a') \mid s,a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to \infty \)

What's the problem with this?

Not scalable. Must compute \(Q(s,a) \) for every state-action pair. If state is e.g. game pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate \(Q(s,a) \). E.g. a neural network!

slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Networks

\[
Q(s, a, w) \approx Q^*(s, a)
\]

* slide from David Silver
Case Study: Playing **Atari** Games

[Mnih et al., 2013; Nature 2015]

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Architecture

\[Q(s, a; \theta) \]: neural network with weights \(\theta \)

Current state \(s_t \): 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

\[Q(s, a; \theta) \]: neural network with weights \(\theta \)

Current state \(s_t \): 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

[Mnih et al., 2013; Nature 2015]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Architecture

$Q(s, a; \theta)$: neural network with weights θ

Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

\[Q(s, a; \theta) : \text{neural network} \]

with weights \(\theta \)

Current state \(s_t \): 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d output (if 4 actions),
corresponding to \(Q(s_t, a_1), Q(s_t, a_2), Q(s_t, a_3), Q(s_t, a_4) \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

$Q(s, a; \theta)$: neural network with weights θ

Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d output (if 4 actions), corresponding to $Q(s_t, a_1)$, $Q(s_t, a_2)$, $Q(s_t, a_3)$, $Q(s_t,a_4)$

Number of actions between 4-18 depending on Atari game

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Mnih et al., 2013; Nature 2015]
Q-Network Architecture

$Q(s, a; \theta)$: neural network with weights θ

Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d output (if 4 actions), corresponding to $Q(s_t, a_1)$, $Q(s_t, a_2)$, $Q(s_t, a_3)$, $Q(s_t, a_4)$

A single feedforward pass to compute Q-values for all actions from the current state => efficient!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs213n Stanford

[Mnih et al., 2013; Nature 2015]

Number of actions between 4-18 depending on Atari game
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$$
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$$

Forward Pass:

Loss function: $$L_i(\theta_i) = \mathbb{E} \left[(y_i - Q(s, a; \theta_i))^2 \right]$$

where $$y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, *cs231n Stanford*
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

\[Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a] \]

Forward Pass:

Loss function: \[L_i(\theta_i) = \mathbb{E} \left[(y_i - Q(s, a; \theta_i))^2 \right] \]

where \[y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a] \]

Backward Pass:

Gradient update (with respect to Q-function parameters \(\theta \)):

\[\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right] \]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Q-Network Learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

\[Q^*(s, a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a] \]

Forward Pass:

Loss function:

\[L_i(\theta_i) = \mathbb{E} \left[(y_i - Q(s, a; \theta_i))^2 \right] \]

where

\[y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a] \]

Backward Pass:

Gradient update (with respect to Q-function parameters \(\theta \)):

\[\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right] \nabla_{\theta_i} Q(s, a; \theta_i) \]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Training the Q-Network: **Experience Replay**

Learning from **batches of consecutive samples is problematic:**
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size)
 => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions \((s_t, a_t, r_t, s_{t+1})\) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Experience Replay

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Experience Replay

To remove correlations, build data-set from agent's own experience

\[
\begin{array}{c|c|c|c|c}
s_1, a_1, r_2, s_2 \\
| s_2, a_2, r_3, s_3 \\
| s_3, a_3, r_4, s_4 \\
| \cdots \\
| s_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\rightarrow
\begin{array}{c}
s, a, r, s' \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
 s_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\rightarrow
\begin{array}{c}
 s_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Example: Atari Playing

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.
Example: Atari Playing

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.
Deep RL

Value-based RL
- Use neural nets to represent Q function
 \[Q(s, a; \theta) \]
 \[Q(s, a; \theta^*) \approx Q^*(s, a) \]

Policy-based RL
- Use neural nets to represent the policy
 \[\pi_\theta \]
 \[\pi_{\theta^*} \approx \pi^* \]

Model-based RL
- Use neural nets to represent and learn the model

* slide from Dhruv Batra
Deep RL

Value-based RL
- Use neural nets to represent Q function
 \[Q(s, a; \theta) \]
 \[Q(s, a; \theta^*) \approx Q^*(s, a) \]

Policy-based RL
- Use neural nets to represent the policy
 \[\pi_\theta \]
 \[\pi_\theta^* \approx \pi^* \]

Model-based RL
- Use neural nets to represent and learn the model

* slide from Dhruv Batra
Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

\[
J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]
\]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

\[J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right] \]

We want to find the optimal policy \(\theta^* = \arg \max_\theta J(\theta) \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Formally, let’s define a class of parameterized policies:

For each policy, define its value:

$$J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]$$

We want to find the optimal policy $$\theta^* = \arg \max_{\theta} J(\theta)$$

How can we do this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Formally, let’s define a class of parameterized policies:

For each policy, define its value:

$$J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]$$

We want to find the optimal policy $$\theta^* = \arg \max_\theta J(\theta)$$

How can we do this?

Gradient ascent on policy parameters!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE algorithm

Expected reward:

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)]$$

$$= \int r(\tau) p(\tau; \theta) d\tau$$

Where $r(\tau)$ is the reward of a trajectory $\tau = (s_0, a_0, r_0, s_1, \ldots)$

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE algorithm

Expected reward:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int_{\tau} r(\tau) p(\tau; \theta) d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)

Now let’s differentiate this:

\[\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) d\tau \]

Intractable! Expectation of gradient is problematic when \(p \) depends on \(\theta \)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE algorithm

Expected reward:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] = \int_{\tau} r(\tau)p(\tau; \theta) d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)

Now let’s differentiate this:

\[\nabla_\theta J(\theta) = \int_{\tau} r(\tau) \nabla_\theta p(\tau; \theta) d\tau \]

However, we can use a nice trick:

\[\nabla_\theta p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_\theta p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_\theta \log p(\tau; \theta) \]

If we inject this back:

\[\nabla_\theta J(\theta) = \int_{\tau} (r(\tau) \nabla_\theta \log p(\tau; \theta)) p(\tau; \theta) d\tau = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau) \nabla_\theta \log p(\tau; \theta)] \]

Can estimate with Monte Carlo sampling

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Gradient estimator:

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

Interpretation:
- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Intuition

Gradient estimator:

\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t | s_t)
\]

Interpretation:

- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**
Intuition

* slide from Dhruv Batra
Intuition

Gradient estimator:

$$\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t)$$

Interpretation:
- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the image, to predict class
 - Inspiration from human perception and eye movements
 - Saves computational resources => scalability
 - Able to ignore clutter / irrelevant parts of image

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, [cs231n Stanford](#)

[Mnih *et al.*, 2014]
REINFORCE in Action: **Recurrent Attention Model (REM)**

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a **non-differentiable operation** => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

[Mnih *et al.*, 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

* * slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, [cs231n Stanford](https://cs231n.stanford.edu)
REINFORCE in Action: **Recurrent Attention Model (REM)**

![Diagram of Recurrent Attention Model (REM)]

*slide from Fei-Dei Li, Justin Johnson, Serena Yeung, *cs231n* Stanford

[Mnih et al., 2014]
REINFORCE in Action: **Recurrent Attention Model (REM)**

\[
(x_1, y_1) \quad (x_2, y_2) \quad (x_3, y_3) \quad (x_4, y_4) \quad (x_5, y_5)
\]

\[
\text{Input image} \quad \text{NN} \quad \text{NN} \quad \text{NN} \quad \text{NN} \quad \text{NN} \quad \text{Softmax}
\]

\[
y=2
\]

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
REINFORCE in Action: **Recurrent Attention Model (REM)**

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, **cs231n Stanford**
REINFORCE in Action: **Recurrent Attention Model (REM)**

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
REINFORCE in Action: **Recurrent Attention Model (REM)**

Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

Mnih et al., 2014
REINFORCE in Action: **Recurrent Attention Model (REM)**

- Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

[Mnih et al., 2014]

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
Summary

Policy gradients: very general but suffer from high variance so requires a lot of samples. **Challenge**: sample-efficiency

Q-learning: does not always work but when it works, usually more sample-efficient. **Challenge**: exploration

Guarantees:
— Policy Gradients: Converges to a local minima of $J(\theta)$, often good enough!
— Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford