THE UNIVERSITY OF BRITISH COLUMBIA

Topics in Al (CPSC 532L):

Multimodal Learning with Vision, Language and Sound

Lecture 11: Generative Models



Course Logistics

— Assignment 3 was due yesterday
— Assignment 2 & 3 will be posted today/tomorrow

— Assignment 4 will be out tomorrow (Friday) and is due in a week

— Reminder: Project presentations next Thursday (a week from today)
— Logistics: form will be up today

— Send me slides to minimize laptop switching on the day



Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X IS data, vy Is label

Goal: Learn a function to map x—vy

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Classification

This image is CCQO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X IS data, vy Is label

Goal: Learn a function to map x—y
: ‘! ;‘ A - =
Examples: Classification, DOG, DOG, CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

This image is CCQO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X 1S data, vy Is label

Goal: Learn a function to map x—vy

Examples: Classification, GRASS, , TREE, SKY
regression, object detection,
semantic segmentation, image Semantic Segmentation

captioning, etc.

This image is CCQO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X IS data, vy Is label

Goal: Learn a function to map x—vy

. . A cat sitting on a suitcase on the floor
Examples: Classification, °

regression, object detection,
semantic SegmentatiOﬂ, image \mage Cap’[ioning
captioning, etc.

This image is CCO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised | earning

?65( X

Data: x 222%?
FX

x°

Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature k-means C|u3tering
learning, density estimation, etc.

This image is CCO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised | earning

Data: x
Just data, no labels!

original data space

component space

Goal: Learn some underlying hidden
structure of the data

==
T

PC1

Examples: Clustering,
dimensionality reduction, feature dimensionality reduction
learning, density estimation, etc.

This image is CCO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Unsupervised | earning

Data: x
Just data, no labels! | | -
1-dim density estimation
Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, |
dimensionality reduction, feature 2-dim density estimation
learning, density estimation, etc.

left right CCO public domain

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs. Unsupervised Learning

Supervised [Learning

Data: (%, V)
X IS data, vy Is label

Goal: Learn a function to map x—y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Unsupervised [earning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Models

Given training data, generate new samples from the same distribution

A tilq

Training data ~ pgaa(x) Generated samples ~ Pmodel(X)

Want to learn pmodei(x) sSimilar to pyata(x)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Generative Models

Given training data, generate new samples from the same distribution

2,

Training data ~ pgaa(x) Generated samples ~ Pmodel(X)

Want to learn pmodei(x) sSimilar to pyata(x)

Addresses density estimation, a core problem in unsupervised learning
— Explicit density estimation: explicitly define and solve for ppodel(x)

— Implicit density estimation: learn model that can sample from p0qaa(x) W/0 explicitly defining it

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Ghain
Fully Visible Belief Nets / \ .
- NADE
_ MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear |CA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Ghain
Fully Visible Belief Nets / \ .
- NADE
_ MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear |CA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Why Generative Models”?

— Realistic samples for artwork, super-resolution, colorization, etc.

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Why Generative Models”?

— Realistic samples for artwork, super-resolution, colorization, etc.

— (Generative models of time-series data can be used for simulation,
predictions and planning (reinforcement learning applications)

— [raining generative models can also enable inference of latent representation
that can be useful as general features

— Dreaming / hypothesis visualization

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN and PixelCNN



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

then maximize likelihood of training data

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

Complex distribution over pixel values,

so lets model using neural network

then maximize likelihood of training data

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN [ van der Oord et al., 2016 ]

Explicit Density model

Use chain rule to decompose likelihood of an image x into product of (many)
1-d distributions

T

p(z) = | | pl@ilzs, .. zio1)
T =1

Likelihood of Probability of i'th pixel value
mage x given all previous pixels

Complex distribution over pixel values,

L T . so lets model using neural network
then maximize likelihood of training data .

Also requires defining ordering of
“previous pixels”

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O O O @
o O O O O
o O O 0O O
o O O O O
o O O O O

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting E—Q o O O
from the corner o O O O
. . o O O O O

Dependency on previous pixels
model using an RNN (LSTM) o O O O O
O O O O O

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

o O

o O O

o O O O
o O O O O
o O O O O

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Pixel=RNN

4 o

A
[ van der Oord et al., 2016 |

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

Dependency on previous pixels
model using an RNN (LSTM)

O @

o O

o O O

o O 0O O
o O O O O

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRN N [ van der Oord et al., 2016 ]

Generate image pixels starting
from the corner

model using an RNN (LSTM)

o O O O O

Dependency on previous pixels g
O

o O O
o O O O

O
O
Problem: sequential generation is slow

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels
starting from the corner

e

0 T 255

Dependency on previous pixels
now modeled using a CNN over

context region /

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels

starting from the corner
Softmax |loss at each pixel

e

0 T 255

Dependency on previous pixels
now modeled using a CNN over

context region A~ /

/
/
/

Training: maximize likelihood of
training images

Hp Ti|T1y ey Tio1)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelCN N [ van der Oord et al., 2016 ]

Still generate image pixels
starting from the corner

Dependency on previous pixels
now modeled using a CNN over

context region A~ /

Training: maximize likelihood of
training images

H p(zi|T1, ey Ti1) Generation is still slow (sequential),

but learning is faster

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Generated Samp‘es [ van der Oord et al., 2016 ]
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* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



PixelRNN and Pixel CNN

Pros: Improving PixelCNN performance
— Can explicitly compute likelihood p(x) — Gated convolutional layers
— Explicit likelihood of training data gives good — Short-cut connections
evaluation metric — Discretized logistic loss
— Good samples — Multi-scale
— Training tricks
— Etc...
Con:

— Sequential generation => slow

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Multi-scale PixelRNN [ van der Oord et al., 2016 |

Take sub-sampled pixels as
additional input pixels

Can capture better global
iInformation (more visually
coherent)

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Multi-scale PixelRNN [ van der Oord et al., 2016 |

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Similar to PixelRNN/CNN but conditioned on a high-level image description
vector h

p(x) = p(T1, T2, ..., Tp2)

!

p(x/h) = p(x1, 29, ...,x,2|h)

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Conditional Image Generation [ van der Oord et al., 2016

Sandbar

* slide from Hsiao-Ching Chang, Ameya Patil, Anand Bhattad



Variational Autoencoders
(VAE)



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(x) = Hp(:z:i\azl, veey Ti—1)

=1

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



So far ...

Pixel CNNs define tractable density function, optimize likelihood of training data:

n

p(x) = Hp(ib‘z'|$1, veey Ti—1)

1=1

VAES define intractable density function with latent variables z (that we need to
marginalize):

po(z) = / po(2)po(a]2)dz

cannot optimize directly, derive and optimize lower bound of likelihood instead

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connecteo
Later: ReLU CNN

Features Z

da_ta
[ Encoder a
o bl
Input data X Sﬂﬂ
sl < B2

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

V\ Later: RelLU CNN

Features Z

d_ata

[ Encoder a
Input data b SQN
sl < S

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z gsually smgller than v Originally: Linear + nonlinearity (sigmoid)
(dimensionality reduction) Later: Deep, fully-connected

¥ Later: ReLU CNN
Want features that capture
meaningful factors of variation

Features Z

Inputldata
[ Encoder uiﬁ > .u
A WY
Input data T BSQW
a7 < B

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data best they can

l‘y&ﬂ@
o el 3 0 Y
erl R | T

Reconstructed A
input data L
T Decoder
Features Z
data
Encoder o I T
h

Input data

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

Train such that features can reconstruct original data Reconstructed data

best they can E=§‘==
Reconstructed nasﬂ

@ P sl < S
D der T
ecoade Encoder: 4-layer conv

Decoder: 4- Iayer upconv

Features it
data

Encoder B ..

4 ¥

l-Kll@
sl LR by
erl R | T

Input data

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

L2 Loss function: Reconstrurcitb_ed data
oz — 2|2 ol = T

B L&
RS Wl
-EH; My

—

Reconstructed
input data

Decoder “ncoder: 4-layer conv
Decoder: 4- Iayer upconv
data
Encoder B

T
Features 2
XL

I-SAlﬁ
sl o USRS by
erl R | T

Input data

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

Doesn’t use labels!

|2 Loss function:

|z — 2|

—

Reconstructed
input data

Features

Decoder

Encoder

Input data

|
|

Reconstructed data

e i =
b e
RISV
-H; L3

Encoder: 4-layer conv
Decoder: 4- Iayer upconv

data
E Ll
l By 1
IIDSQW
el Rl T

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Autoencoders Reminder ...

Loss function
(e.g., softmax)

/ \

2 Fine-tune Train for final task
encoder (sometimes with small data)
T Classifier ointly with
Features o classifier
oird plane

[ mneoder dog deer  truck

Input data T &JT 'mw
= '

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

Probabillistic spin on autoencoder - will let us sample from the model to generate

Assume training data is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £z

| Intuition: x is an image, z Is latent
po- (z | 2V) factors used to generate x (e.q.,
attributes, orientation, etc.)

Sample from
true prior yA

po~(2)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po=(2)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from
true conditional £z

po~(z | 2V)

Sample from
true prior yA

po=(2)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional X , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Sample from
true prior yA

po~(2)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we represent this model?

Sample from Choose prior p(z) to be simple, e.g., Gaussian
true conditional X , .
Reasonable for latent attributes, e.g., pose, amount of smile

po~(z | 2V)

Decoder

network  Conditional p(x|z) is complex (generates image)

Sample from Represent with Neural Network
true prior yA

po~(2)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

X

Decoder
Network

VA

How do we train this model?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders

| Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

Sample from
true conditional

po~(z | 2V)

Sample from
true prior

po~(2)

X

Decoder
Network

VA

How do we train this model?

Remember the strategy from earlier — learn
Model parameters to maximize likelihood of

training data
po(z) = [ pol()po(al2)d:

(now with latent z that we need to marginalize)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
rue conditional L model parameters to maximize likelihood of
po~(z | (V) oo training data
e po(z) = [ pol()po(al2)d:
Sample from
true prior Z (now with latent z that we need to marginalize)
po-(2) What is the problem with this?

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoders [ Kingma and Welling, 2014 |

We want to estimate the true parameters 6* of this generative model

How do we train this model?

Sample from Remember the strategy from earlier — learn
true conditional b o 0y
Model parameters to maximize likelihood of
po=(x | 29) Secoder | lrAINING data
Network po(z) = [ pe(2)pe(z|z)dz
Sample from
true prior Z (now with latent z that we need to marginalize)

po-(2) —inuractable!

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford




Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood: pe(z) = /pg(z)pg(a:\z)dz

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Data likelihood: pe(z) = /pg(z)pg(a:\z)dz

@

Simple Gaussian Prior

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Decoder Neural Network

@
Data likelihood:  pg(x) = /pg(z)pg(a:\z)dz

»

Simple Gaussian Prior

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

@

Simple Gaussian Prior

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

»

Simple Gaussian Prior

Posterior density is also intractable: po(2|x) = po(x|2)pe(2)/po(x)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

»

Simple Gaussian Prior

Posterior density is also intractable: Pe(z|T) = pe(x|2)pe(2)/Jpe(x)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Intractability in Variational Autoencoder [ Kingma and Welling, 2014

Intractable to compute for every z

Decoder Neural Network

@
Data likelihood:  pg(x) =| [| pe(2)pe(z|2)dz

@

Simple Gaussian Prior

Posterior density Is also intractable: PO(Z |$) — Pe(il? \Z)pe(z) 9(33)

Solution: In addition to decoder network modeling pg(x|z), define additional
encoder network gg(zlx) that approximates pg(z|x)

— Wil see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder

y 4
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Mean and (diagonal) covariance of z | x

N\

Hz|x

Encoder Network

4 (2|7)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

Hx|z

a:lz

Decoder Network

po(z|2)

(parameters )

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder

y 4
| Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Why*? Mean and (diagonal) covariance of z | x

N\

Hz|x

Encoder Network

4 (2|7)

(parameters ¢)

z|a:

Mean and (diagonal) covariance of x | z

\

\

Hx|z

a:lz

Decoder Network

po(z|2)

(parameters )

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Since we are modeling probabillistic generation of data, encoder and decoder
networks are probabillistic (they model distributions)

Sample z from: z|x ~ N (py(z) X 2|2) Sample x | z from: z|z ~ N (g2, Ze|2)
Hz|x z|a: Hx|z a:lz
Encoder Network Decoder Network
6(2]2) po(a]2)
(parameters ) (parameters )
XL Z

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —1ogp9(:1;(i))_ (po (") Does not depend on z)

——

Taking expectation with respect to z
(using encoder network) will come In
handy later

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z'?) = E. q,(zlz) —logpg(a:(i))- (po (") Does not depend on z)

po (D | 2)pe(z)
po(z | ()

= E. |log (Bayes’ Rule)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder

Derivation of lower bound of the data likelihood

y 4
| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

sy (220 |10 Po(z)

log

log

po(2® | 2)po(z)”

(po (") Does not depend on z)

. Bayves’

po(z [20) | (B
po (x| 2)pg(2) qp(z | V)
po(z | W) gp(z | z®))_

Rule)

(Multiply by constant)
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(zlz) —logpg(:c(i))- (po (") Does not depend on z)
po (2" | 2)pa(2)”

po(z [ z))
po (') | 2)pg(2) gp(2 | =)

= E. |log (Bayes’ Rule)

= E. |lo . . Multiply by constant
BT P [20) gl [a)] (TP by constant
. . - i (1)) I (%))

= E, |logpe(z'¥ | 2)| — E. |log (2| 2) + E. |log 42| @ . ) (Logarithms)
: - _ po(z) T pe(z | 2W)
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —logpg(:c(i))_ (po (") Does not depend on z)

_ e _
= E. |log G z)pg(z) (Bayes” Rule)
_ po(z [ z))

po(z') | 2)po(2) qp(z | )

=E., |lo . . Multiply by constant
T [20) gz [a)] )
: | : i O i (4))"

—E. |logpg(z'¥ | 2)| —E. |log 4(z]2") + E. |log 42| @ . ) (Logarithms)
- : _ po(z) - pe(z | 2)

= E. [logpo (2 | 2)| = Dicr(a6(2 | 27) || p(2)) + Dicr (02 | 27) || po(z | 2))
_I_ —I—

Expectation with respect to z
(using encoder network) leads to nice KL terms

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, ¢s231n Stanford



y 4
| Kingma and Welling, 2014 |

Variational Autoencoder

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (') = E (po (") Does not depend on z)

sy (220 |10 Po(z)

po(2® | 2)po(z)”

log (Bayes’ Rule)

log

log po(2?) | 2)

log po(z® | z)

po(z | ()

po(29 | 2)ps(2) a2

:,;(i))'

po(z | V)

—
—

Decoder network gives pg(x|z), can

compute estimate of this term through
sampling. (Sampling differentiable through
reparam. trick, see paper.)

Qe (2

— E. |log

;1;(73))_
gs(z | D)

po(2)

+ E,

This KL term (between Gaussians
for encoder and z prior) has nice
closed-form solution!

log

(2

(Multiply by constant)

w(i))‘

Pe(z

7))

(Logarithms)

— Dr1(q5(2 | ) || po(2)) + Drr(gs(z | V) || pa(z | "))

Pp(z|x) intractable (saw earlier), can't

compute this KL term :(

But we know KL divergence always >= 0.
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Variational Autoencoder

Derivation of lower bound of the data likelihood

| Kingma and Welling, 2014 |

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

= E. |log

= E. |log

= E, -lngg(ili(i) | 2)

=E, :1ng9(33(i) | Z)-

sy (220 108 Po(z)

pe(fl«“(;) | 2)po(z)

po(z | ()

pa(2® | 2)pa(2) a2

(po(2'?) Does not depend on z)

(Bayes” Rule)

a;("'>)'

po(z | xV)  qg(z

—E.

log

()

gs(z | D)

(Multiply by constant)

+ E,

po(2)

—_—— e —,——————
L(z,0, )

Tractable lower bound which we can take gradient of
and optimize! (pB(x|z) differentiable, KL term differentiable)

log

(2

x(i))‘

Pe(z

7))

(Logarithms)

— Drr(gs(2 | #7) || po(2)) + Dicr(as(2 | 2'7) || po(z | z1*)))
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

logpg(z\”) = E

2oy (2]2 ) —1ogp9(:1;(i))_ (po (") Does not depend on z)

pe(iﬂ(;) | 2)po(z)
po(z|2z))
po (x| 2)pe(2) qp(z | V)

(Bayes’ Rule)

= E. |log

= E. |lo . . Multiply by constant
T [20) gz [a)] )
: | : i O i (4))"

—E. |logpg(z'¥ | 2)| —E. |log 4(z]2") + E. |log 42| @ . ) (Logarithms)
- : _ po(z) po(z | z)

=E. |logpg(z') | 2)| — Dicr(as(2 | %) [|pe(2)) + Dicr(ap(z | 2) || po(z | 7))
D ———————

(2)
| | L @) Training: Maximize lower bound
log po(z'V) > L(z", 0, $) N
Variational lower bound (“ELBO”) 0", 9" = arg rro}%x L(z*,0,9)
=1
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Variational Autoencoder [ Kingma and Welling, 2014 |

Derivation of lower bound of the data likelihood

Now equipped with encoder and decoder networks, let’s see (log) data likelihood:

log pe (z?) = E. q,(z]z) —1ogp9(:c(i))- (po (") Does not depend on z)

po (x| 2)pe(2)
po(z | x®)
po (x| 2)pa(2) qg(z | V)
po(z | ™) gqu(z | z™)_

(Bayes” Rule)

= E. |log

(Multiply by constant)

= E. |log

Reconstruct Make approximate posterior
Input Data close to the prior

= E. {logpo(a” | 2)| - Drrlas(z | 29) || po(2)) + Drcr(ao(z | 2?) | po(z | =)
D ————————————————

(2)
| | L @) Training: Maximize lower bound
log po(z'V) > L(z", 0, ) N
Variational lower bound (“ELBO”) 0", 9" = arg r%%x L(z*,0,9)
=1
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
—e
£(2,0,0)

Lets look at computing the bound (forward pass)
for a given mini batch of input data

Input Data €T
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
—e
£(2,0,0)

I‘LZICC Zzlx
Encoder network
qo(2|T) \/
Input Data €T
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
- —
£(2,0,0)

Make approximate

posterior distribution

close to prior / \

ﬂ’z\a: Zzlx

Encoder network

gs(2|T)
Input Data b
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Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

E. |logpo(2" | 2)| — Dicr(as(= | =) || pa(2))
- —
£(2,0,0)

Z
Sample z from z|x ~ N(uz\m, 2z|a:)

Make approximate

posterior distribution

close to prior / \

ﬂ’z\a: Zz Ia;
Encoder network
qe(2|T) \/
Input Data b

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder: Learning

Putting it all together:
maximizing the likelihood lower
bound

x|z

E; [logpe(x(i) | Z)] — Dgr(qe(z | D) || po(2)) M|z Y
. N Decoder network
Lz, 0, ) . (a:lz) \/
Z

Make approximate

Sample z from z|z ~ N(Mz|a;, Yolz)

posterior distribution

close to prior / \

/“I’Z‘.’D Zz Ig;
Encoder network
qe(2|T) \/
Input Data b
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Miaximize fikelinood of T
5OUNG original input being
reconstructed Sample x|z from z|z ~ N (tg|, Lg|2)
E. [logpo(a | )] - Dics(as(z | 29) | p0(2)) Fols x|z
_ Decoder network
L(xD,0,0)
po(z|2)
Z

Make approximate Sample z from z|x ~ N(Mz|a;, 2z|:z:)

posterior distribution

close to prior / \

l‘l’Z‘.’E Zz |3;
Encoder network
qe(2|T) \/
Input Data b
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Variational Autoencoder: Learning

Putting it all together:

maximizing the likelihood lower Miaximize fikelinood of T
5OUNG original input being
reconstructed Sample x|z from z|z ~ N (tg|, Lg|2)
E. [logpo(a | )] - Dics(as(z | 29) | p0(2)) Fols x|z
_ Decoder network
L(xD,0,0)
po(z|2)
Z

Make approximate Sample z from z|x ~ N(Mz|a;, 2z|:z:)

posterior distribution

close to prior / \

Mz >
Encoder network | z|
qe(2|T) \/
Input Data b

For every minibatch of input data: compute this forward pass, and then backprop!
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Variational Autoencoder: Generating Data

Use decoder network and sample z from prior

Sample x|z from |z ~ N(/Lm|z, Ea:|z)

A

L

/

M|z

™~

Decoder network

Po(|2)

23:z:\z

~_

Z

Sample z from z ~ N (0, I)
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Data

[gle

Use decoder network and sample z from prior

Generat

Variational Autoencoder

Data manifold for 2-d z

DAY SNANNANAANNNNNSNNNNS
QAIYM iy By LuLLuLuwwNwNN~
QUAVANNIN L LLLVYY Y N~
QAUAVVDUINIninlglo to VWV W -~~~
QOAVODHIHIN LN LY G VYOV Y Y W -~ —
QAOAODOHINININMHOE POV W W - —
QAQQODMINMMMNOoY MDY ID D W@ = —
QOOQOIMMMMMON M W®O DD D @ e e —
OO0DIMOMMM M M0N0 WWY DD D e e —
QOMMMM " "0 0000 Go en on o oo —
RS N N N N Nl ol ol ol Ul o e
SR K2 1o e B al alk ak ok ok 2R S S N N
oo rrTT NN
Sdadadadadogorrrorr T IIINNN
SdadaddagoorororrrdTT22INN
SAddTTTTrrrrr>rdFrr222NN
SFTToooororoococoIXNNN

Z:1:\2:

TN

T
Sample x|z from x|z ~ N (i) ,, &
M|z

Decoder network
po(z|2)

xb)
Vary z;

Sample z from z ~ N (0, I)

Vary zo

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => PPy YYy _:_; ‘

e
PR,
ieslesberterferferferfer s

AR
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

(degree of smile)

ARARRARA
S e R L
SRR
BEEEEESEEE
EEEEEEEEEE

D S
Vary Zo

(head pose)
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Variational Autoencoder: Generating Data

Data manifold for 2-d z

Diagonal prior on z => ;33_‘_: Ry ley by I
Cryr Ty
P
;;xw “.‘w‘.ﬁ. oy

asx feofefesfeofesfe
%

iIndependent latent variables

Different dimensions of z encode

iNnterpretable factors of variation
Vary z;

ARAARARAR
R
SRR
S EEE SRS
5555 EE SRS

-_—m" "@€" @ mn - mpHom -
Vary Zo

(degree of smile)

Also good feature representation that can
be computed using ge(z|x)!

(head pose)
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Variational Autoencoder: Generating Data

L abeled Faces in the Wild
32x32 CIFAR-10
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Conditional VAES [ Xue et al., 2016

(a) Frame 1 (b) Frame 2 (c) Frame 2 (d) Frame 2
(ground truth) (Sample 1) (Sample 2)



Variational Autoencoders

Probabillistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active area of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables (our submission to CVPR)




