THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 12: Generative Models Cont. (GANSs)



Course Logistics

— Assignment 4 will be out tomorrow (Friday) and is due in a week

— Reminder: Project presentations on [ hursday
— Logistics: form Is up
— Send me slides to minimize laptop switching on the day



Last week ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
n
p(z) = Hp(a:z-\:vl, veey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = [ po(2Ipa(alz)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
p(z) = Hp(fl?z'\flila ey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(T) = /Pe(z)m(w\z)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?
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So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:
p(z) = Hp(fl?z'\flila ey Ti—1)
i=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(T) = /Pe(z)m(w\z)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

What if we give up on explicitly modeling density, and just want to sample”?

GANS: don’t work with any explicit density function

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



(Generative Adversarial
Networks (GANS)



Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!
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Generative Adversarial Networks [ Goodfellow et al., 2014 ]

Problem: \Want to sample from complex, high-dimensional
training distribution. There is no direct way to do this!

Solution: Sample from a simple distributions, e.g., random
noise. Learn transformation to the training distribution

Question: \What can we use to represent complex
transformation function®

Input: Random noise

Output: Sample from
training distribution

1

Generator Network

A

Z
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

t

Discriminator Network

’ Real Images
' :— (from training set)

Generator Network

t

Random noise Z

Fake Images
(from generator)
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Irain jointly In minimax game
Minimax objective function: Discriminator outputs likelihood in (0,1) of real image

min max (Ezcpg.,. 108 Do, () + E,np(z) log(1l — Dy, (G, (2)))

99 Od _ —— ——
Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (84 wants to maximize objective such that D(x) is close to 1 (real) and D(G(2)) is

close to O (fake)
- Generator (6, wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled

into thinking generated G(z) is real)
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ L rnpaata 108 Do, (T) + Eznp(z) log(1l — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max | Eonp,,,, 108 Do, (€) + Esnpz) log(1 — Do, (G, (2)))

2. Gradient descent on generator

r%in *:z,\,p(z) log(1 — D, (GGQ (2)))
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ L rnpaata 108 Do, () + Eznp(z) 10g(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max | Eonpy,,, 108 Doy (2) + Eznp(z) log(1 — Dy, (Go, (2)))

2. Gradient descent on generator

I%in *:sz(z) log(1 — Dy, (GGQ (2)))

In practice, optimizing this generator

objective does not work welll
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

min max [ L rnpaata 108 Do, () + Eznp(z) 10g(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

Gradient signal
dominated by region
where sample Is
already good

4 \
min K ~ log(1 — D9 GQ VA | | | — log;\l—DtjG(:)'))_
o, PL) 8 (Go, (2)) When sample is likely . |

mo?X i 4:CL‘Nipdam log D9d (:U) T 4‘ZNP(Z) 1Og(1 - ng (G99 (z)))_

2. Gradient descent on generator

fake, want to learn

from it to improve 7 |

S— But 4 |

In practice, optimizing this generator generator. Bu - |
objective does not work well gradientinthisregion . .\

S relatively flat!
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Training GANs: Two-player Game [ Goodfellow et al., 2014]

Minimax objective function:

ngin LB [ znpaata 108 D0, (T) + Eznp(z) log(l — Do, (Go, (2)) )]
g d

Alternate between:
1. Gradient ascent on discriminator

max | Eonp,,,, 108 Do, (€) + Esnpz) log(1 — Do, (G, (2)))

2. Instead, gradient ascent on generator, different objective

—  log(1 —D(
—  —logD(G(z

o

#(2))) |

Hlei.x tsz(z) 1Og(D9d (Geg (Z)))

Instead of minimizing likelihood of discriminator being :
correct, now maximize likelihood of discriminator N j
being wrong,. _

D(G(z))

S—
—

Same objective of fooling discriminator, but now
higher gradient signal for bad samples => works
much better! Standard in practice.
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Sampling GANs

t

Generator Network

t

Random noise Z
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Generative Adversarial Nets

Generated Samples




GANSs with Convolutional Architectures [ Radford et al., 2016 ]

. ol "

m
P
»
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GANSs with Convolutional Architectures [ Radford et al., 2016 |

Interpolating between points in latent space

TP T

4 v »,
.-tul;‘ ' S.,uu% }r' S ‘r
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GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womal  Neutral man

Samples
from the
model
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GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womal  Neutral man

Samples
from the
model

- Average z
vectors, do _ — +
~arithmetic ~
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GANSs: Interpretable Vector Math [ Radford et al., 2016

Smiling woman  Neutral womal  Neutral man

Smiling man

Samples
from the
model

- Average z
vectors, do
arithmetic
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GANSs: Interpretable Vector Math [ Radford et al., 2016

Glasses Man No Glasses Man No Glasses \Woman

Samples
from the
model
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GANSs: Interpretable Vector Math [ Radford et al., 2016

Glasses Man No Glasses Man No Glasses \Woman

Samples
from the
model

Average z e

arithmetic
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GANSs: Interpretable Vector Math [ Radford et al., 2016 ]
Glasses Man No Glases Man No Glasses WWoman E:aféogg fé al,

Samples Woman with Glasses

from the
model

vectors, do
arithmetic
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Year of the GAN

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

« . . breast and crown, and black almost all black with a red
Better trammg and generatlon Source->Targe(;t domaln trarllpsi:er Outpu primaries and secondaries. crest, and white cheek patch.
A DO L s = [nput utput - SES

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

3 & PR3 4
L “ - winter Yosemite

‘ Pix2pix. Isola 2017. Many examples at
CycleGAN. Zhu et al. 2017. P y examp

https://phillipi.github.io/pix2pix/

BEGAN. Bertholet et al. 2017.
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Year of the GAN

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALl - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN - Coupled Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

 CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
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GANSs

Don’t work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution
through 2-player game

Pros:
— Beautiful, state-of-the-art samples!

Cons:

— Trickier / more unstable to train
— Can’t solve inference queries such as p(x), p(z|x)

Active area of research:

— Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

— Conditional GANs, GANSs for all kinds of applications
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