

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound

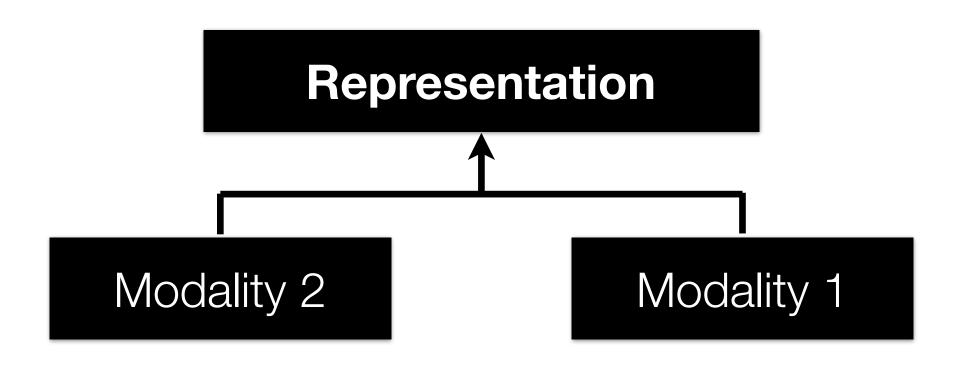
Lecture 10: Coordinated Representations and Joint Embeddings

Course Logistics

- Assignment 3 due Wednsday
- Paper presentation assignments are done, will post later in the week

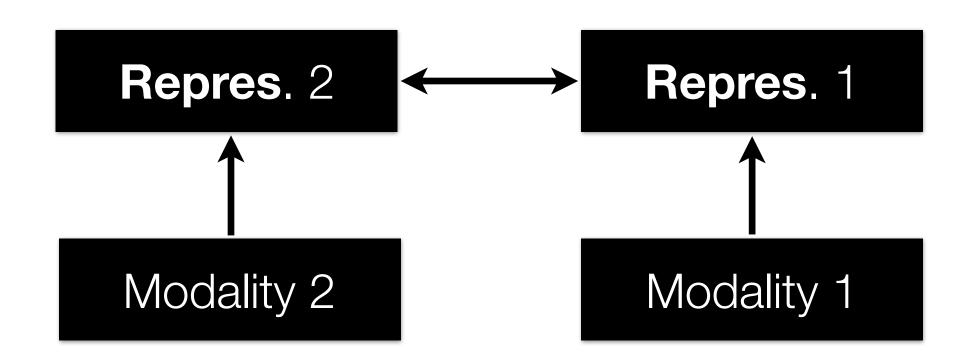
Multimodal Representation Types

Joint representations:



- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

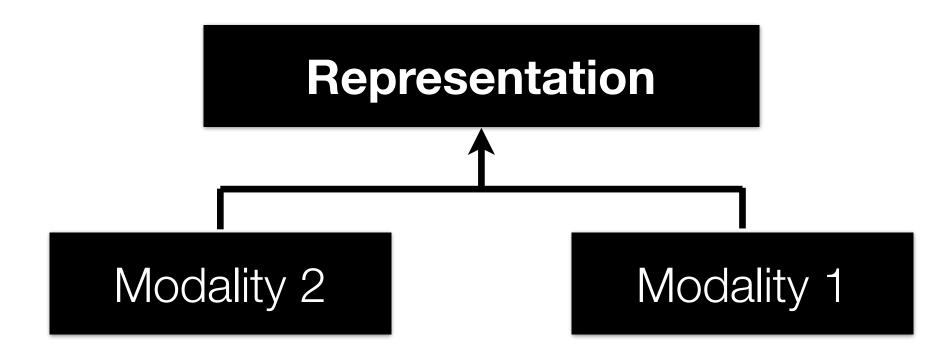
Coordinated representations:



- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

Multimodal Representation Types

Joint representations:



- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

Joint Representation: Deep Multimodal Autoencoders

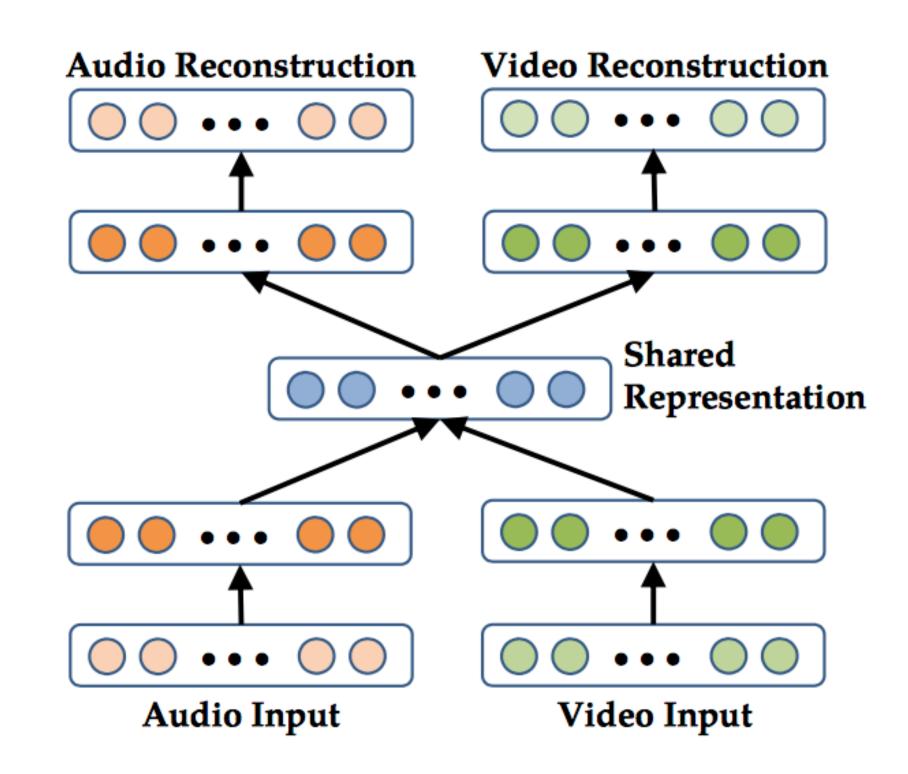
[Ngiam et al., 2011]

Each modality can be pre-trained

using denoising autoencoder

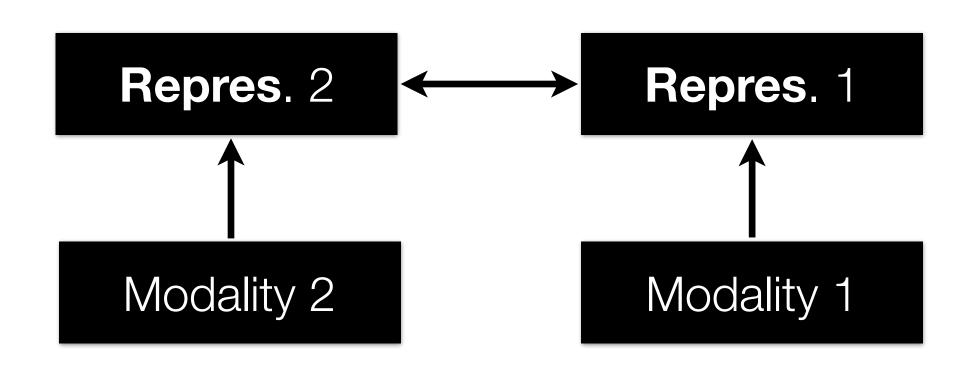
To train the model, reconstruct both modalities using

- both Audio & Video
- just Audio
- just Video



Multimodal Representation Types

Coordinated representations:



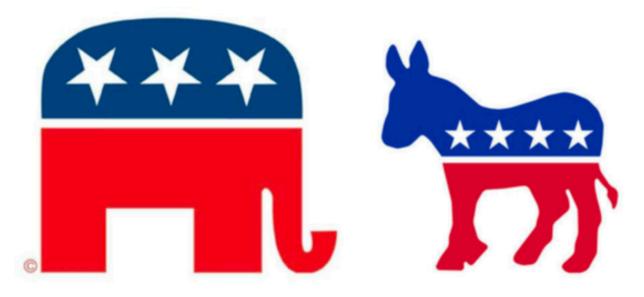
- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

Data with Multiple Views

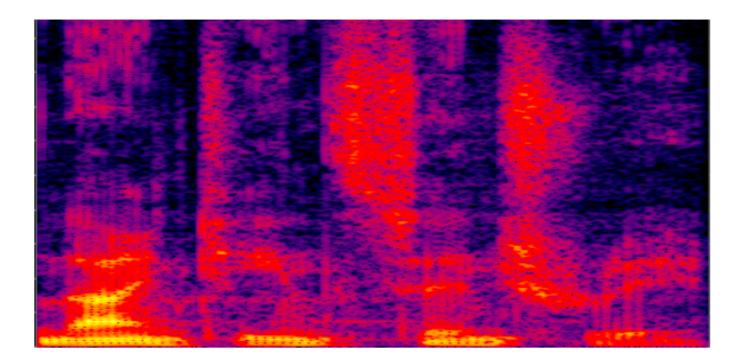
 $x_1^{(i)}$

 $x_{2}^{(i)}$

demographic properties



responses to survey



audio features at time i

video features at time i

Correlated Representations

Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Correlated Representations

Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Finding correlated representations can be useful for

- Gaining insights into the data
- Detecting of asynchrony in test data
- Removing noise uncorrelated across views
- Translation or retrieval across views

Correlated Representations

Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Finding correlated representations can be useful for

- Gaining insights into the data
- Detecting of asynchrony in test data
- Removing noise uncorrelated across views
- Translation or retrieval across views

Has been **applied widely** to problems in computer vision, speech, NLP, medicine, chemometrics, metrology, neurology, etc.

Classical technique to find linear correlated representations, i.e.,

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1$$
 $\mathbf{W}_1 \in \mathbb{R}^{d_1 imes k}$ where $f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2$ $\mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$

Classical technique to find linear correlated representations, i.e.,

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1$$
 $\mathbf{W}_1 \in \mathbb{R}^{d_1 imes k}$ where $f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2$ $\mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$

The first columns $(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1})$ of the matrices \mathbf{W}_1 and \mathbf{W}_2 are found to maximize the **correlation of the projections**:

$$(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1}) = \arg\max\mathbf{corr}(\mathbf{w}_{1,:1}^T \mathbf{X}_1, \mathbf{w}_{2,:1}^T \mathbf{X}_2)$$

Classical technique to find linear correlated representations, i.e.,

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1$$
 $\mathbf{W}_1 \in \mathbb{R}^{d_1 imes k}$ where $f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2$ $\mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$

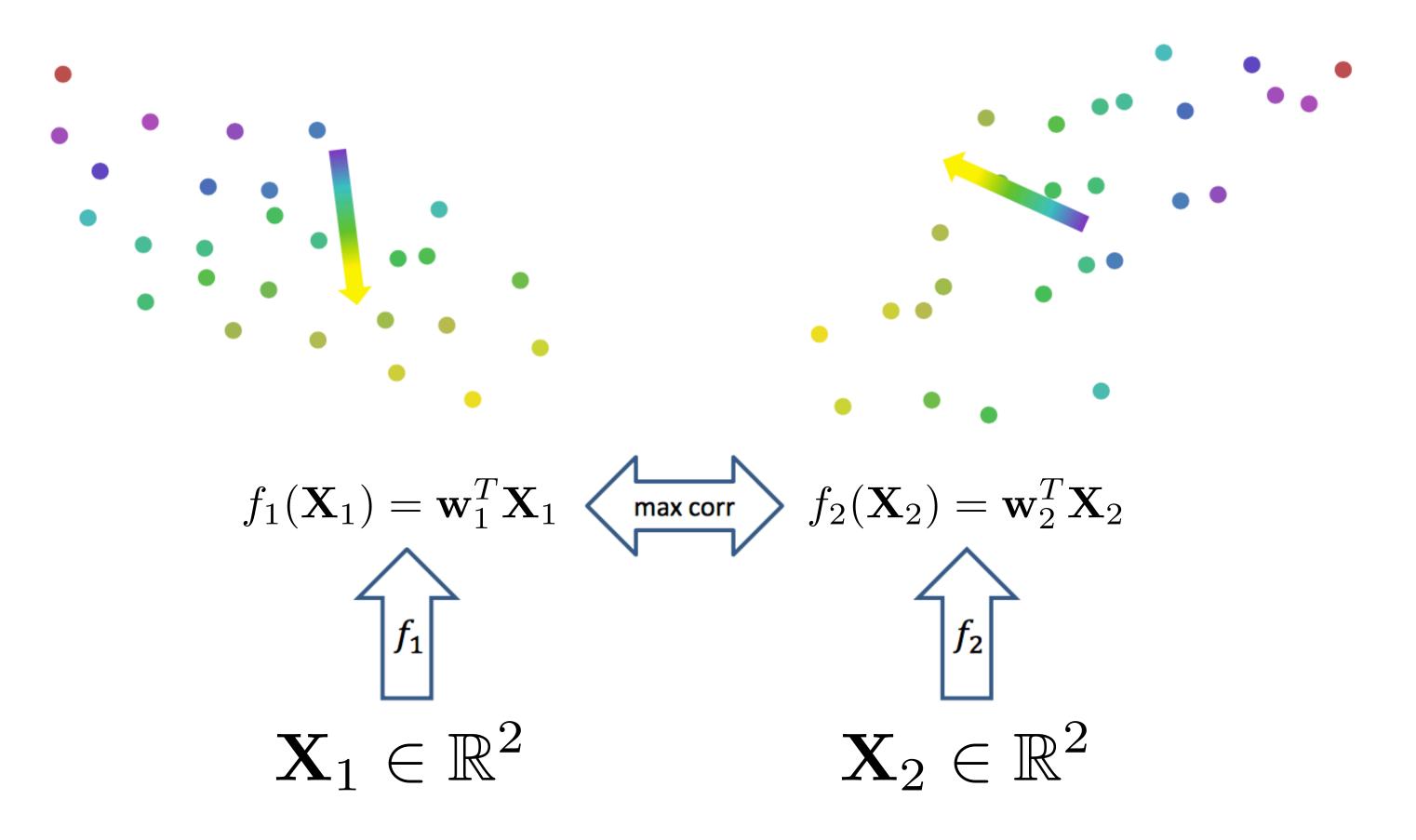
The first columns $(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1})$ of the matrices \mathbf{W}_1 and \mathbf{W}_2 are found to maximize the **correlation of the projections**:

$$(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1}) = \arg\max\mathbf{corr}(\mathbf{w}_{1,:1}^T \mathbf{X}_1, \mathbf{w}_{2,:1}^T \mathbf{X}_2)$$

Subsequent pairs are constrained to be uncorrelated with previous components (i.e., for j < i)

$$\mathbf{corr}(\mathbf{w}_{1,:i}^T \mathbf{X}_1, \mathbf{w}_{1,:j}^T \mathbf{X}_1) = \mathbf{corr}(\mathbf{w}_{2,:i}^T \mathbf{X}_2, \mathbf{w}_{2,:j}^T \mathbf{X}_2) = 0$$

CCA Illustration



Two views of each instance have the same color

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I} \qquad \qquad \Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} \qquad \qquad \Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

2. Form **normalized covariance** matrix: $\mathbf{T} = \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$ and its singular value decomposition $\mathbf{T} = \mathbf{U} \mathbf{D} \mathbf{V}^T$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I} \qquad \qquad \Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} \qquad \qquad \Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

- 2. Form **normalized covariance** matrix: $\mathbf{T}=\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}$ and its singular value decomposition $\mathbf{T}=\mathbf{U}\mathbf{D}\mathbf{V}^T$
- 3. Total correlation at k is $\sum_{i=1}^{k} D_{ii}$

1. Estimate covariance matrix with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

- 2. Form **normalized covariance** matrix: ${\bf T}=\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}$ and its singular value decomposition ${\bf T}={\bf U}{\bf D}{\bf V}^T$
- 3. Total correlation at k is $\sum_{i=1}^{n} D_{ii}$
- 4. The optimal projection matrices are: $\mathbf{W}_1^* = \Sigma_{11}^{-1/2} \mathbf{U}_k$ $\mathbf{W}_2^* = \Sigma_{11}^{-1/2} \mathbf{V}_k$

where \mathbf{U}_k is the first k columns of \mathbf{U} .

KCCA: Kernel CCA

There maybe **non-linear** functions $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ that produce more highly correlated (better) representations than linear projections

Kernel CCA is a principal method for finding such function

- Learns functions from any reproducing kernel Hilbert space
- May use different kernels for each view

Using **RBF** (Gaussian) kernel in KCCA is akin to finding sets of instances that form clusters in both views

KCCA vs. CCA

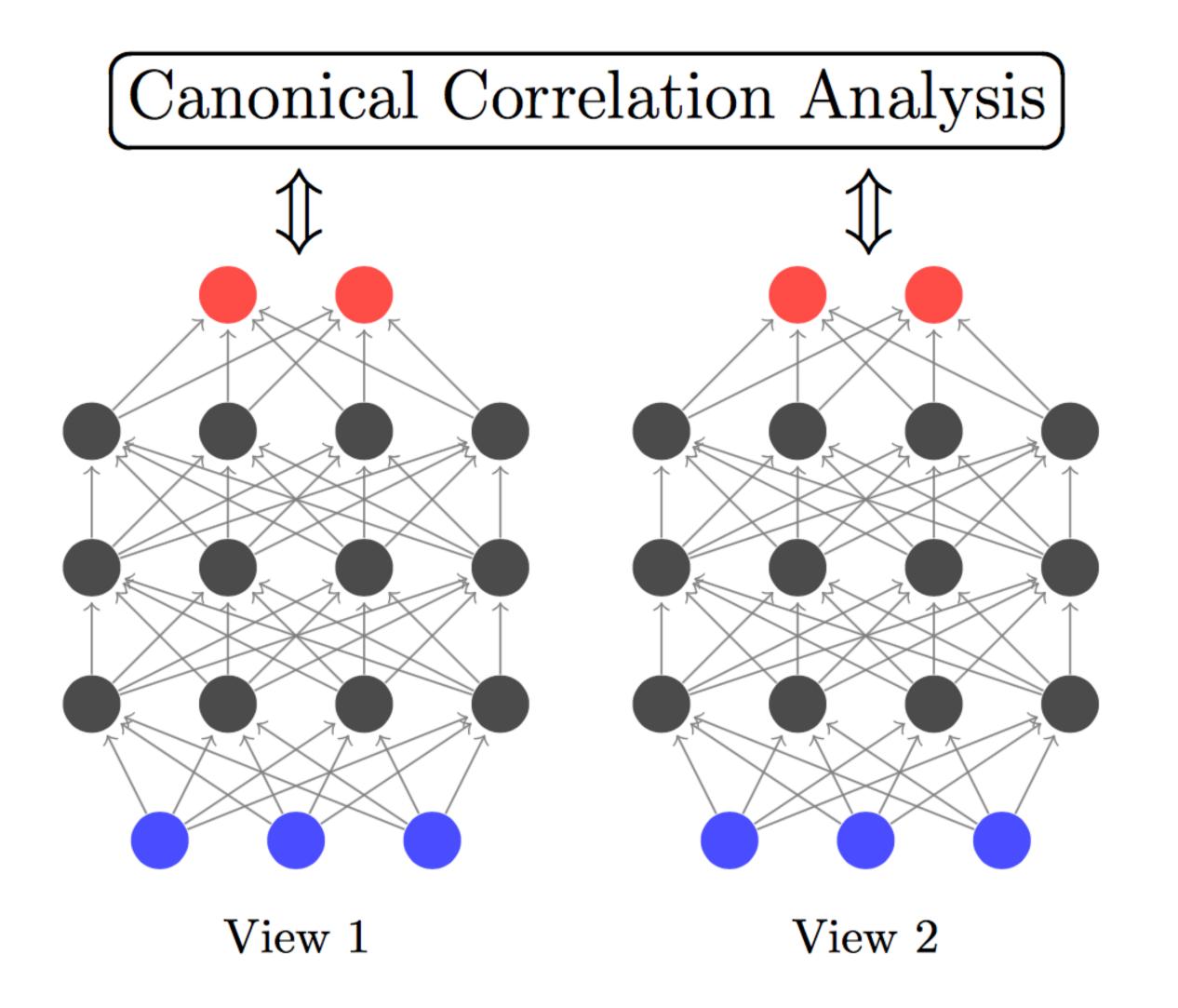
Pros:

More complex function space of KCCA can yield dramatically higher correlations

Cons:

- KCCA is slower to train
- For KCCA training set must be stored and referenced at test time
- KCCA model is more difficult to interpret

Deep CCA



Benefits of Deep CCA

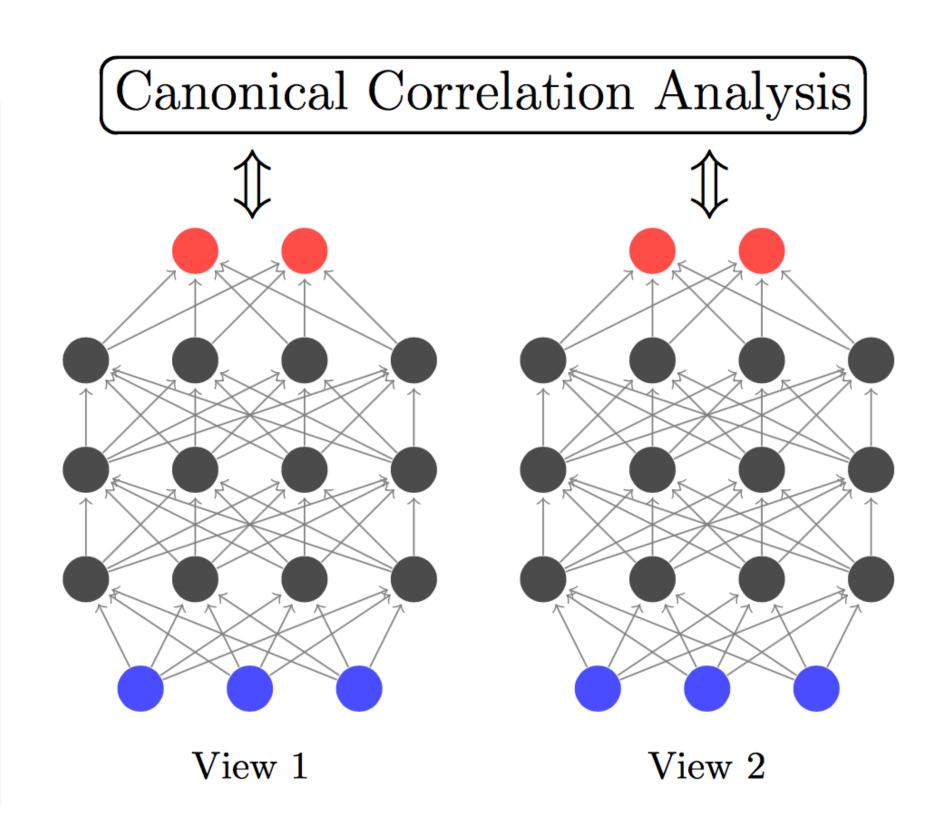
Pros:

- Better suited for natural, real-world data
- Parametric model
 - The training set can be disregarded once the model is learned
 - Computational speed at test time is fast

Deep CCA: Training

Training a Deep CCA model:

- 1. Pretrain the layers of each side individually
- 2. **Jointly fine-tune** all parameters to maximize the total correlation of the output layers. Requires computing correlation gradient:
 - Forward propagate activations on both sides.
 - Compute correlation and its gradient w.r.t. output layers.
 - Backpropagate gradient on both sides.

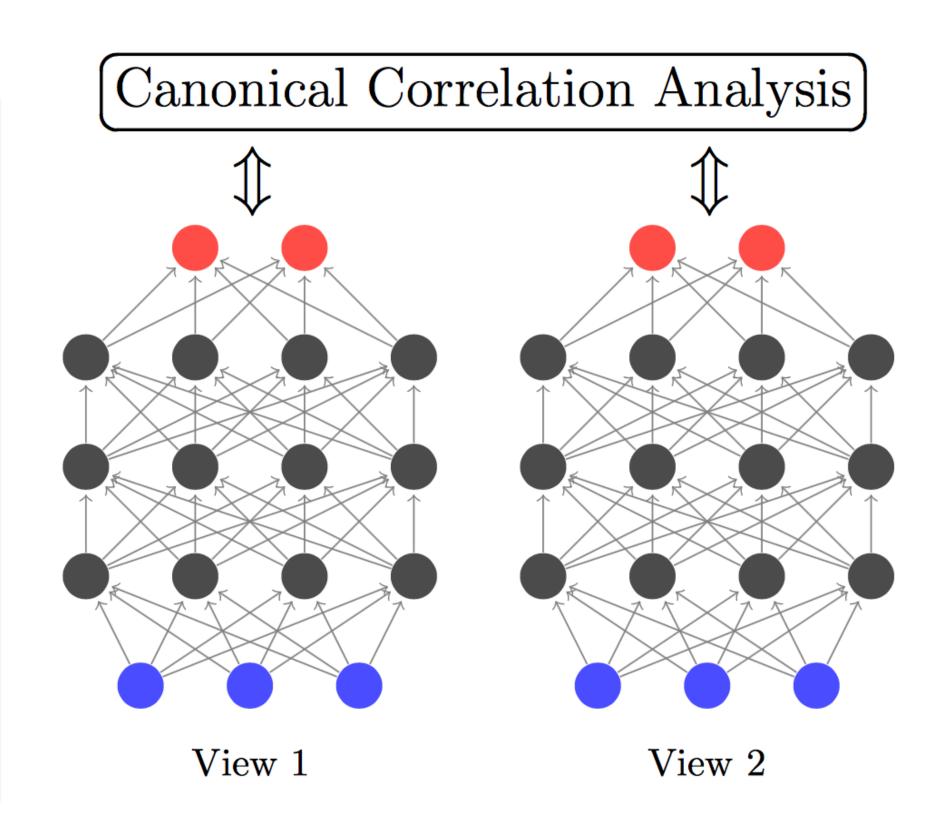


Deep CCA: Training

Training a Deep CCA model:

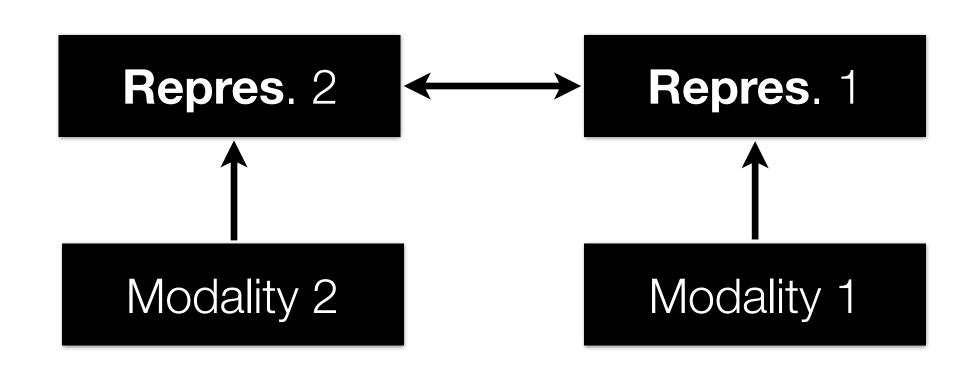
- 1. Pretrain the layers of each side individually
- 2. **Jointly fine-tune** all parameters to maximize the total correlation of the output layers. Requires computing correlation gradient:
 - Forward propagate activations on both sides.
 - Compute correlation and its gradient w.r.t. output layers.
 - Backpropagate gradient on both sides.

Correlation is a population objective, so instead of one instance (or minibatch) training, requires L-BFGS second-order method (with full-batch)



Multimodal Representation Types

Coordinated representations:



- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

Correlated Representations vs. Joint Embeddings

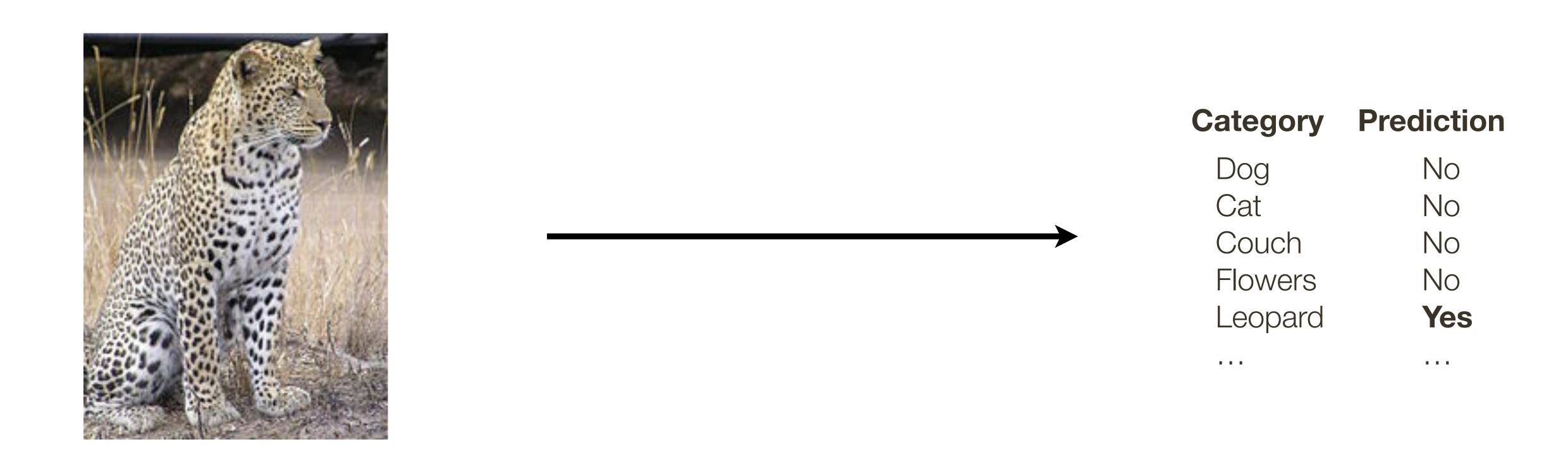
Correlated Representations: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

Joint Embeddings: Models that minimize distance between ground truth pairs of samples:

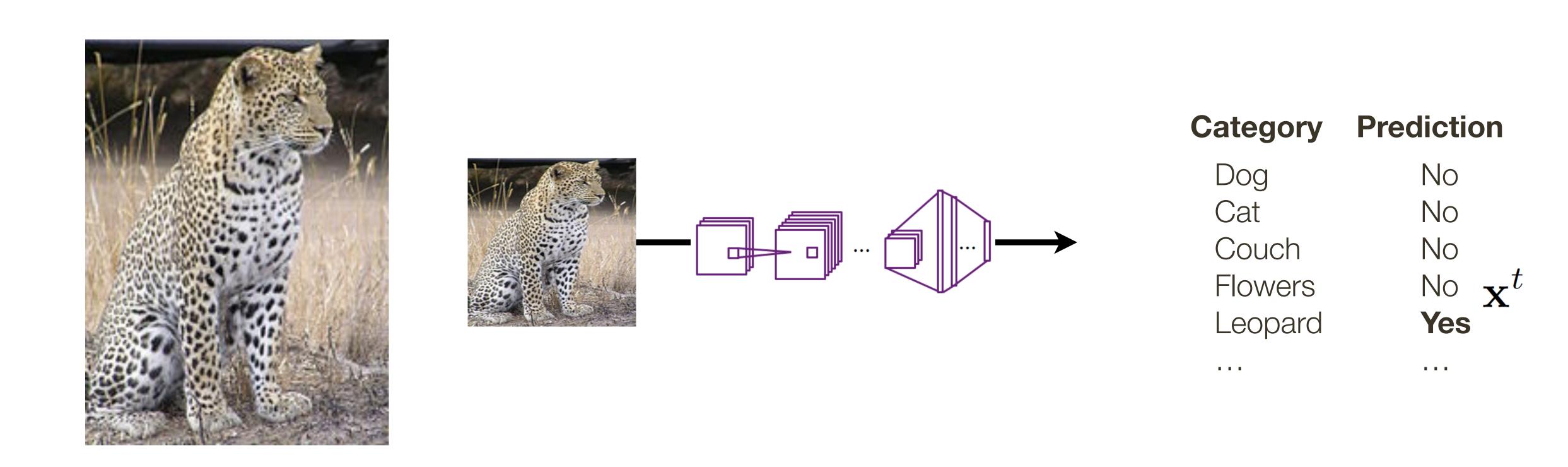
$$min_{f_1,f_2}D\left(f_1(\mathbf{x}_1^{(i)}),f_2(\mathbf{x}_2^{(i)})\right)$$

Object Classification



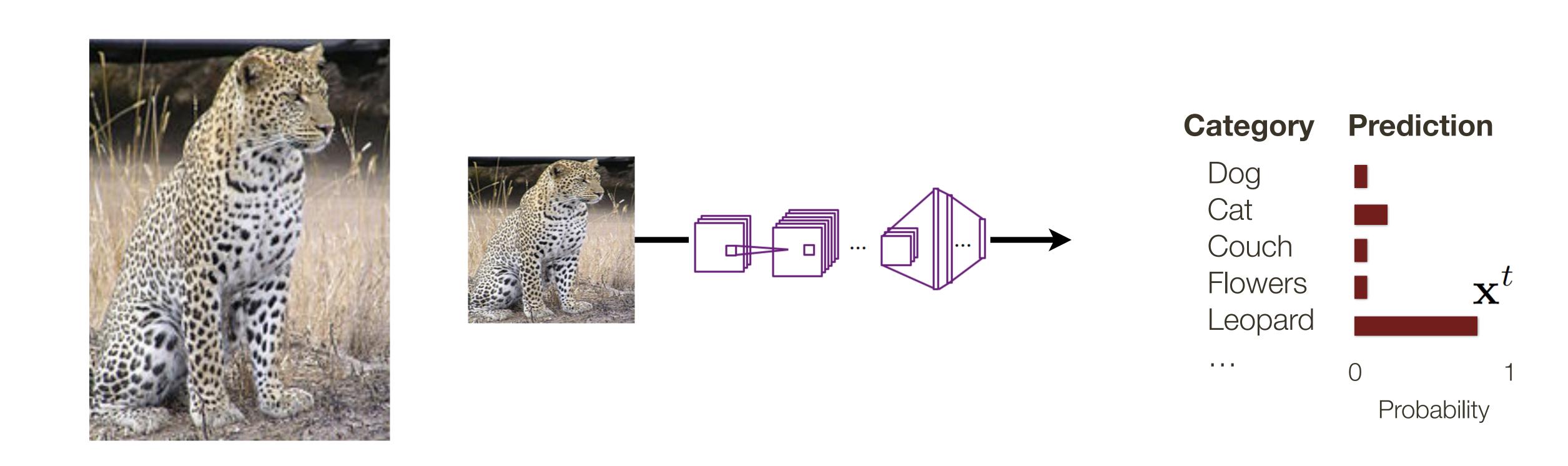
Problem: For each image predict which category it belongs to out of a fixed set

Object Classification



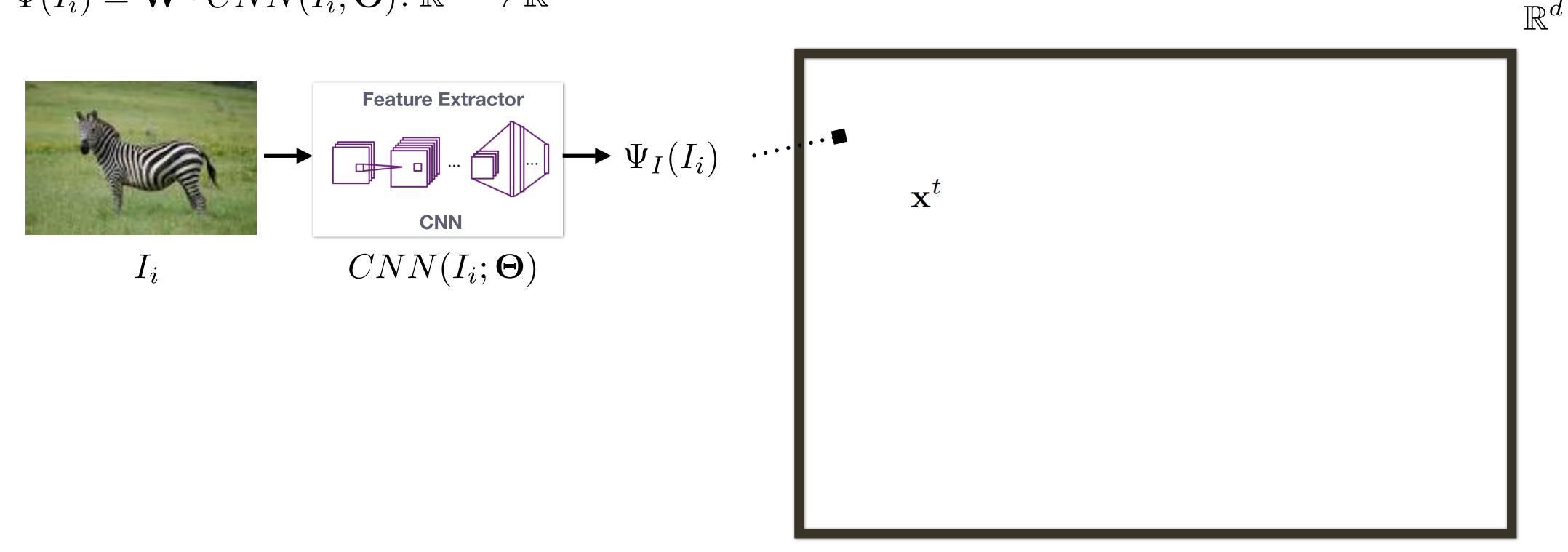
Problem: For each image predict which category it belongs to out of a fixed set

Object Classification

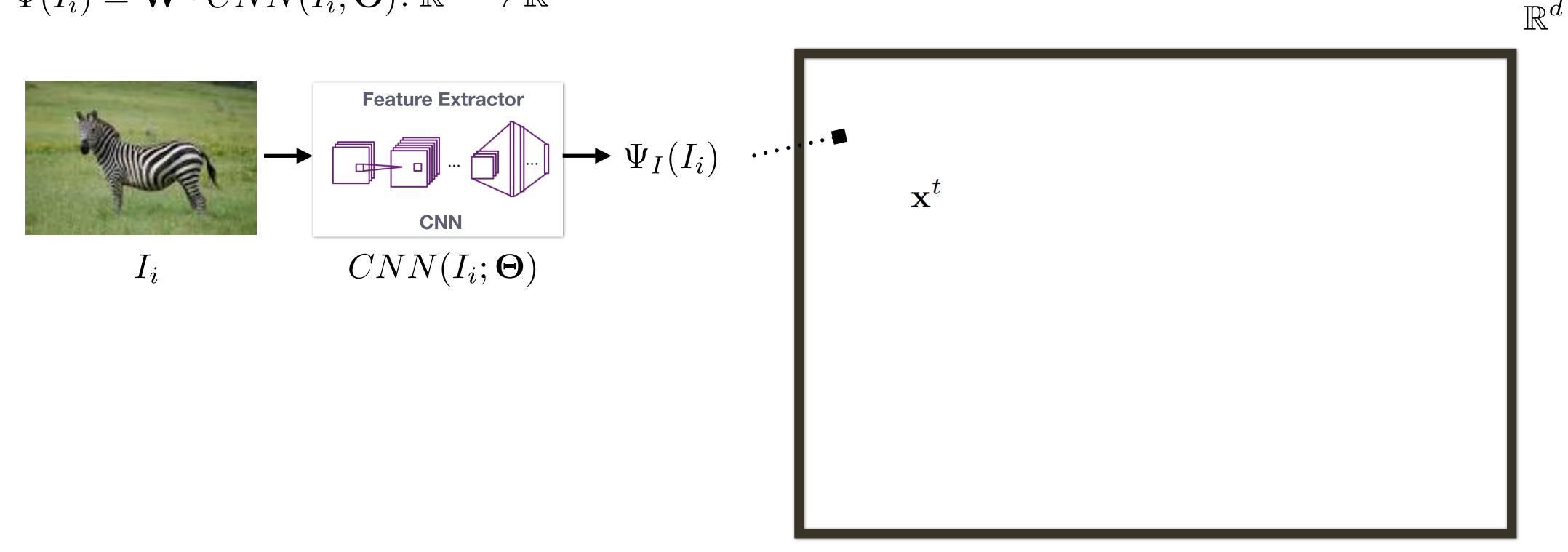


Problem: For each image predict which category it belongs to out of a fixed set

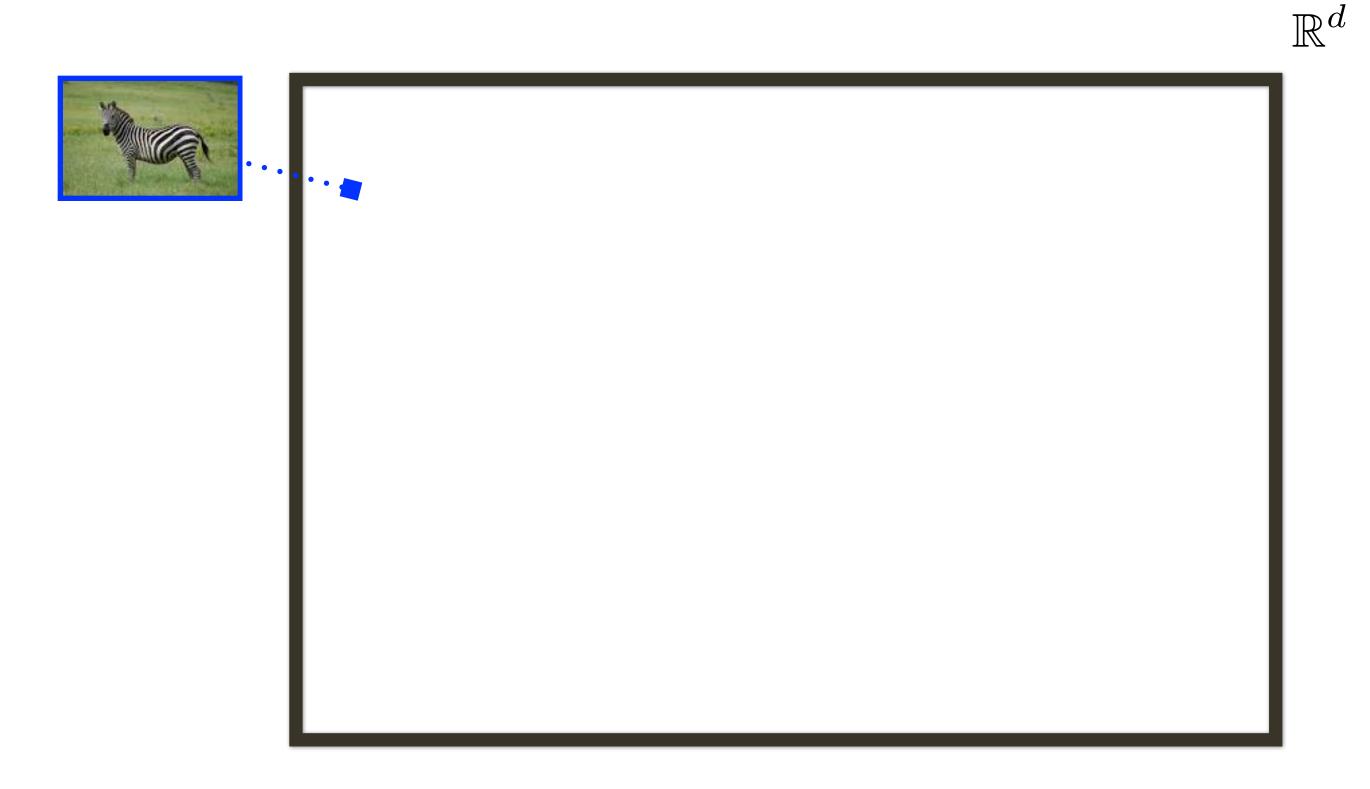
$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

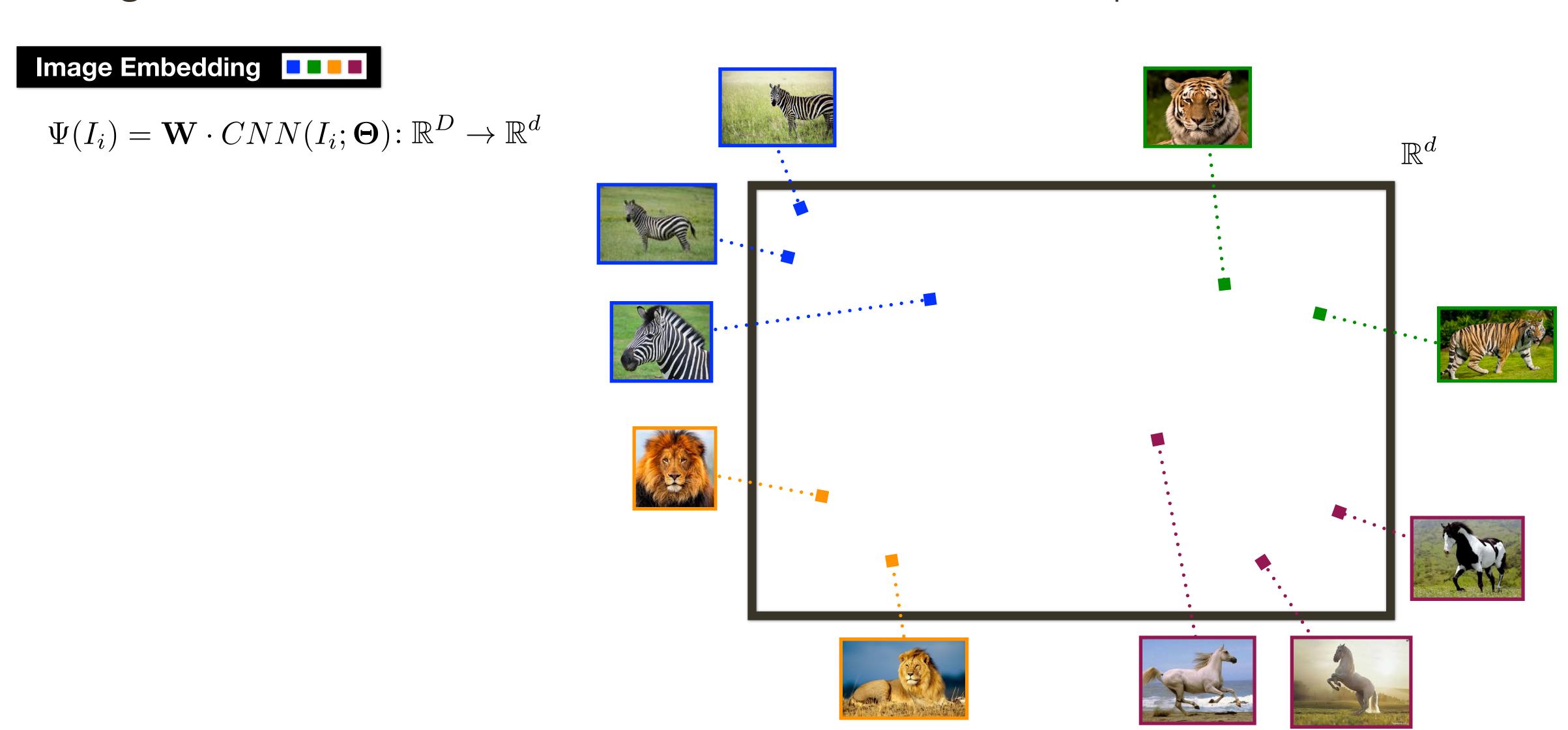


$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$



$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$



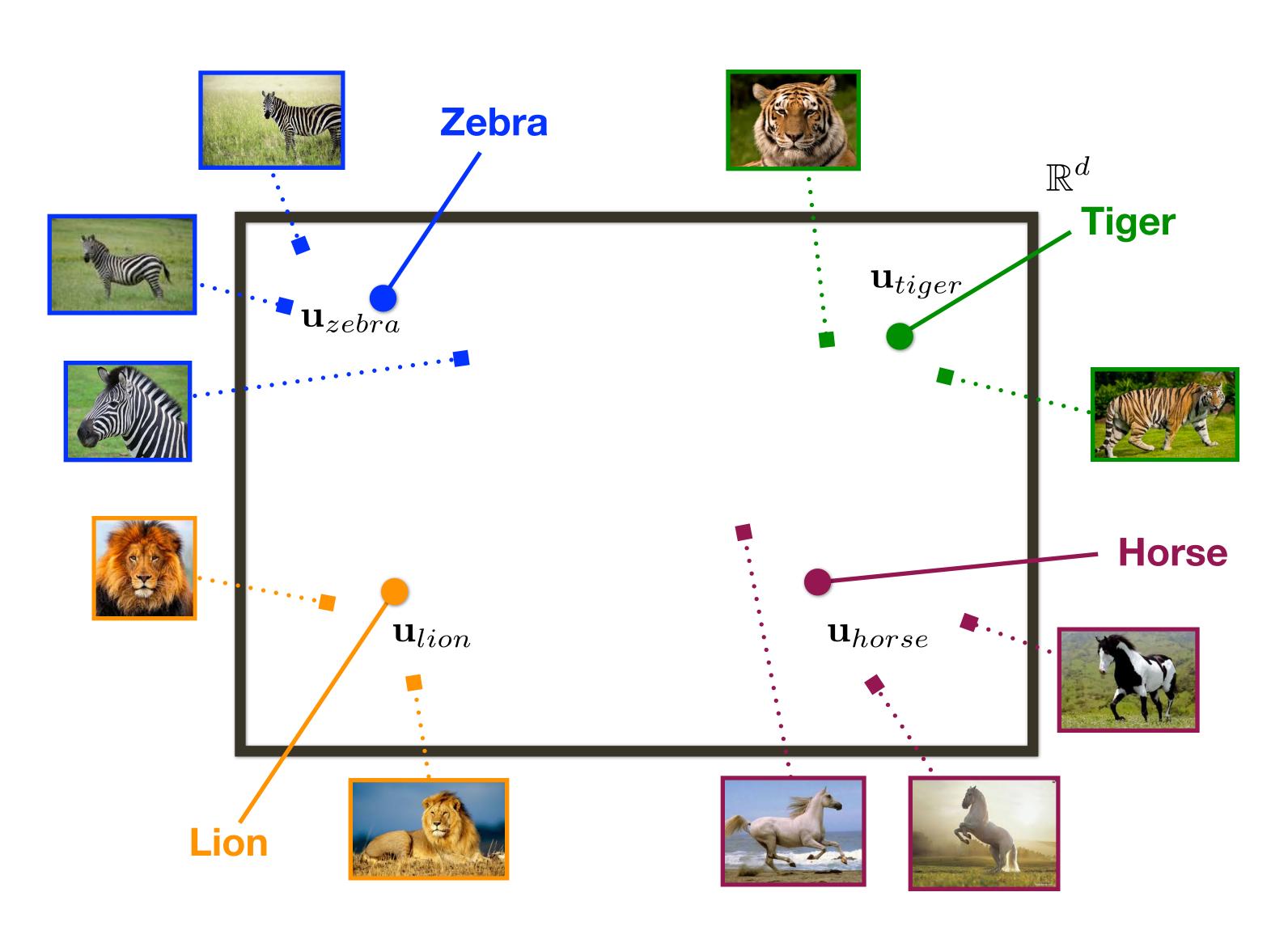


Images and class labels are embedded into the same space

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



Images and class labels are embedded into the same space

Image Embedding

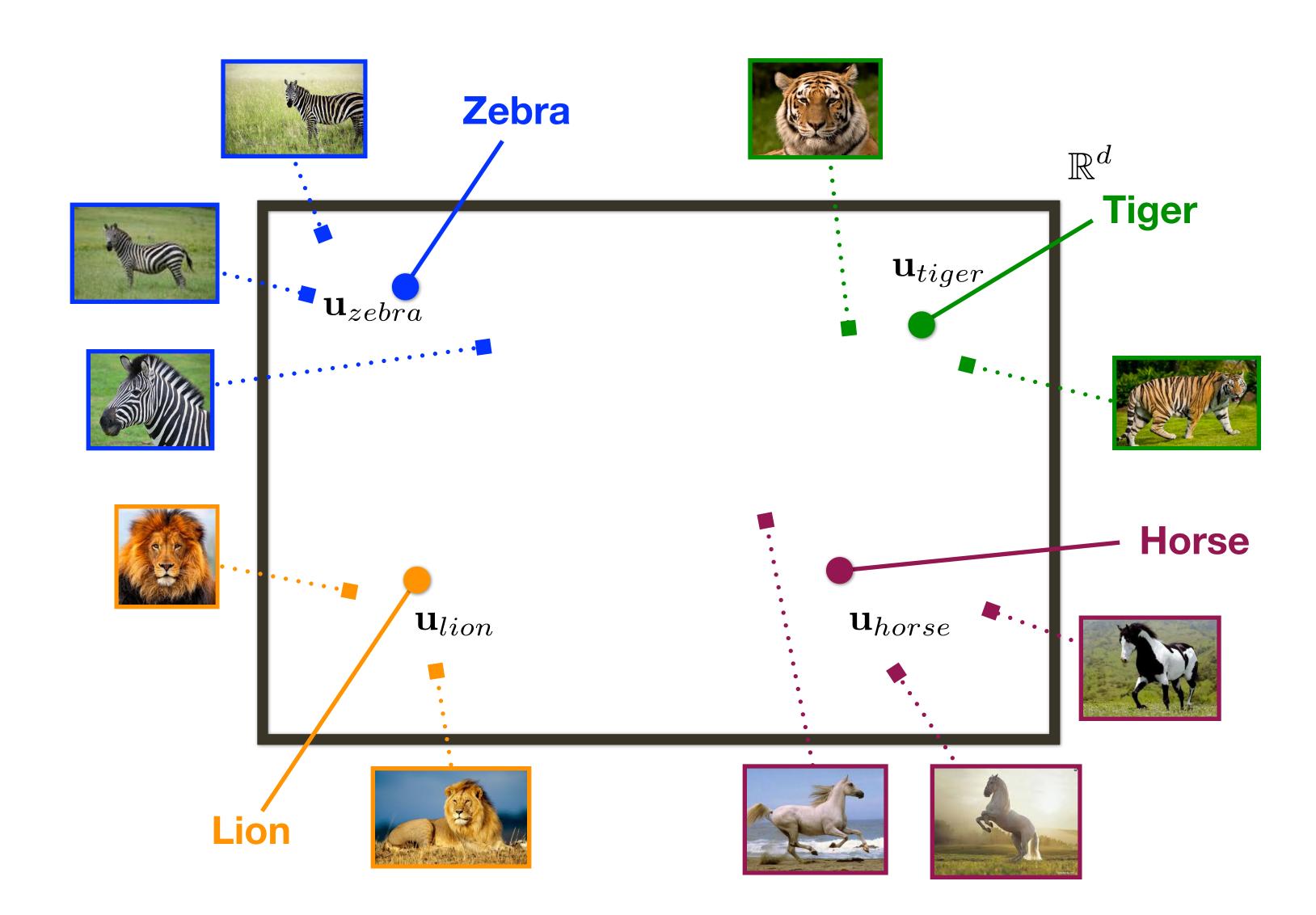
$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



Images and class labels are embedded into the same space

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{||\mathbf{u}||} \cdot \frac{\mathbf{u}'}{||\mathbf{u}'||}$$

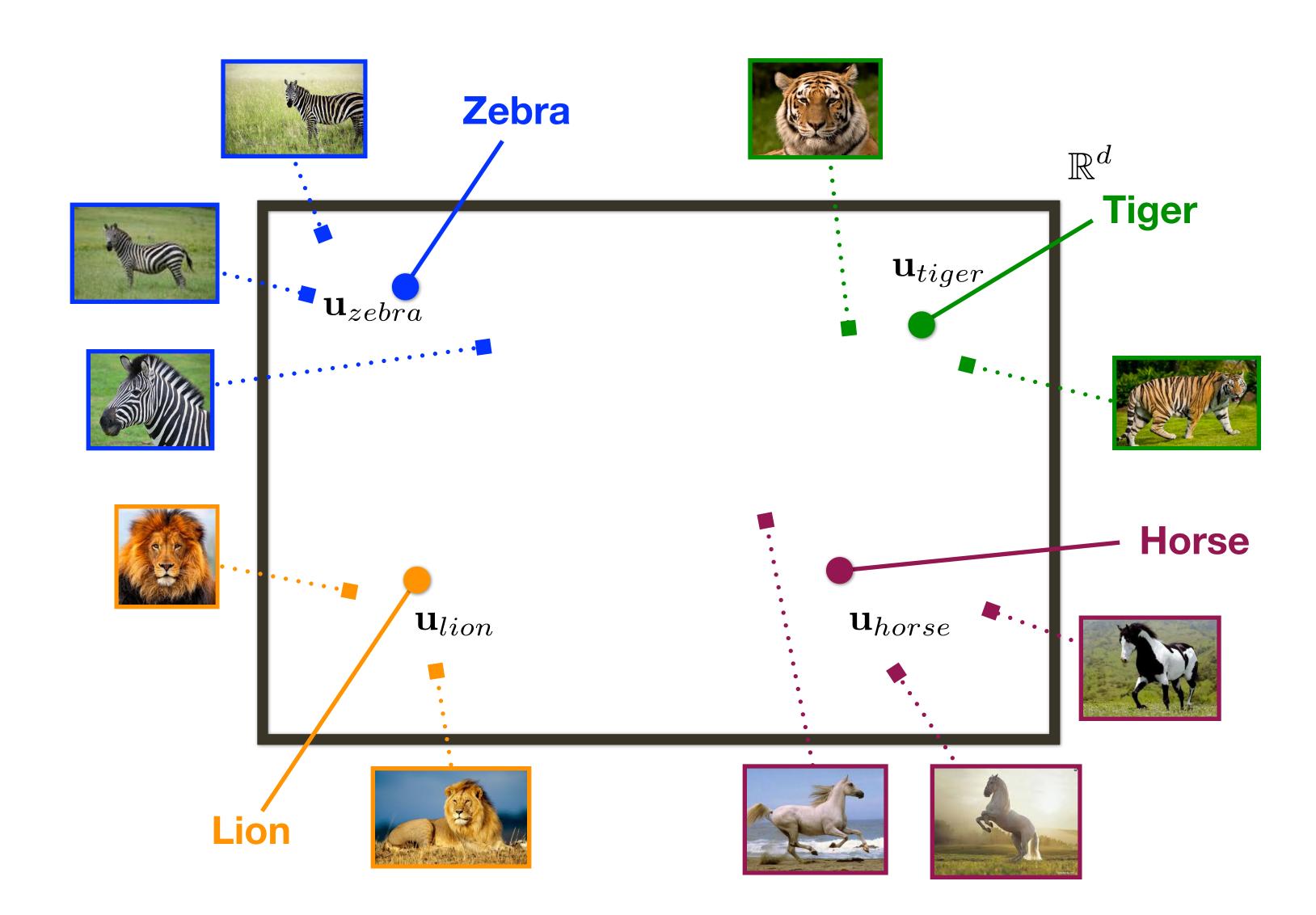


Image Categorization / Annotation

which object category does image belong to?

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

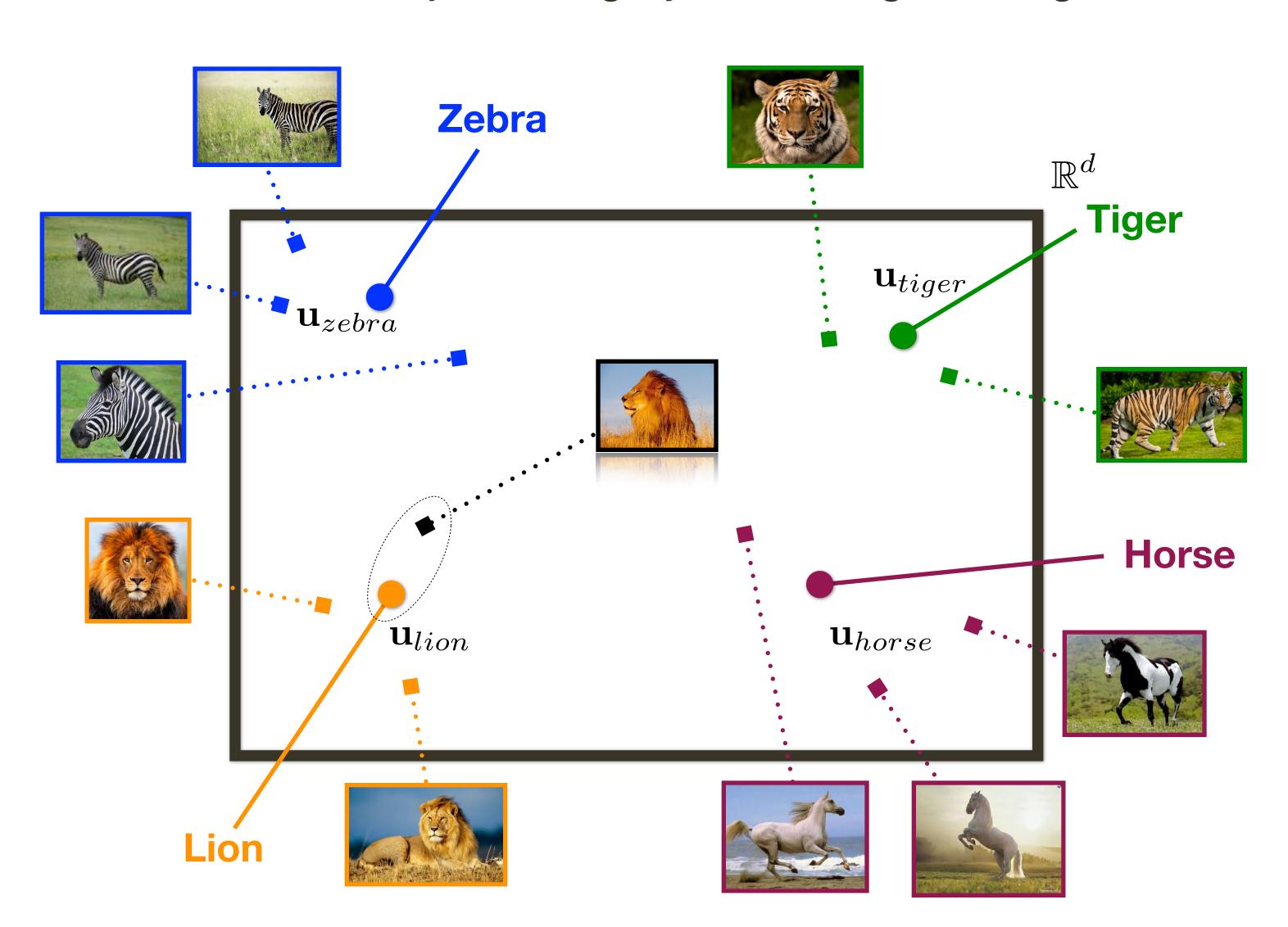


Image Categorization / Annotation

which object category does image belong to?

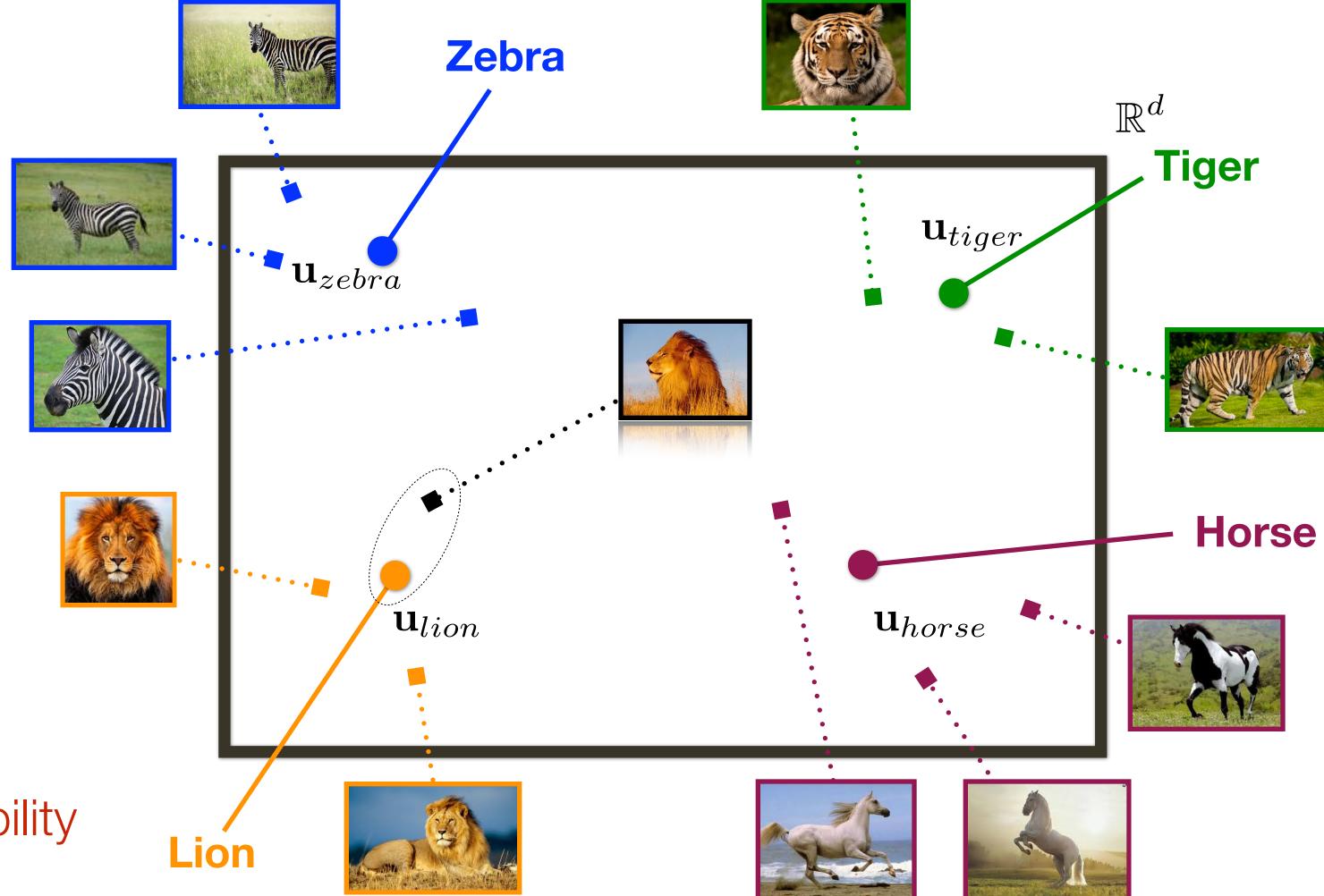
$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



Distance can be interpreted as probability

Search by Image

most similar image to a query?

Image Embedding

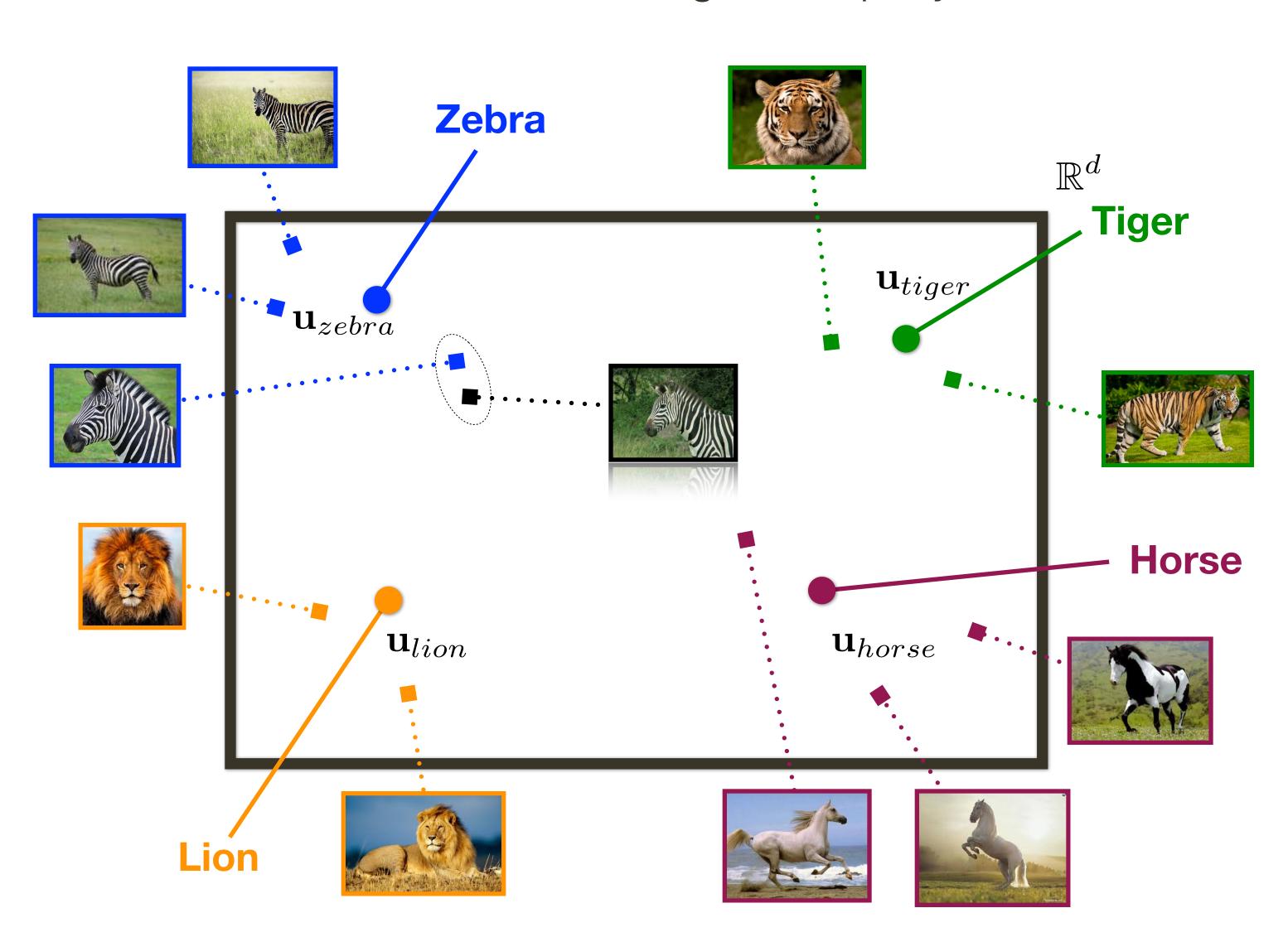
$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



Search by Label

most representative image for a label?

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

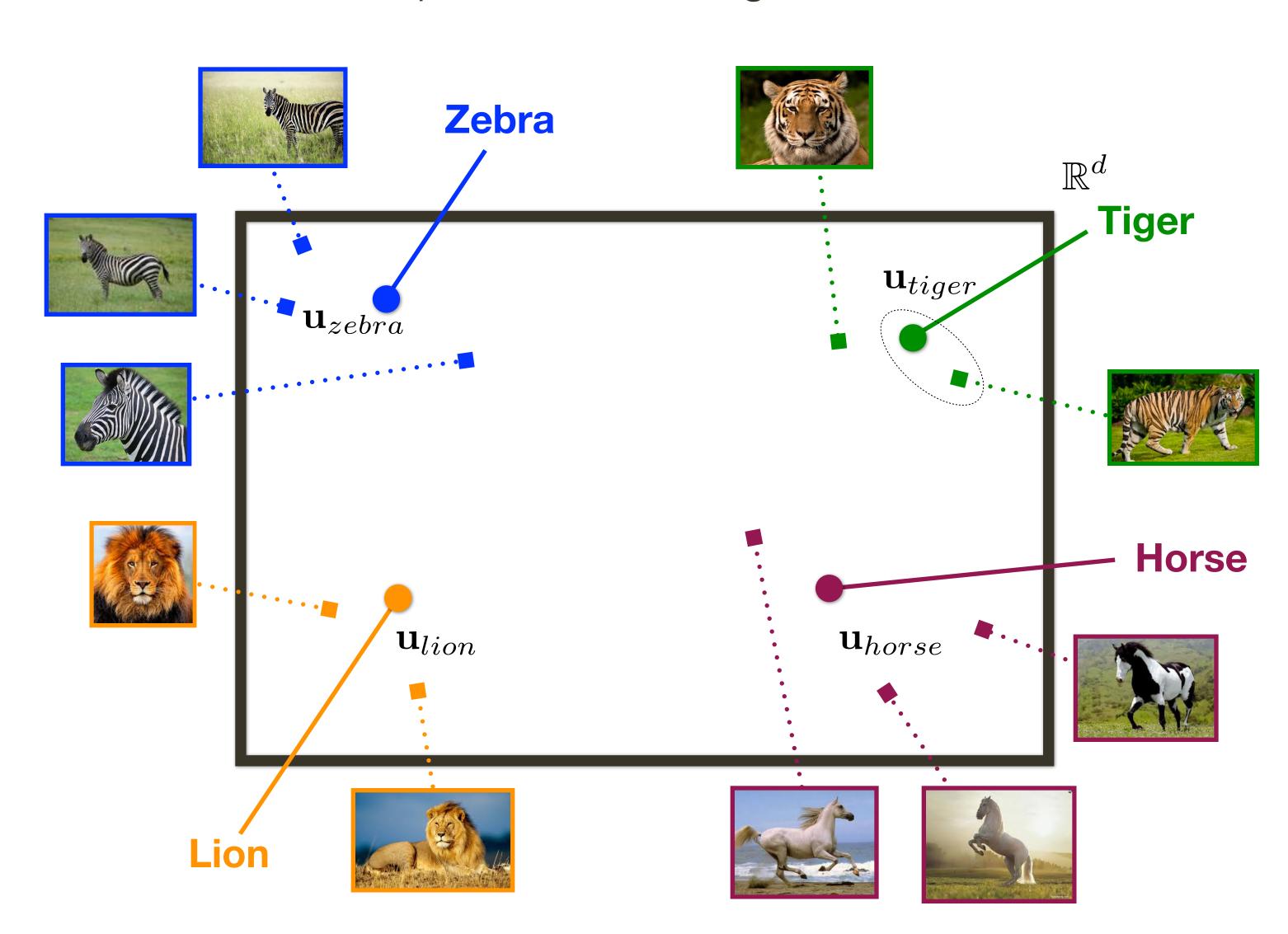


Image Embedding

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

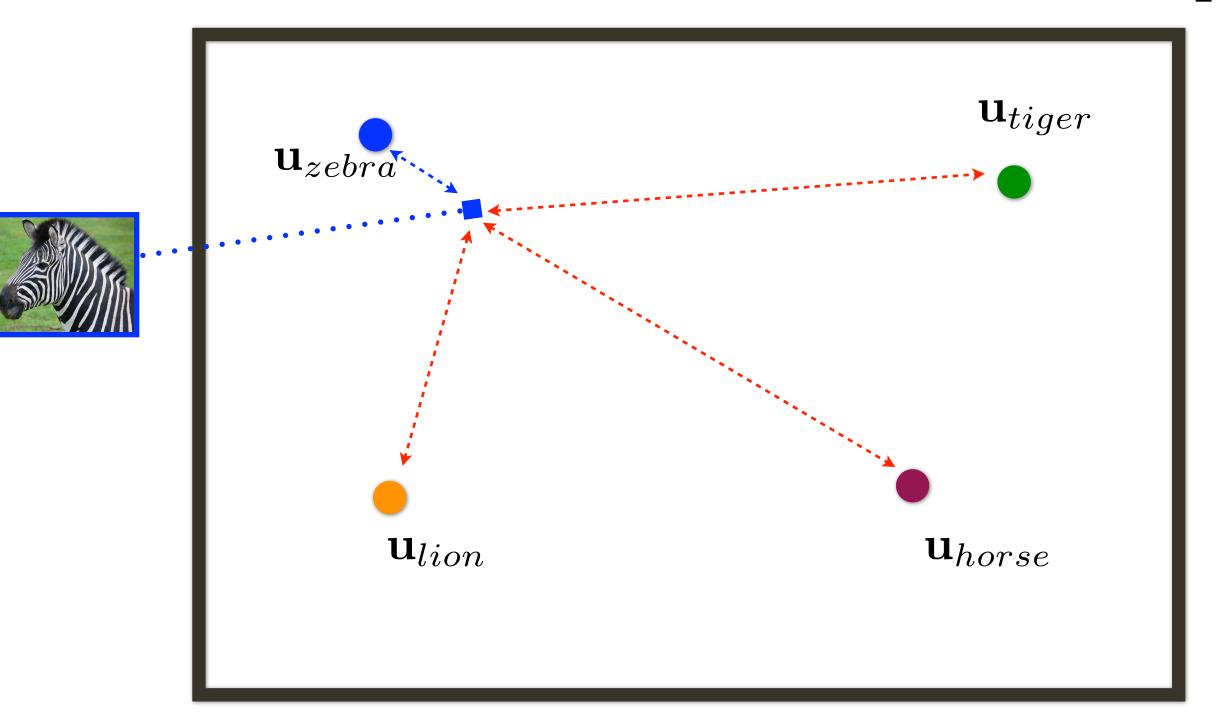
$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$

Objective Function:

$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1}||\mathbf{W}||_{F}^{2} + \lambda_{2}||\mathbf{U}||_{F}^{2}$$

$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, I_i, y_i) = \sum [1 + D(\Psi(I_i), \mathbf{u}_{y_i}) - D(\Psi(I_i), \mathbf{u}_{y_c})]$

 \mathbb{R}^d



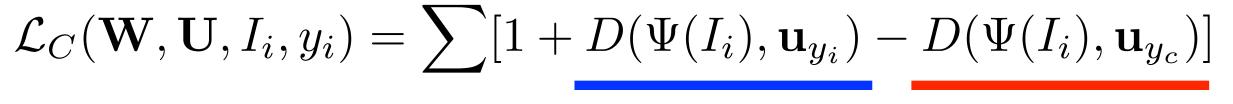
Why not minimize distance directly?

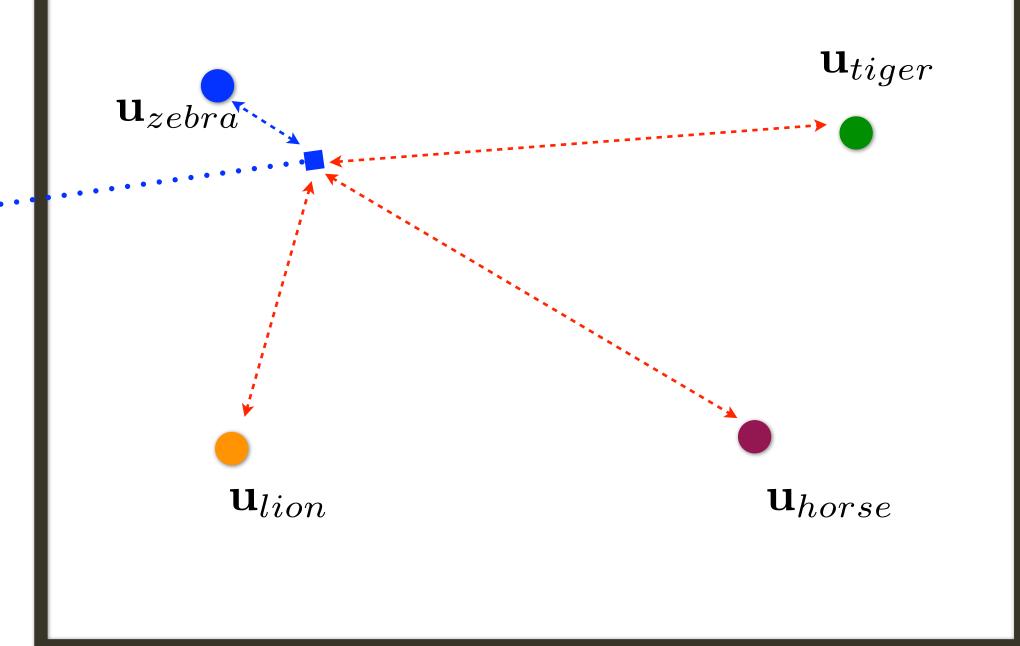
Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$





Similarity in Embedding Space

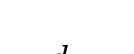
$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

 \mathbb{R}^d

Image Embedding



$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, I_i, y_i) = \sum \max\{0, \alpha - D(\Psi(I_i), \mathbf{u}_{y_i}) + D(\Psi(I_i), \mathbf{u}_{y_c})\}$$

\mathbb{R}^d

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

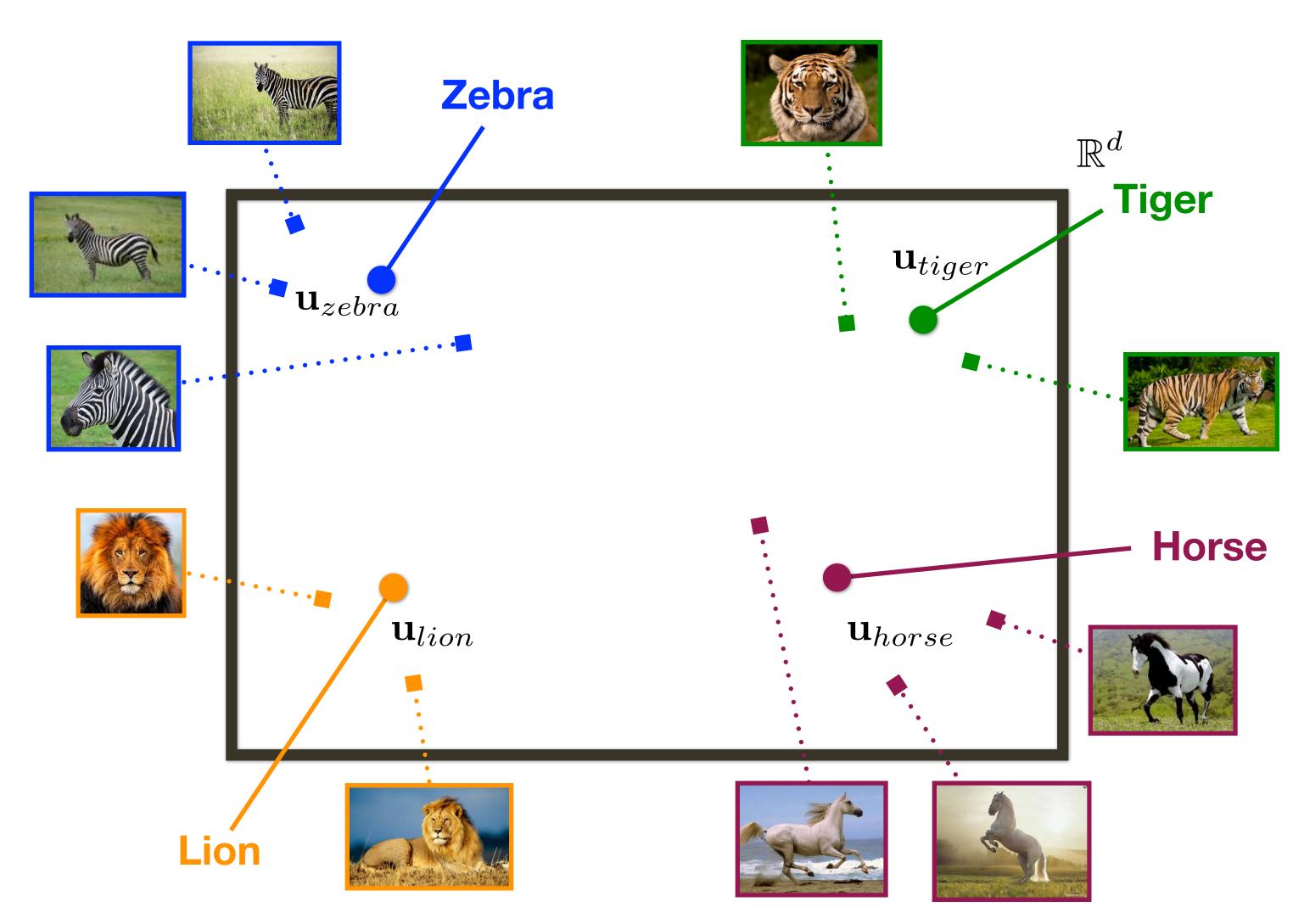
\mathbf{u}_{tiger} \mathbf{u}_{lion} \mathbf{u}_{horse}

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{||\mathbf{u}||} \cdot \frac{\mathbf{u}'}{||\mathbf{u}'||}$$

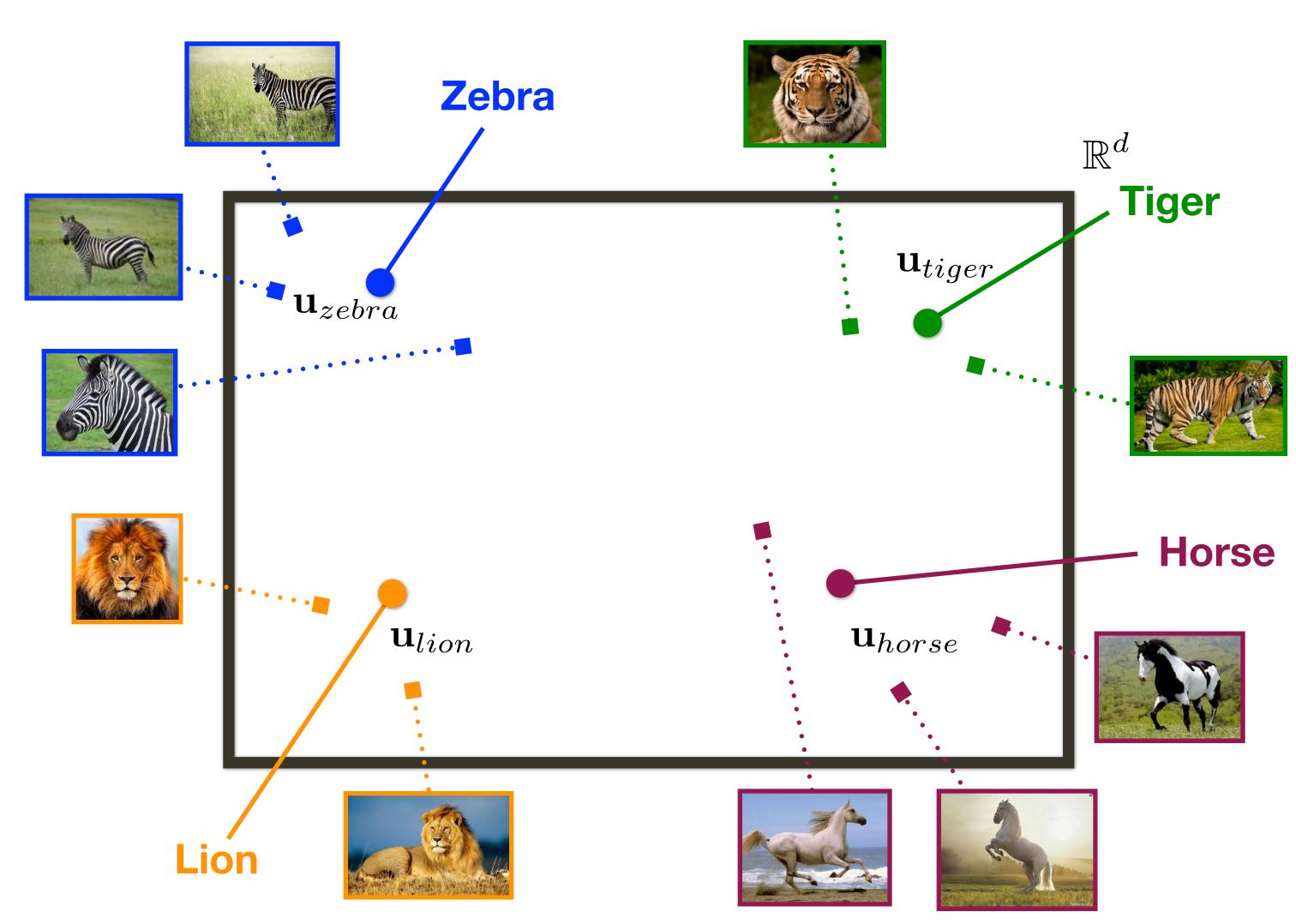
$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

This is a very convenient model



This is a very convenient model

Inducing semantics on the embedding space



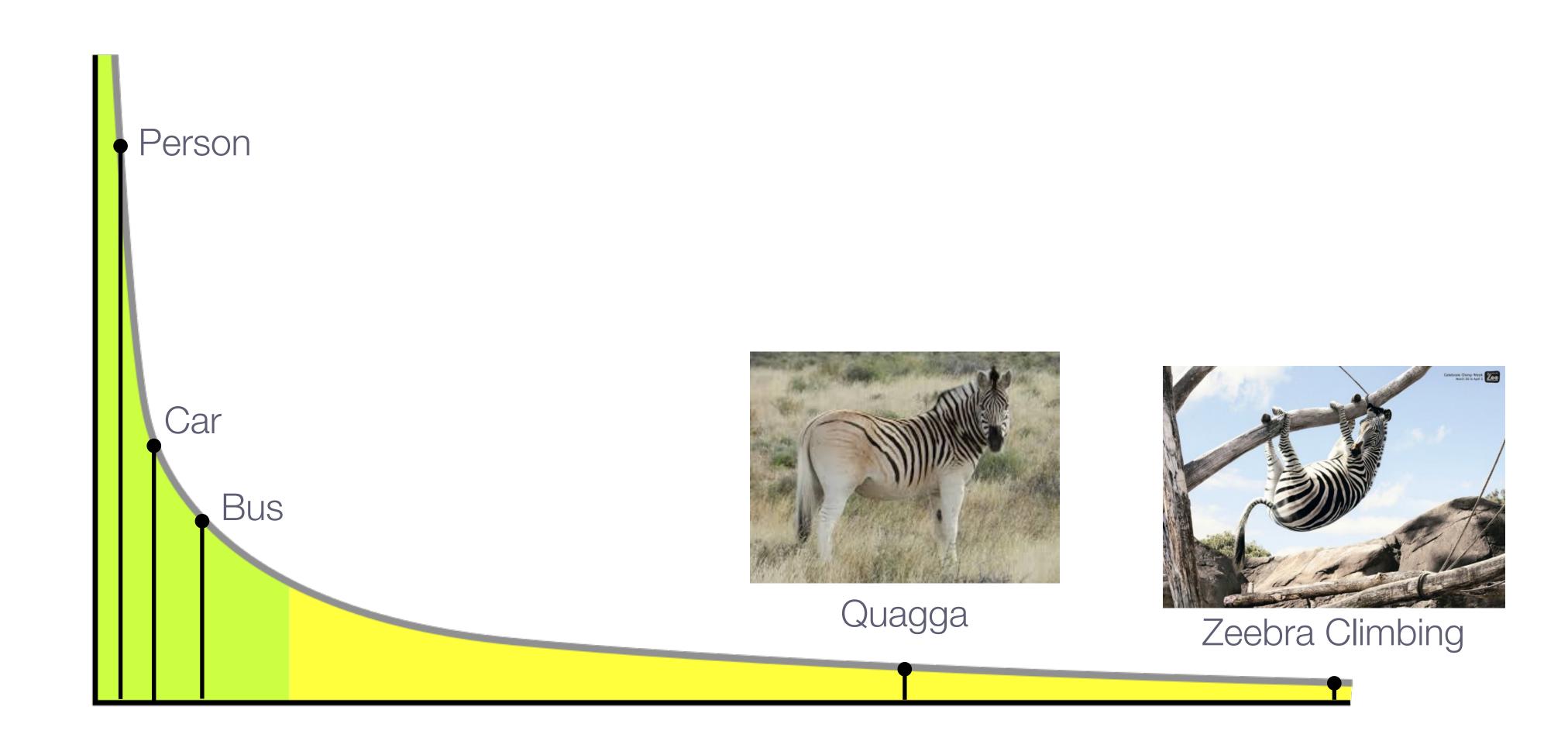
Semantic Embeddings

Why adding semantics is useful?

- Allows for transference of knowledge from classes that have a lot of data to those that have few (or no labeled instances)
- Can serve as additional regularization, so can be more efficient for learning.

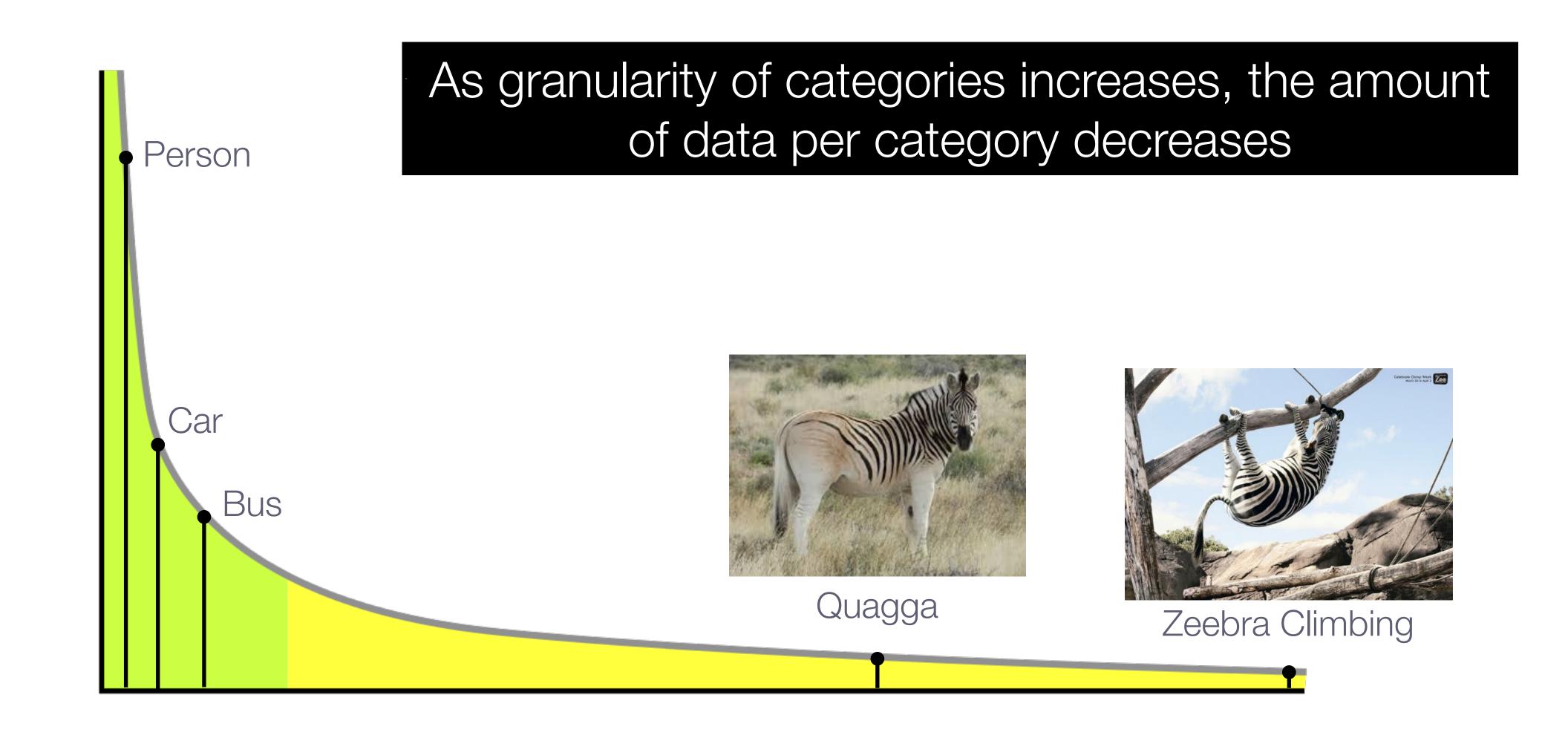
Long Tail of Categories

Few most frequent categories contain most of the samples, most of the categories contain few samples



Long Tail of Categories

Few most frequent categories contain most of the samples, most of the categories contain few samples

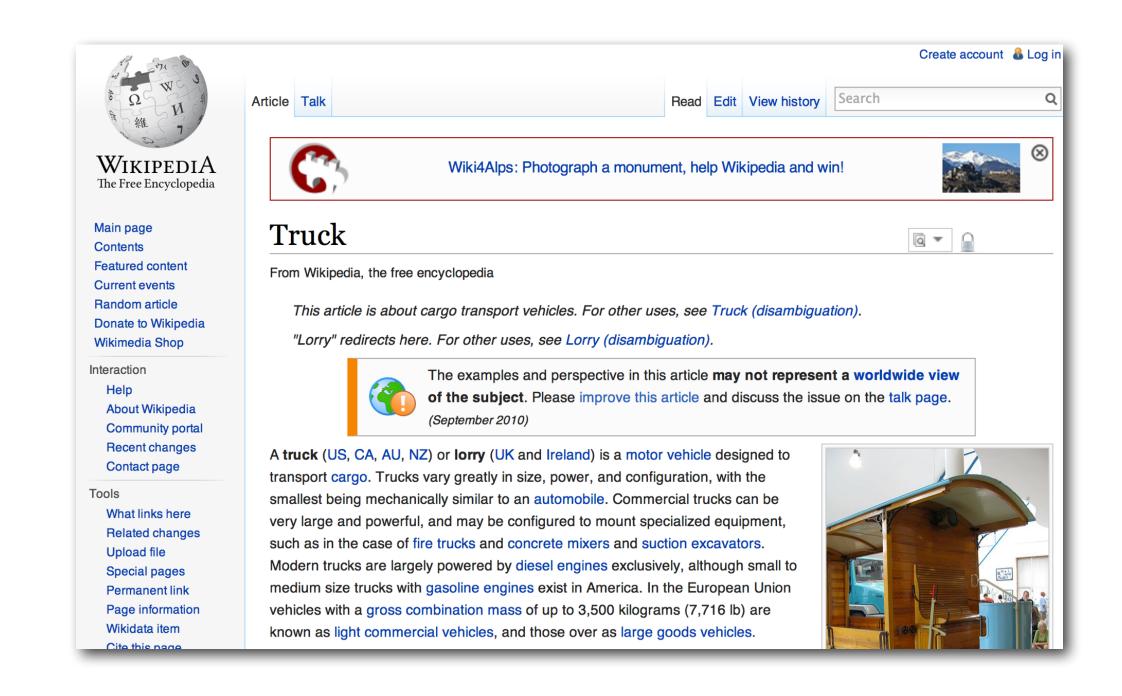


[Hwang et al., 2014]

Truck

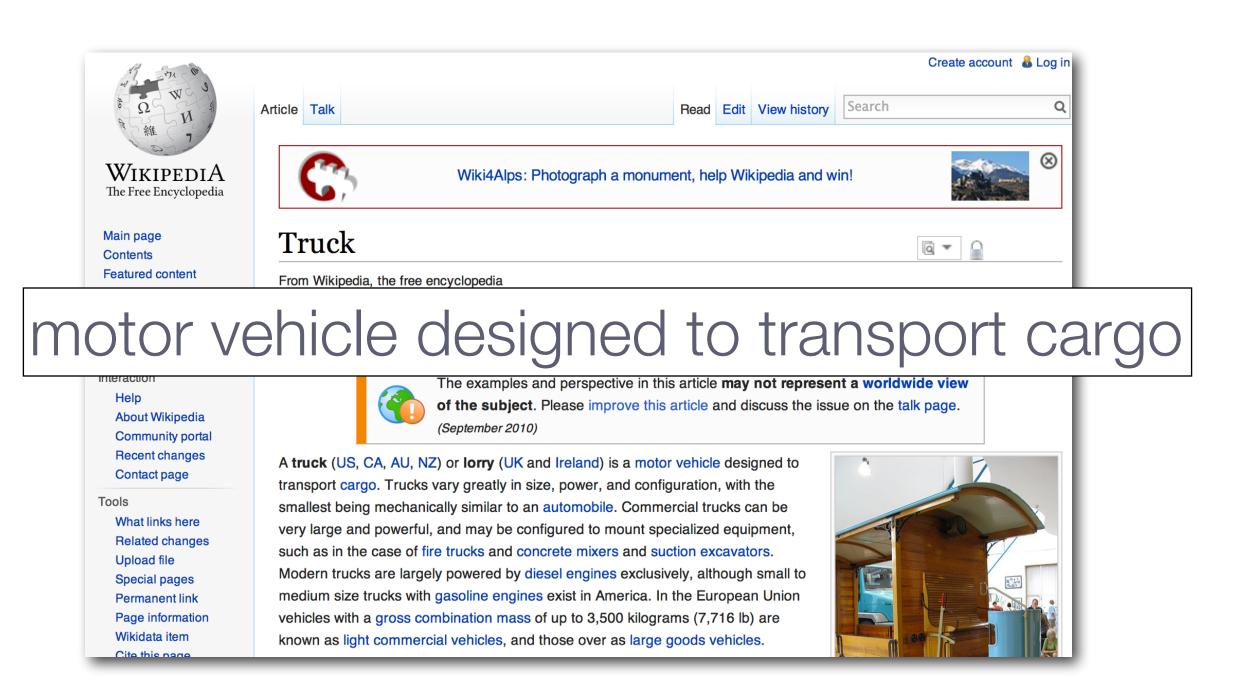
[Hwang et al., 2014]

Truck



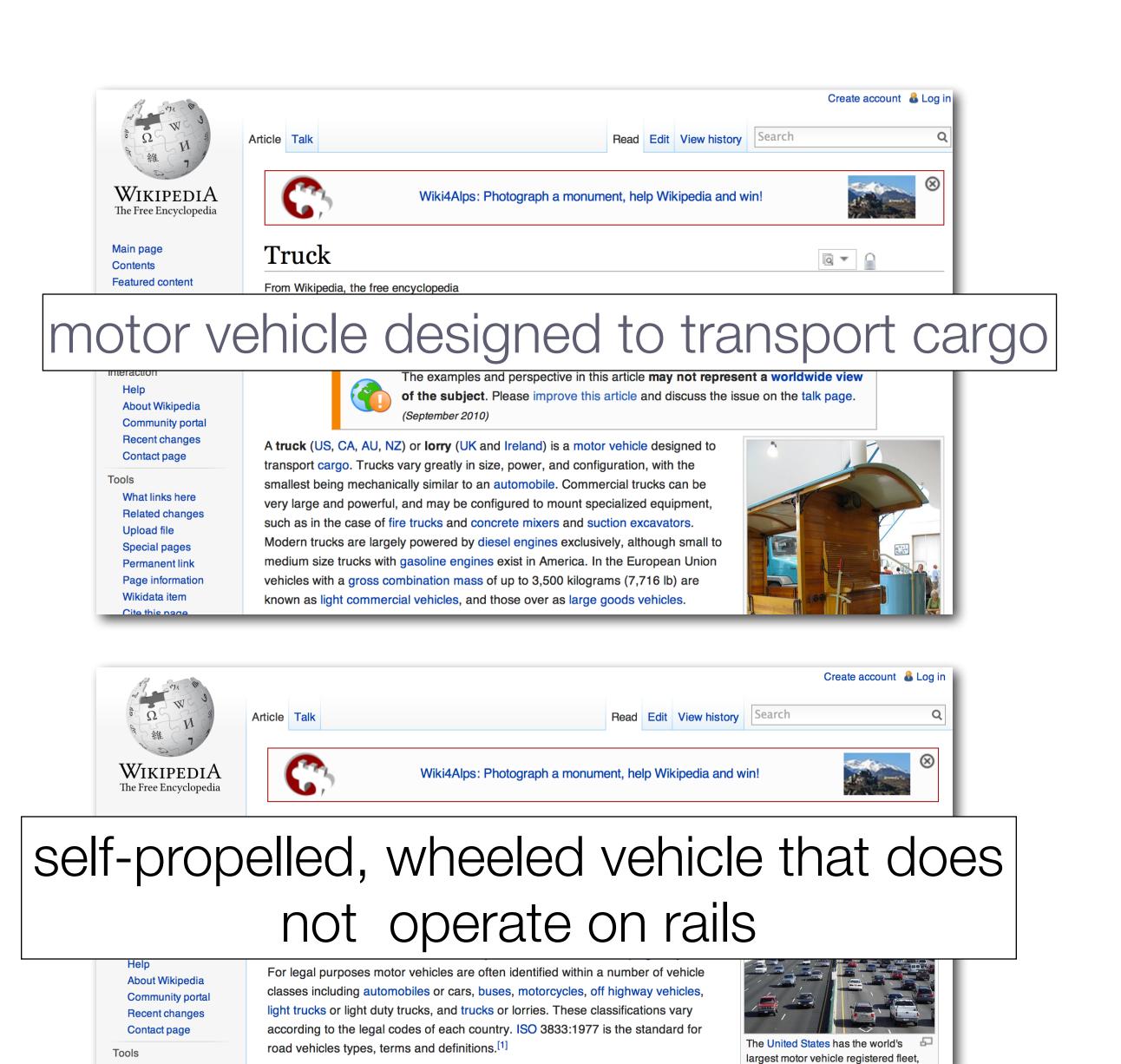
[Hwang et al., 2014]

Truck



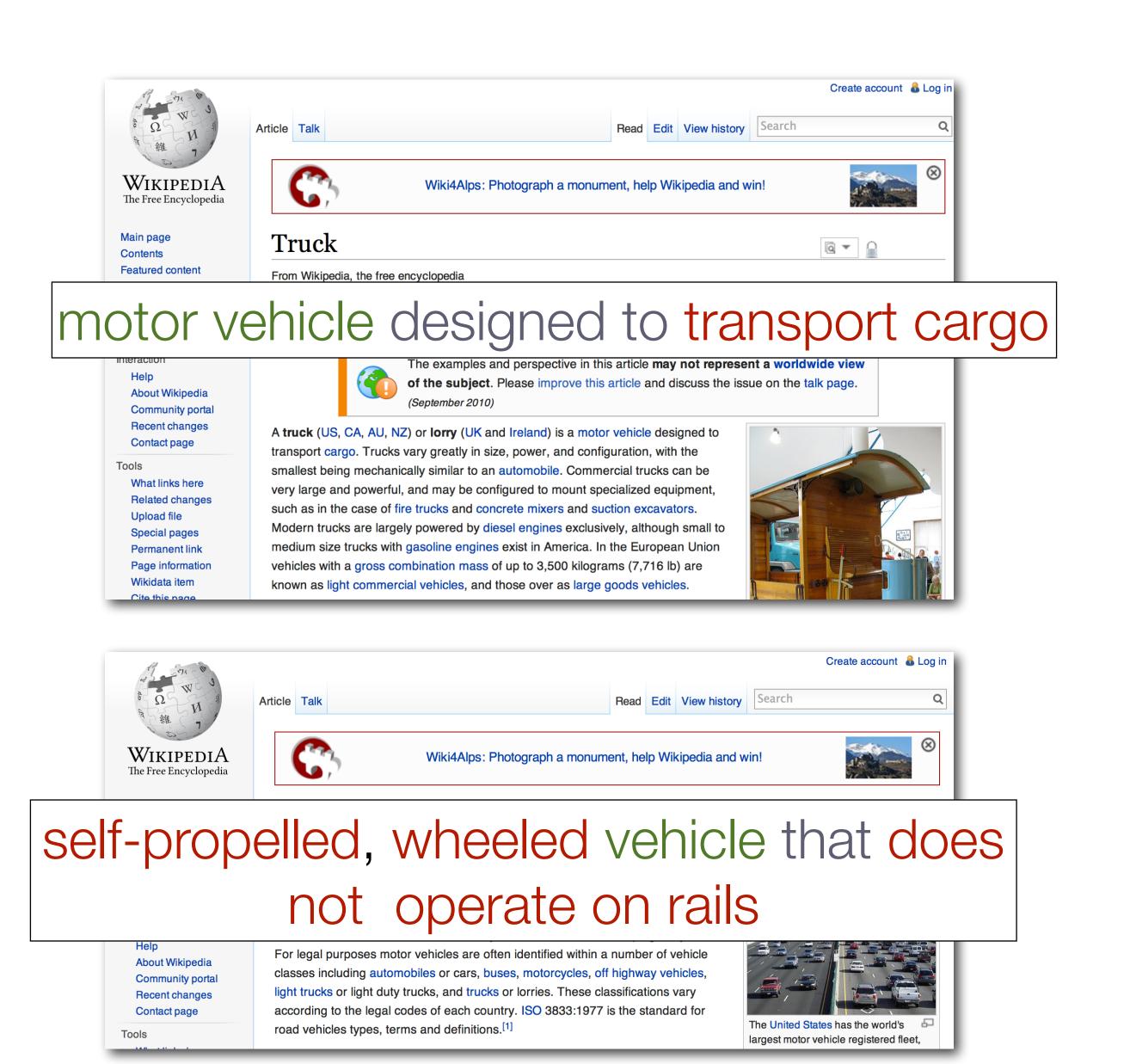
[Hwang et al., 2014]

Truck



[Hwang et al., 2014]

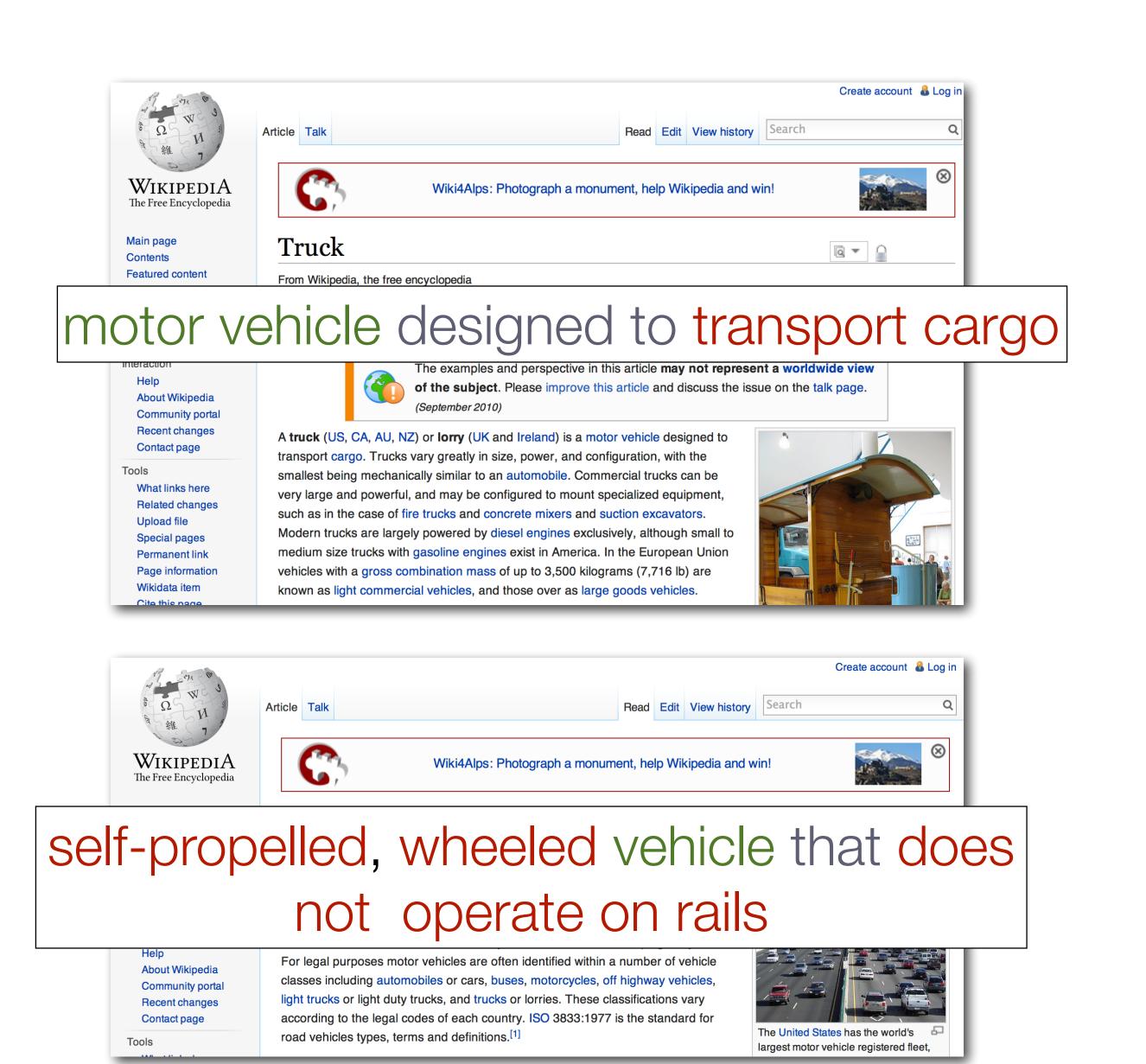
Truck



[Hwang et al., 2014]

Parent Category + Attributes

Truck



Adding regularization from ontology / taxonomy over labels

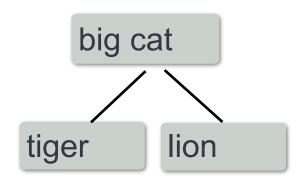


Image Embedding

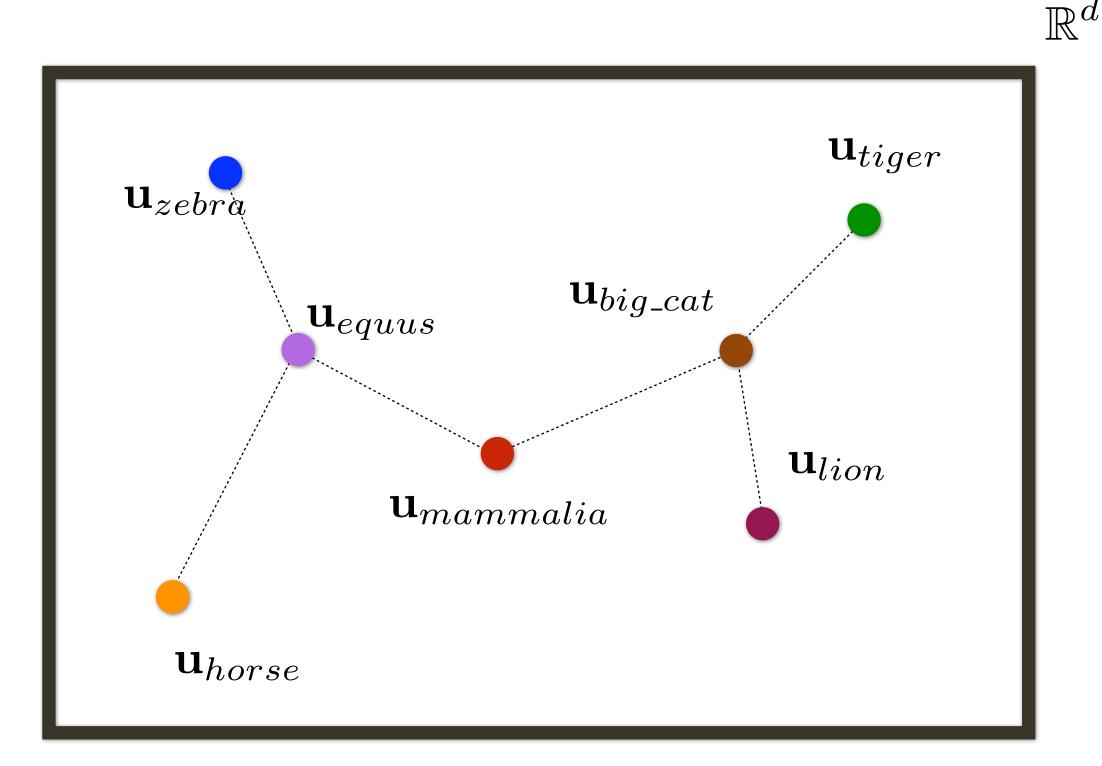
Label Embedding

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$



Adding regularization from ontology / taxonomy over labels

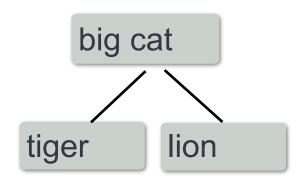


Image Embedding

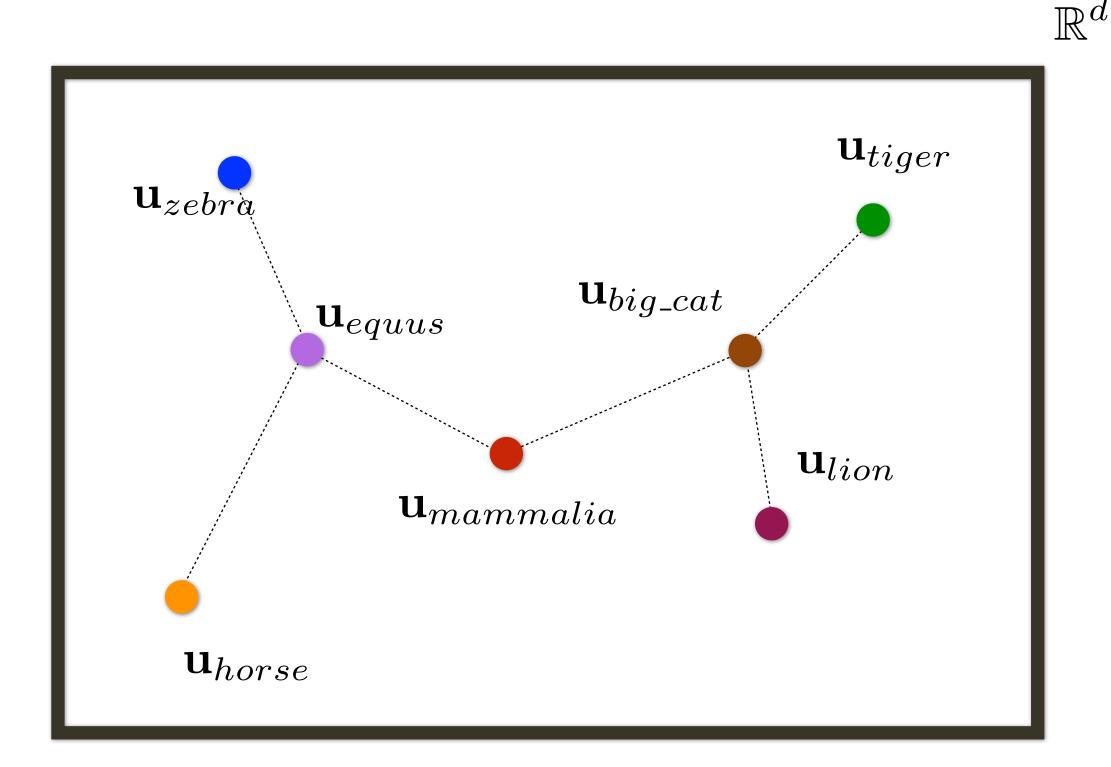
$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Adding regularization from ontology / taxonomy over labels

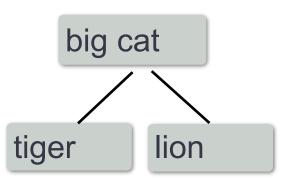


Image Embedding

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

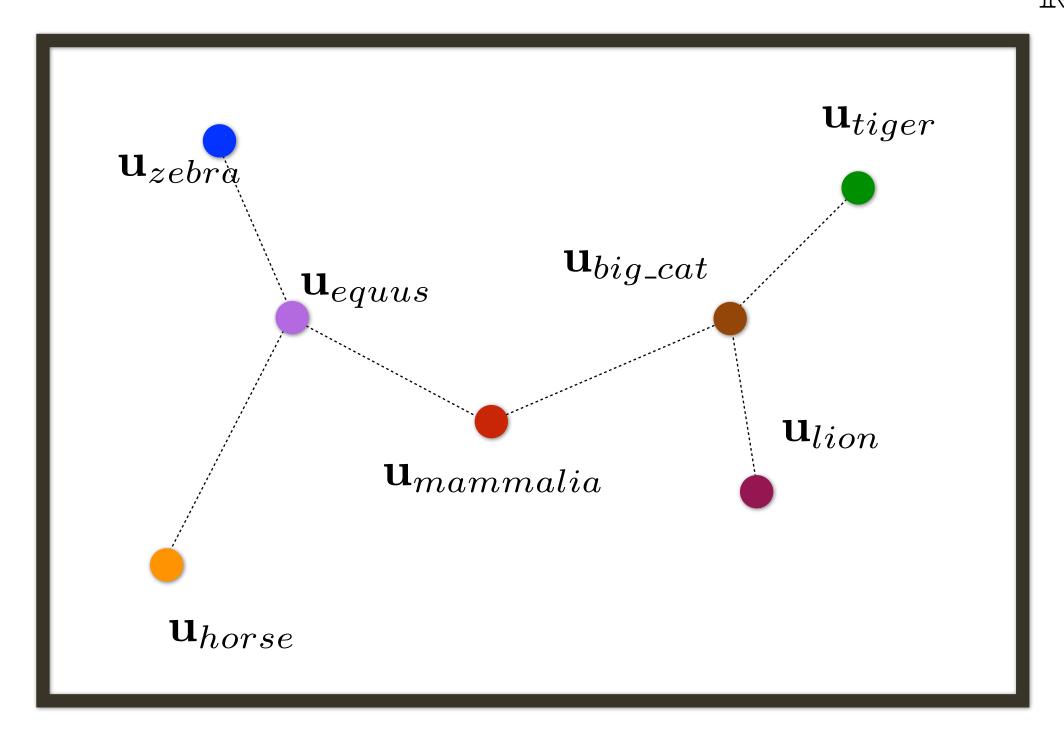
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Each sample is closer to the parent category than to a sibling category

 \mathbb{p}^d



$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \underline{\mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i})} + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Adding regularization from ontology / taxonomy over labels

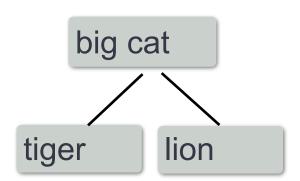


Image Embedding

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

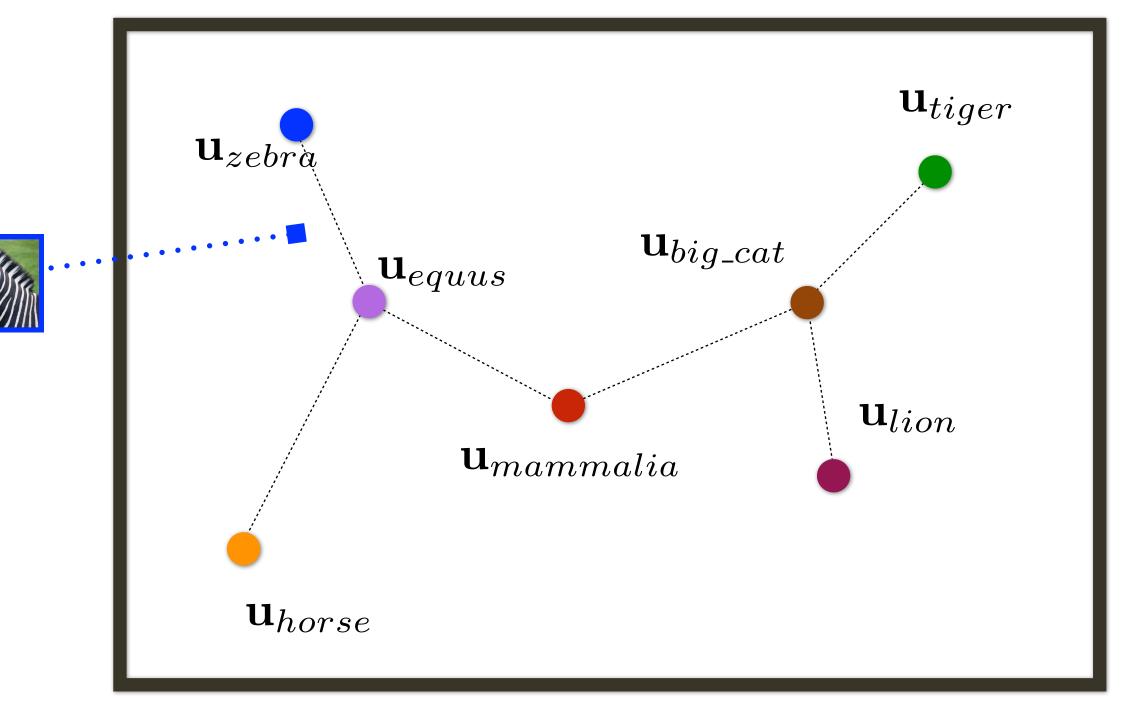
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Each sample is closer to the parent category than to a sibling category

 \mathbb{R}^d



$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \underline{\mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i})} + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Adding regularization from ontology / taxonomy over labels

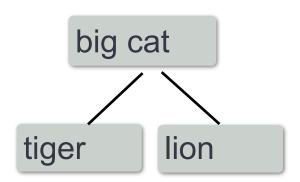


Image Embedding

Label Embedding

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

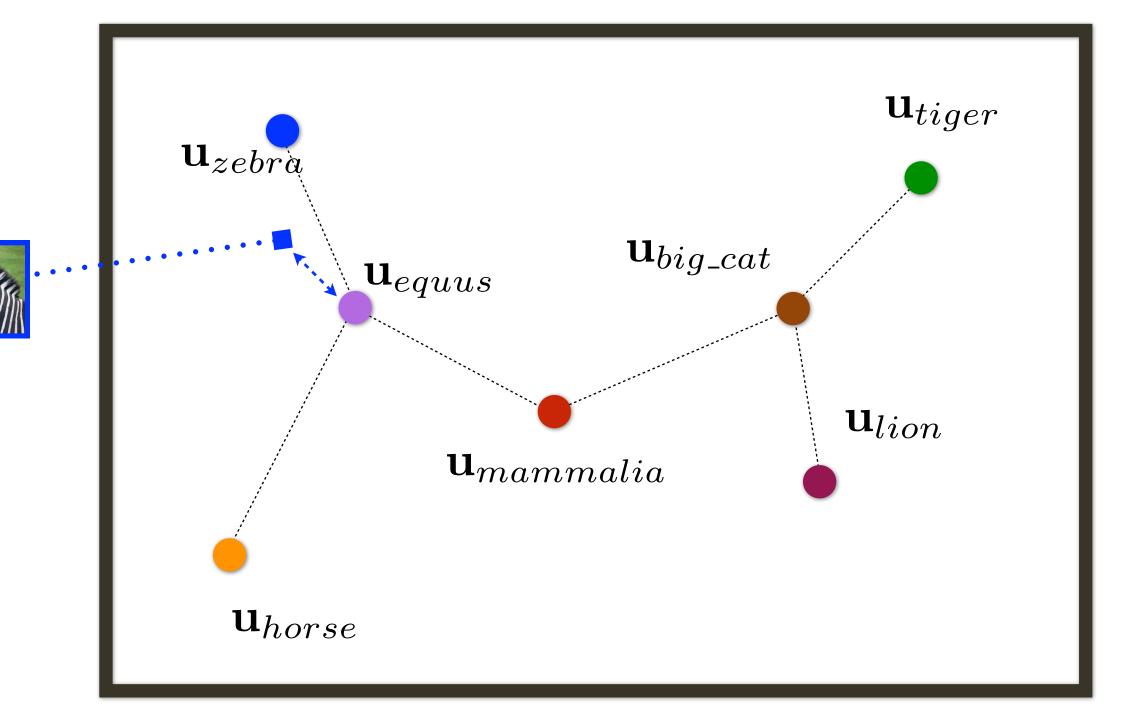
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

Each sample is closer to the parent category than to a sibling category

 \mathbb{R}^d



$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \underline{\mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i})} + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Adding regularization from ontology / taxonomy over labels

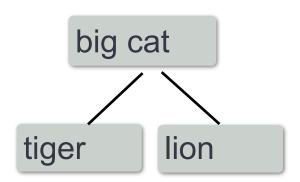


Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Each sample is closer to the parent category than to a sibling category

Similarity in Embedding Space

Label Embedding •••••

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

$$\mathbf{u}_{zebra}$$
 \mathbf{u}_{big_cat} \mathbf{u}_{lion} $\mathbf{u}_{mammalia}$

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \underline{\mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i})} + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Taxonomies: big cat tiger lion

Adding regularization from ontology / taxonomy over labels

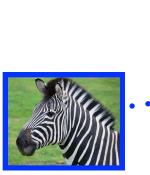
Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

$$\mathcal{L}_{S}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{x}_{i}, y_{i}) = \sum_{s \in \mathcal{P}_{y_{i}}} \sum_{c \in \mathcal{S}_{s}} [1 + \|\boldsymbol{W}\boldsymbol{x}_{i} - \boldsymbol{u}_{s}\|_{2}^{2} - \|\boldsymbol{W}\boldsymbol{x}_{i} - \boldsymbol{u}_{c}\|_{2}^{2}]_{-}$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

$$\mathbf{u}_{tiger}$$
 \mathbf{u}_{dig}
 \mathbf{u}_{tiger}
 \mathbf{u}_{tiger}
 \mathbf{u}_{tiger}
 \mathbf{u}_{tiger}
 \mathbf{u}_{tiger}
 \mathbf{u}_{tiger}
 \mathbf{u}_{tiger}

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Taxonomies: big cat tiger lion

Adding regularization from ontology / taxonomy over labels

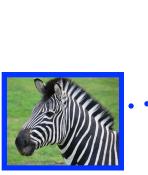
Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

$$\mathcal{L}_{S}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{x}_{i}, y_{i}) = \sum_{s \in \mathcal{P}_{y_{i}}} \sum_{c \in \mathcal{S}_{s}} [1 + \|\boldsymbol{W}\boldsymbol{x}_{i} - \boldsymbol{u}_{s}\|_{2}^{2} - \|\boldsymbol{W}\boldsymbol{x}_{i} - \boldsymbol{u}_{c}\|_{2}^{2}]_{-}$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

$$\mathbf{u}_{zebra}$$
 \mathbf{u}_{big_cat} \mathbf{u}_{lion} $\mathbf{u}_{mammalia}$

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Attributes: has(zebra, Stripes)

Attributes embedded as (basis) vectors in the semantic space

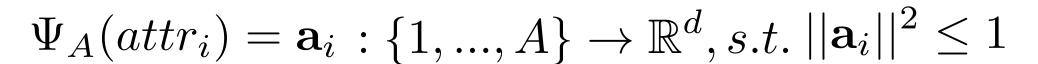
Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

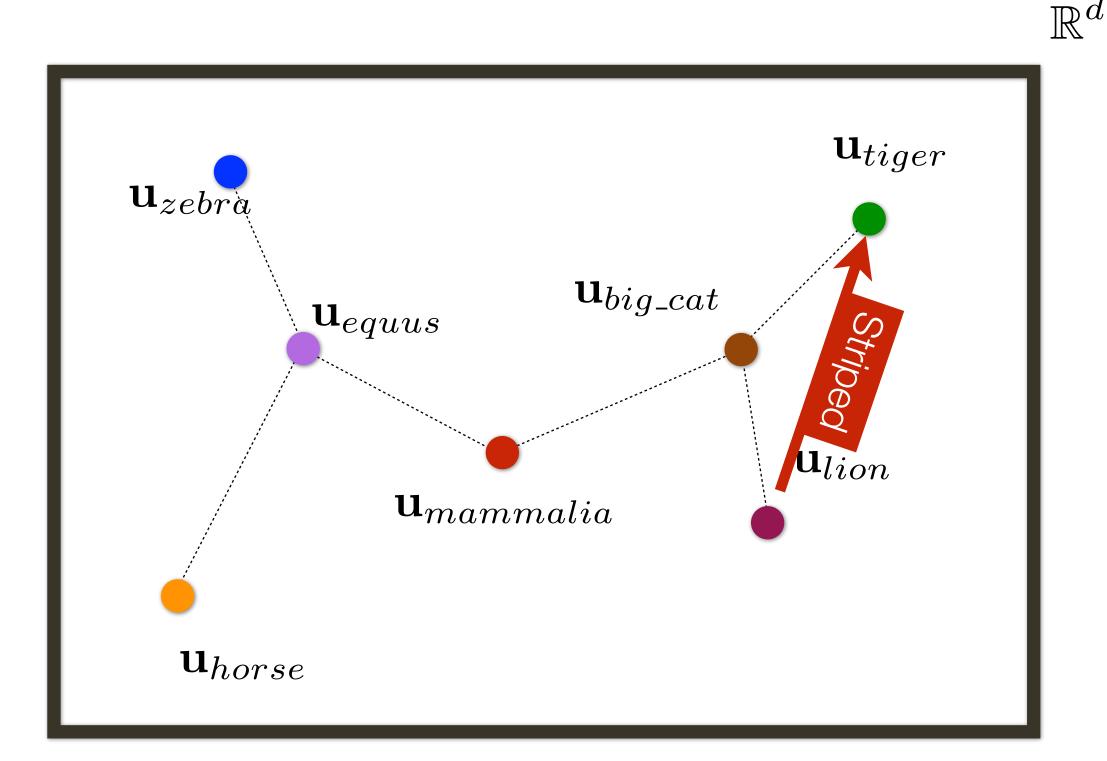
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Attribute Embedding -



Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Image Embedding

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

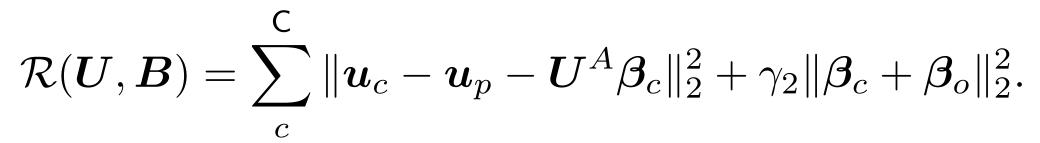
Attribute Embedding -

$$\Psi_A(attr_i) = \mathbf{a}_i : \{1, ..., A\} \to \mathbb{R}^d, s.t. ||\mathbf{a}_i||^2 \le 1$$

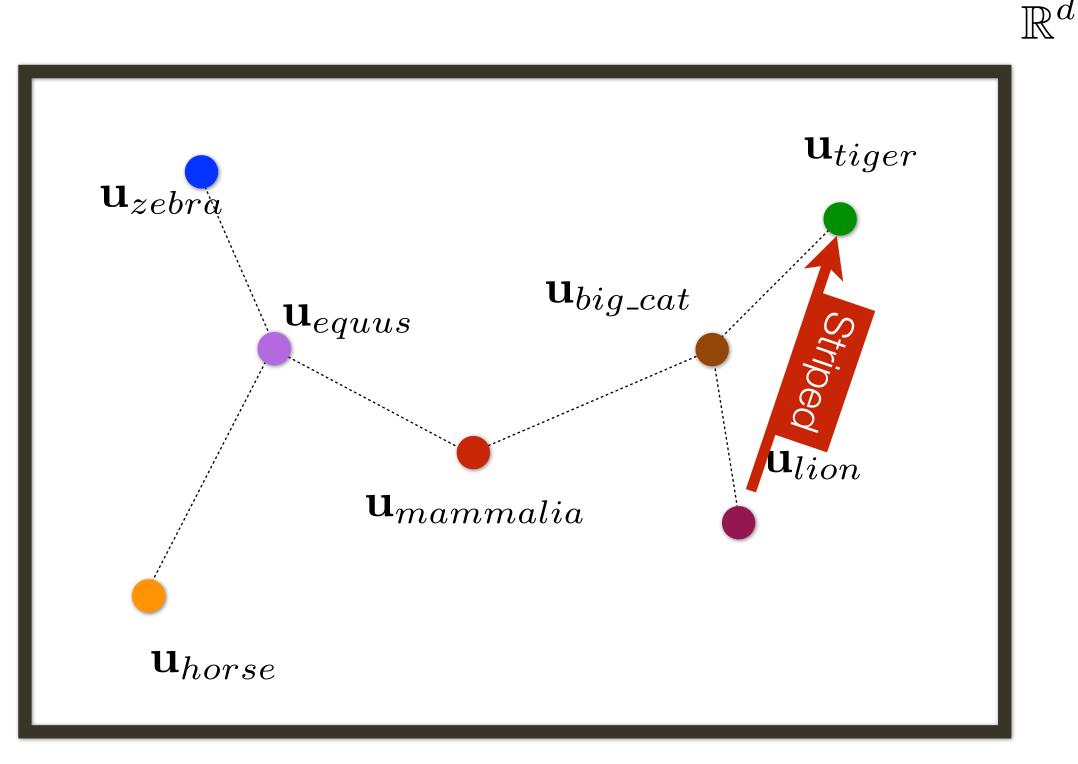
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:



each category is a parent + sparse subset of attribute bases



$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

 \mathbb{R}^d

Unified Semantic Embedding

Image Embedding

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Attribute Embedding

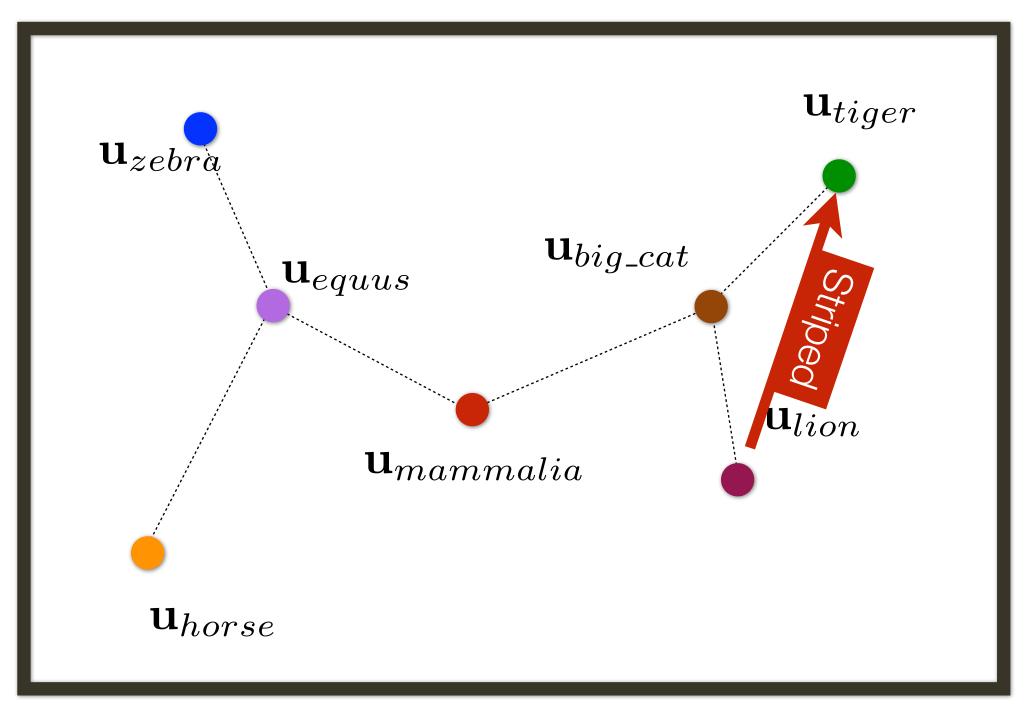
$$\Psi_A(attr_i) = \mathbf{a}_i : \{1, ..., A\} \to \mathbb{R}^d, s.t. ||\mathbf{a}_i||^2 \le 1$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

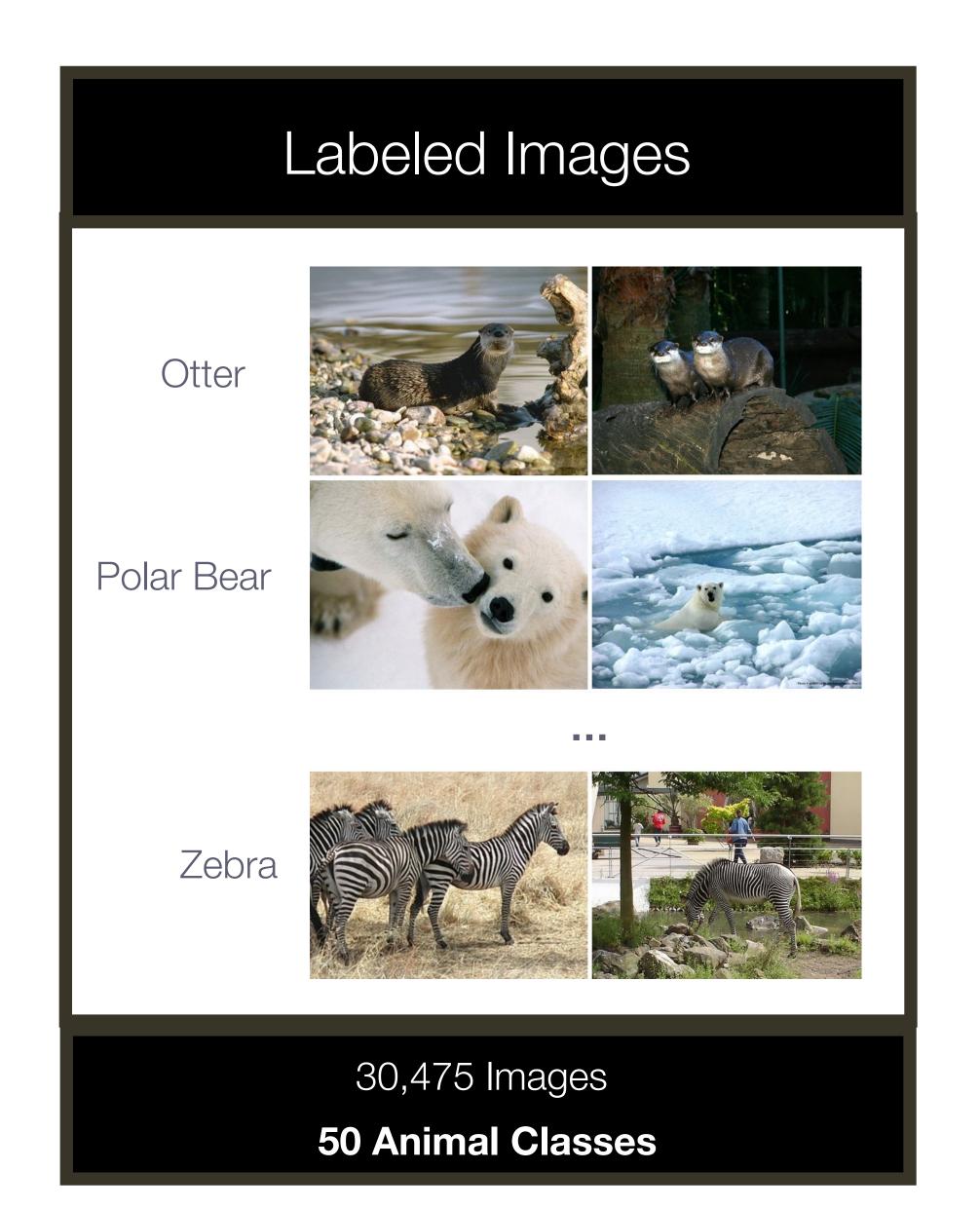
Objective Function:

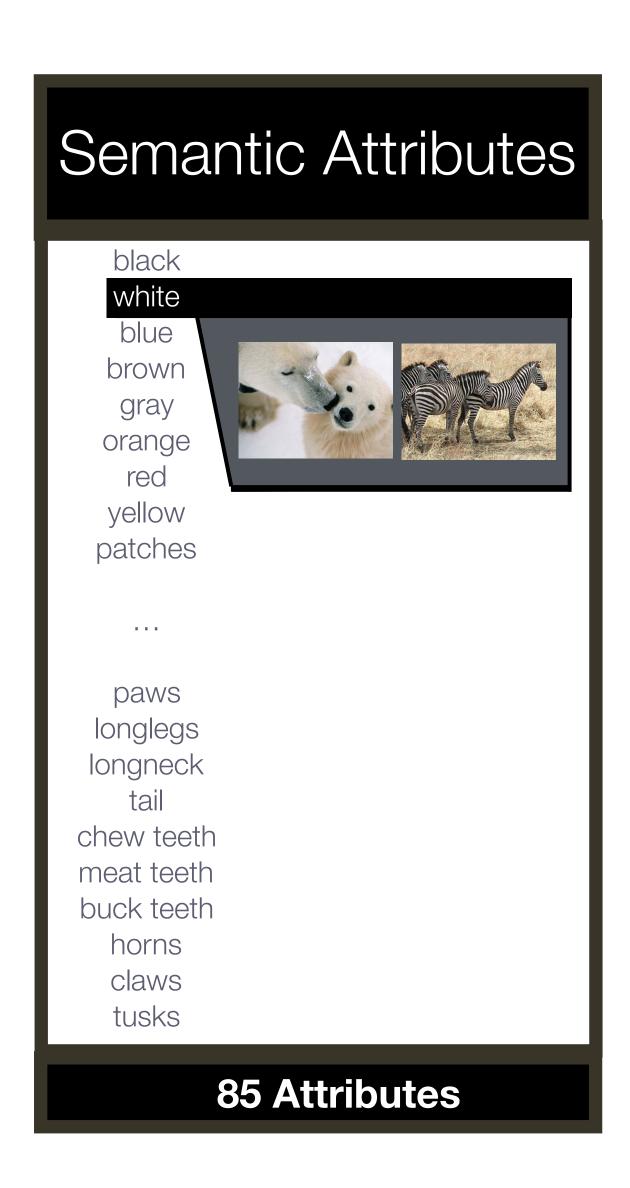
Alternating optimization



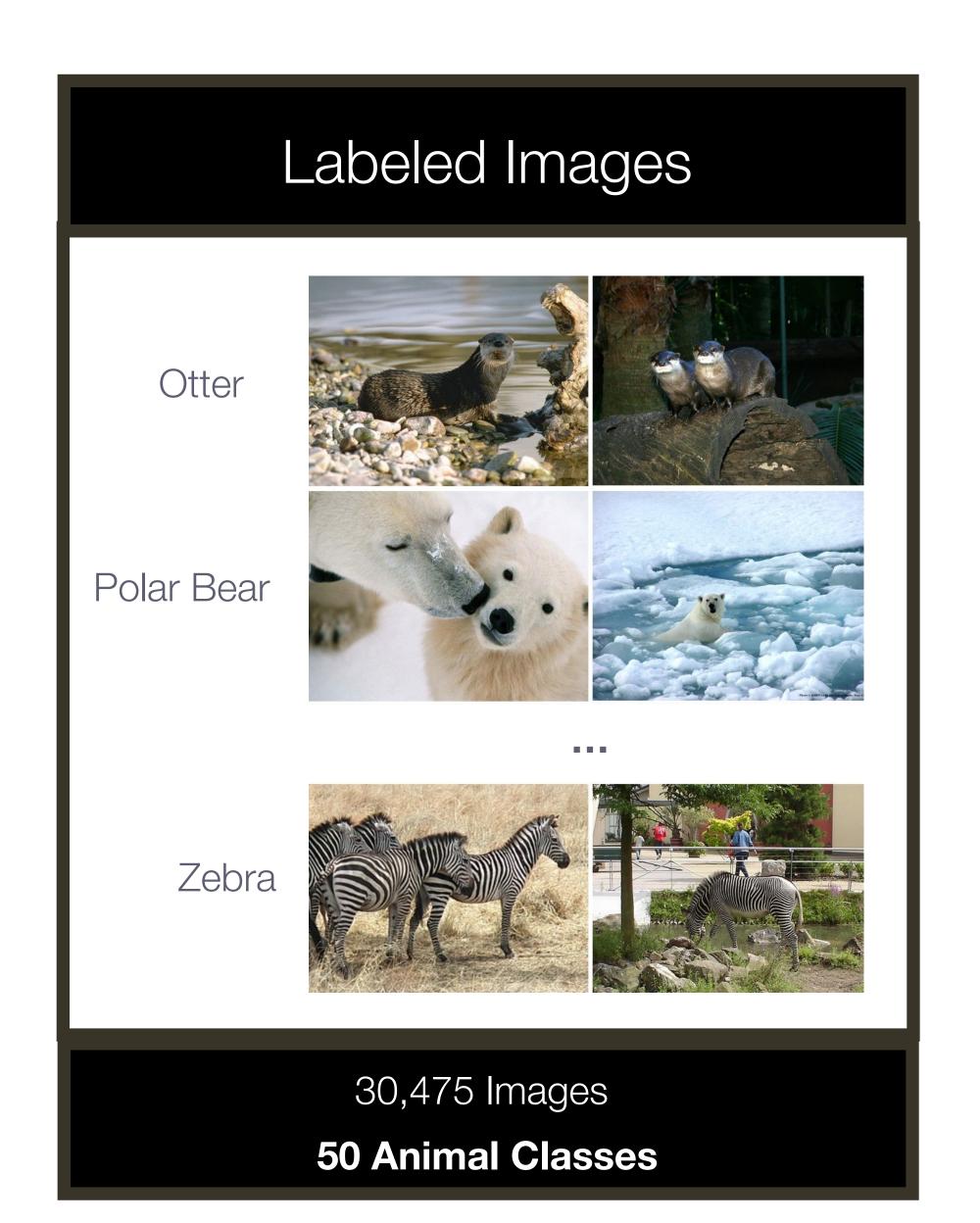
$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

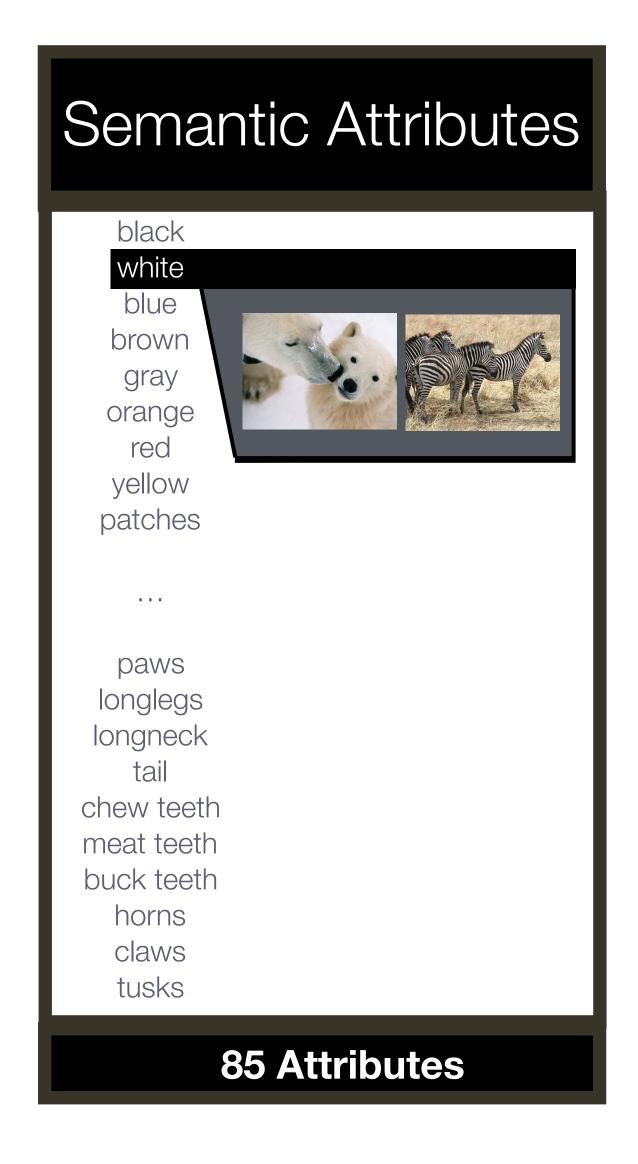
Experiments: Animals with Attributes (AwA) Dataset





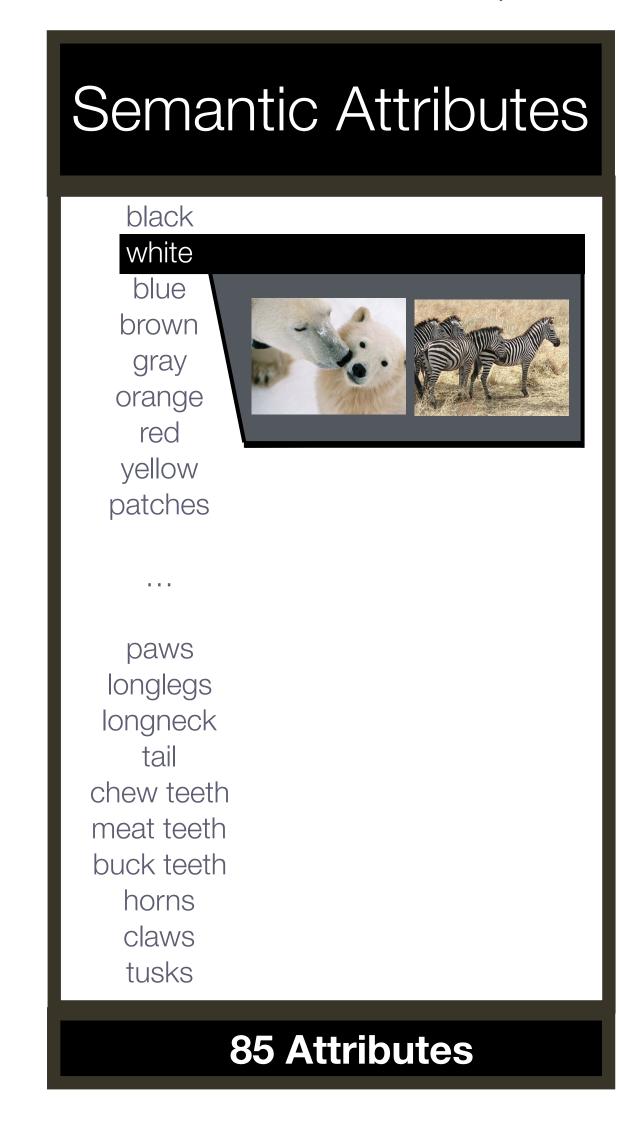
Experiments: Animals with Attributes (AwA) Dataset





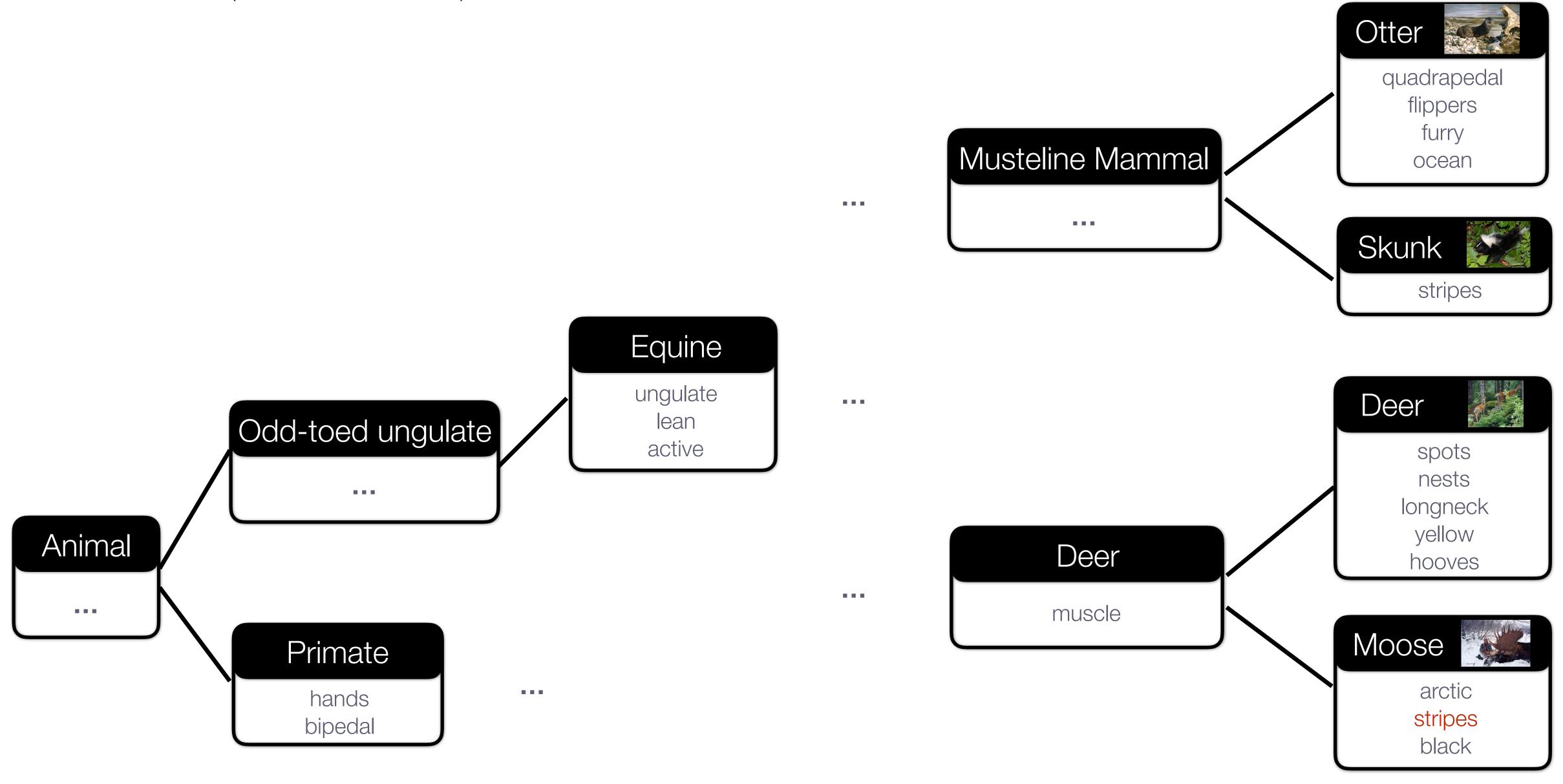
Experiments: Animals with Attributes (AwA) Dataset

(we assume no association between classes and attributes)



Experiments

Results with AWA (with latent attributes)



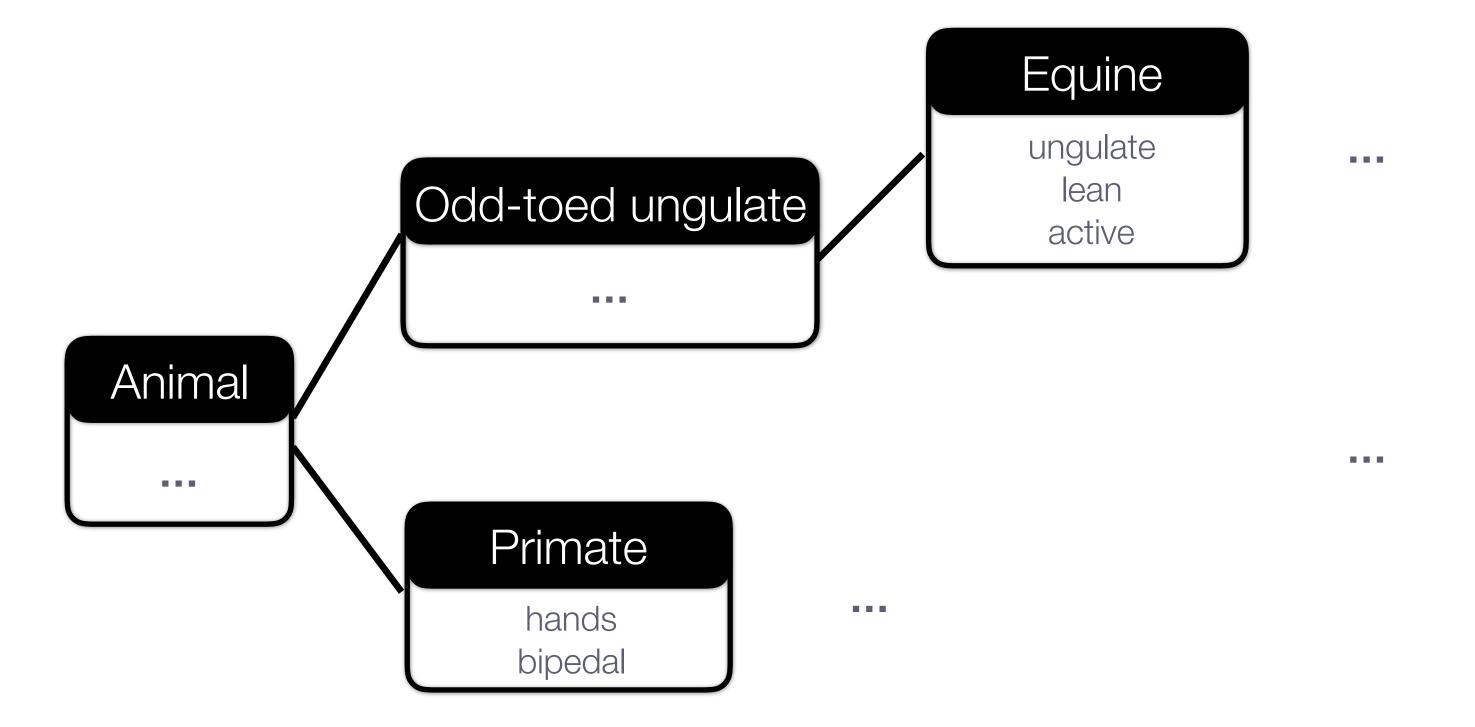
[Hwang et al., 2014]

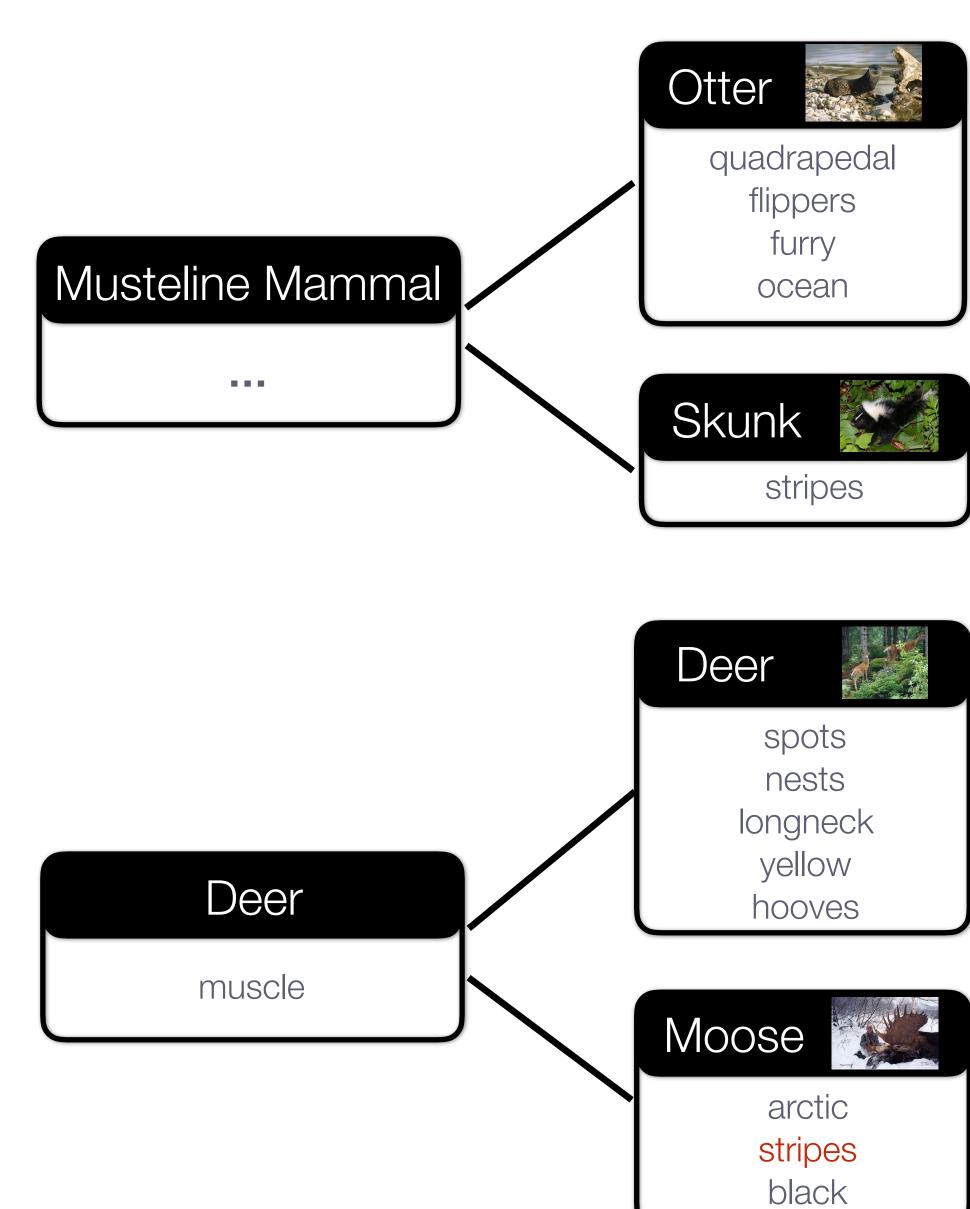
Experiments

Results with AWA (with latent attributes)

Model benefits:

- highly interpretable
- efficient in learning





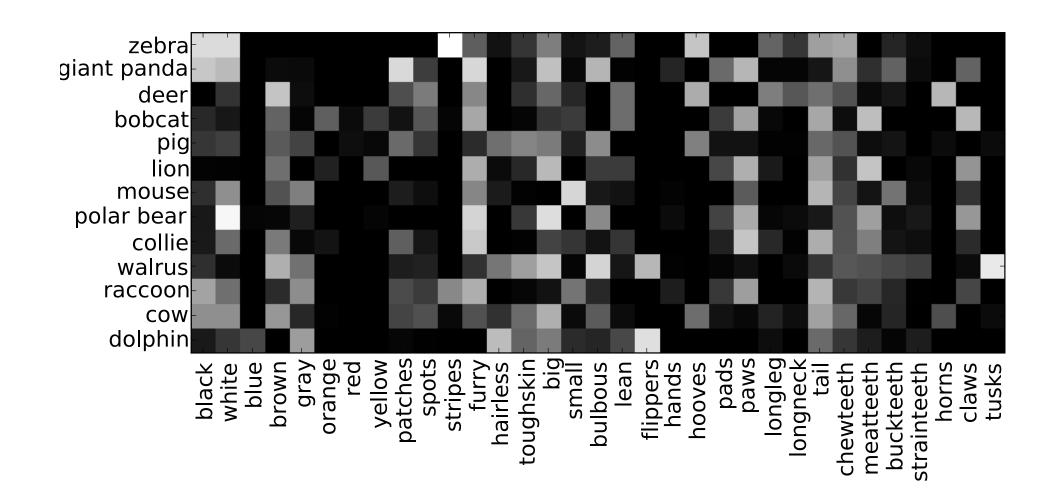
[Hwang et al., 2014]

Experiments

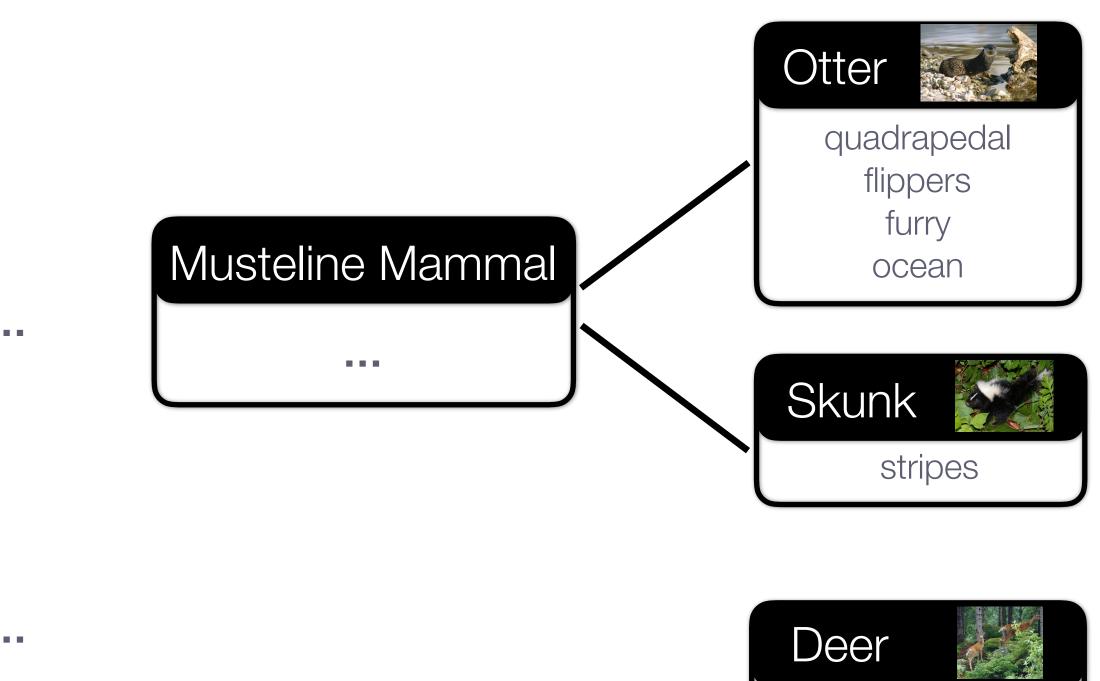
Results with AWA (with latent attributes)

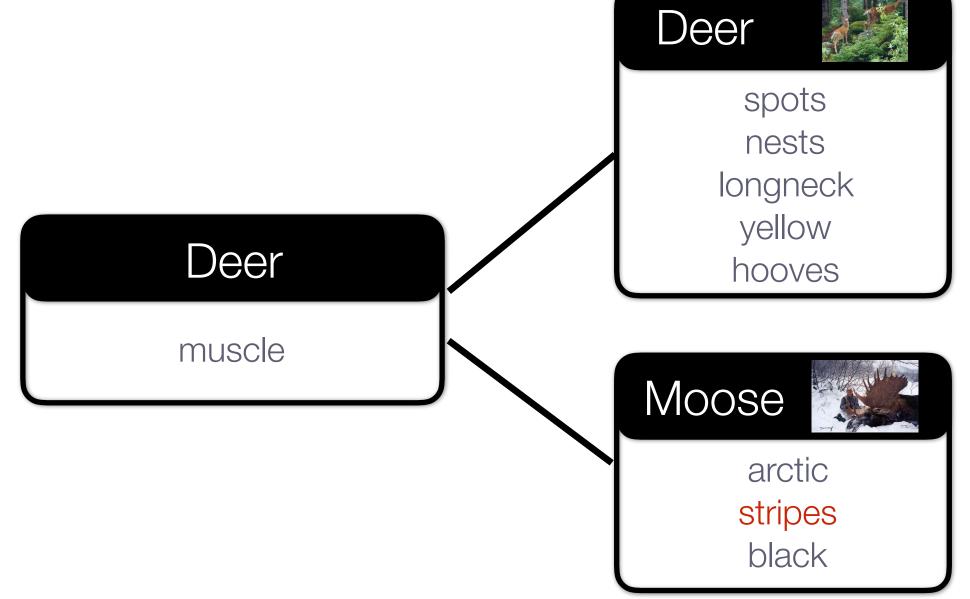
Model benefits:

- highly interpretable
- efficient in learning



alternative attribute-based representations





Experiments

Results with AWA (with latent attributes)

			Flat hit @ k (%)		Hierarchical pr	ecision @ k (%)
	Method	1	2	5	2	5
No	Ridge Regression	38.39 ± 1.48	48.61 ± 1.29	62.12 ± 1.20	38.51 ± 0.61	41.73 ± 0.54
semantics	NCM [1]	43.49 ± 1.23	57.45 ± 0.91	75.48 ± 0.58	45.25 ± 0.52	50.32 ± 0.47
Scillatities	LME	44.76 ± 1.77	58.08 ± 2.05	75.11 ± 1.48	44.84 ± 0.98	49.87 ± 0.39
	LMTE [2]	38.92 ± 1.12	49.97 ± 1.16	63.35 ± 1.38	38.67 ± 0.46	41.72 ± 0.45
Implicit	ALE [3]	36.40 ± 1.03	50.43 ± 1.92	70.25 ± 1.97	42.52 ± 1.17	52.46 ± 0.37
semantics	HLE [3]	33.56 ± 1.64	45.93 ± 2.56	64.66 ± 1.77	46.11 ± 2.65	$\textbf{56.79} \pm \textbf{2.05}$
	AHLE [3]	38.01 ± 1.69	52.07 ± 1.19	71.53 ± 1.41	44.43 ± 0.66	54.39 ± 0.55
Explicit	LME-MTL-S	45.03 ± 1.32	57.73 ± 1.75	74.43 ± 1.26	46.05 ± 0.89	51.08 ± 0.36
semantics	LME-MTL-A	45.55 ± 1.71	58.60 ± 1.76	74.97 ± 1.15	44.23 ± 0.95	48.52 ± 0.29
USE	USE-No Reg.	45.93 ± 1.76	59.37 ± 1.32	74.97 ± 1.15	47.13 ± 0.62	51.04 ± 0.46
OSL	USE-Reg.	46.42 ± 1.33	59.54 ± 0.73	76.62 ± 1.45	47.39 ± 0.82	53.35 ± 0.30

Variants of our Unified Semantic Embedding (**USE**) model:

Ontology
Attributes

Parent + Sparse Attributes

- [1] Mensink, Varbeek, Perronnin, Csurka Chapelle, TPAMI'13
- [2] Weinberger, Chapelle, NIPS'09
- [3] Akata, Perronnin, Harchaoui, Schmid, CVPR'13

Experiments

Results with AWA (with latent attributes)

Method Ridge Regression NCM [1]	1		
•			
NCM [1]			
L J			
LME	38.93		
LMTE [2]			
ALE [3]			
HLE [3]			
AHLE [3]			
LME-MTL-S			
LME-MTL-A			
USE-No Reg.	44.87	+5.9%	
USE-Reg.	49.87	+5.0%	
	Ontology		
r Unified Semantic			
SE) model:	Parent + Sparse Attributes		
	LMTE [2] ALE [3] HLE [3] AHLE [3] LME-MTL-S LME-MTL-A USE-No Reg. USE-Reg. USE-Reg.	LMTE [2] ALE [3] HLE [3] AHLE [3] LME-MTL-S LME-MTL-A USE-No Reg. USE-Reg. 44.87 USE-Reg. Ontology Attributes	

with 2 samples/category

- [1] Mensink, Varbeek, Perronnin, Csurka Chapelle, TPAMI'13
- [2] Weinberger, Chapelle, NIPS'09
- [3] Akata, Perronnin, Harchaoui, Schmid, CVPR'13

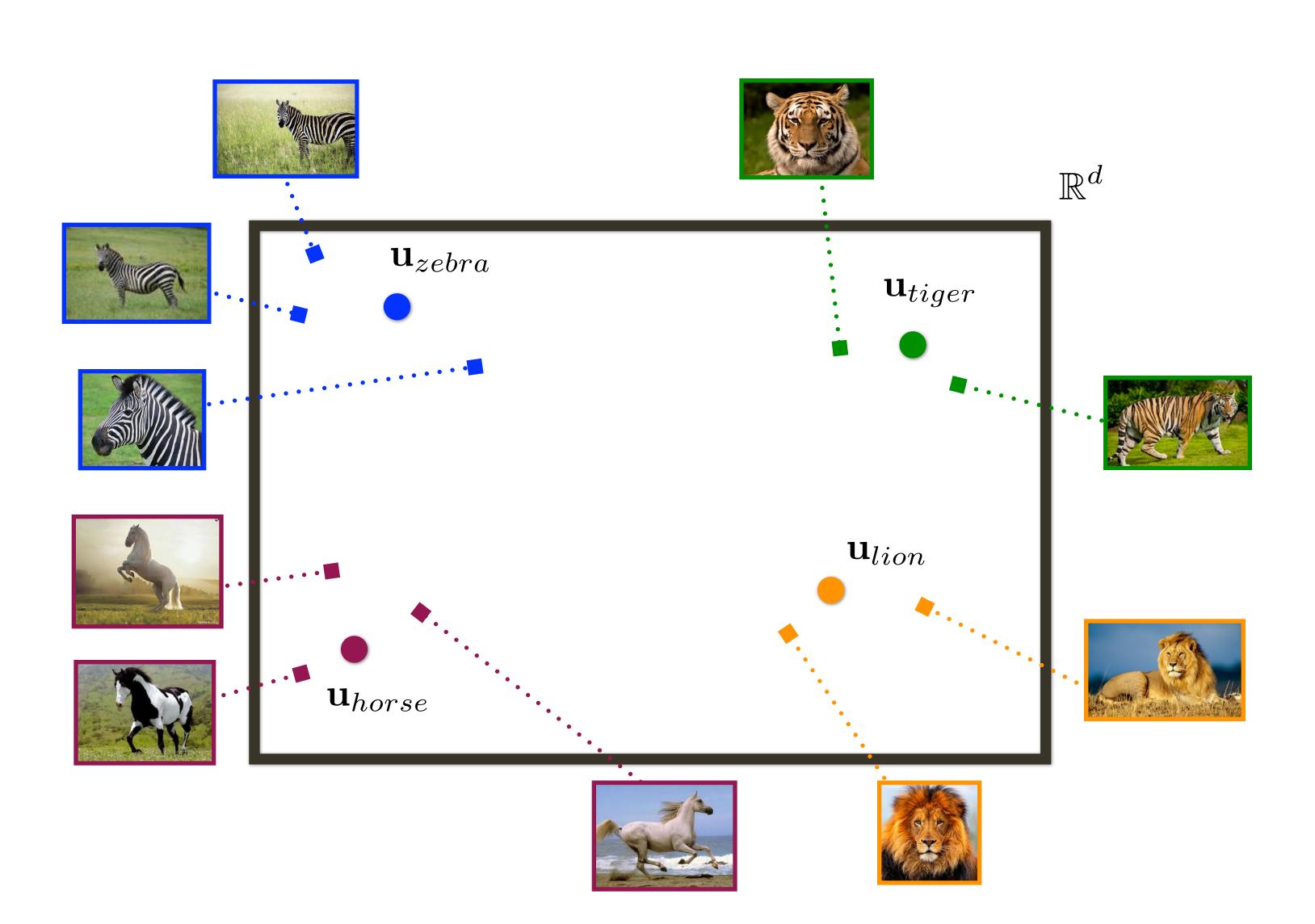
Semantic Embeddings

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

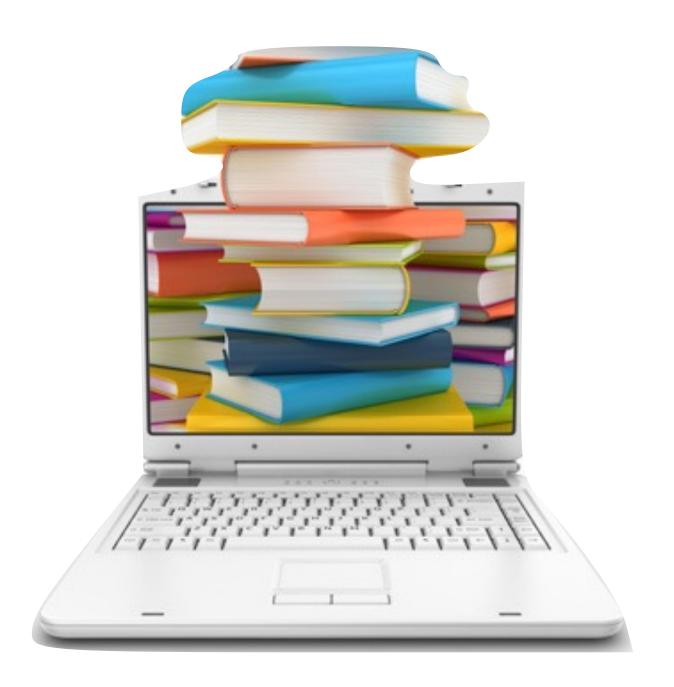


word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning

Label Embedding ••••

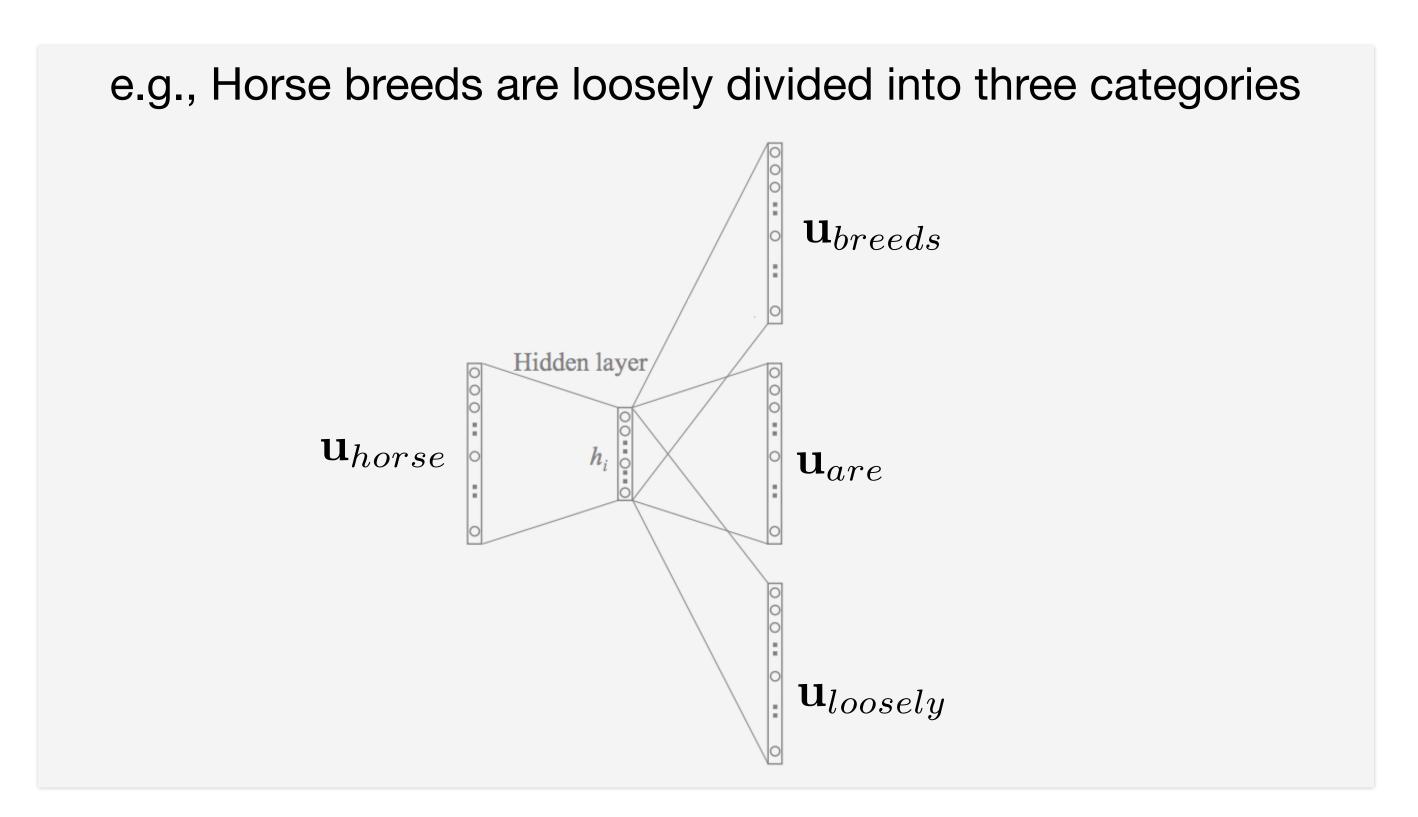
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning

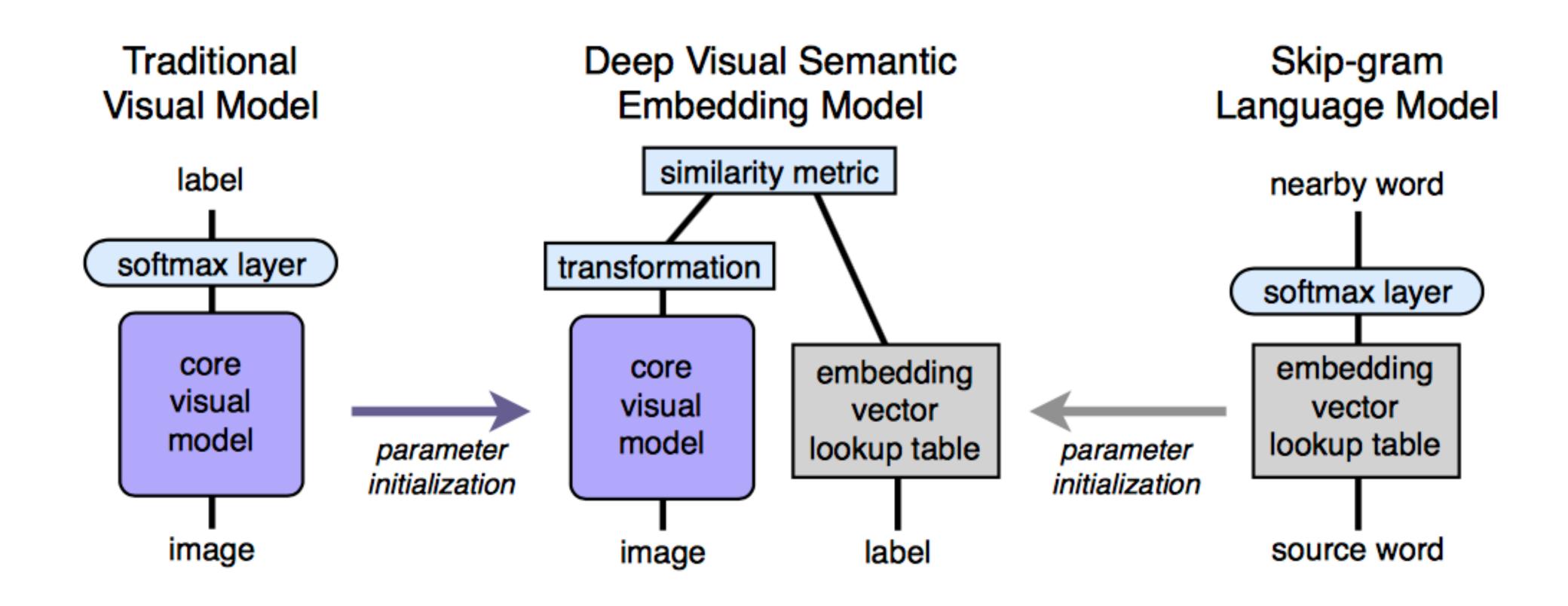
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



Skip-gram Model: unsupervised semantic representation for words

DeViSE: A Deep Visual-Semantic Embedding Model

[Frome et al., 2013]



$$loss(image, label) = \sum_{j \neq label} \max[0, margin - \vec{t}_{label} M \vec{v}(image) + \vec{t}_{j} M \vec{v}(image)]$$

DeViSE: A Deep Visual-Semantic Embedding Model

[Frome et al., 2013]

Supervised Results

		Flat hit@k (%)			Hierarchical precision@k				
Model type	dim	1	2	5	10	2	5	10	20
Softmax baseline	N/A	55.6	67.4	78.5	85.0	0.452	0.342	0.313	0.319
DeViSE	500	53.2	65.2	76.7	83.3	0.447	0.352	0.331	0.341
	1000	54.9	66.9	78.4	85.0	0.454	0.351	0.325	0.331
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042

Zero-shot Results

Model	200 labels	1000 labels
DeViSE	31.8%	9.0%
Mensink et al. 2012 [12]	35.7%	1.9%
Rohrbach et al. 2011 [17]	34.8%	_

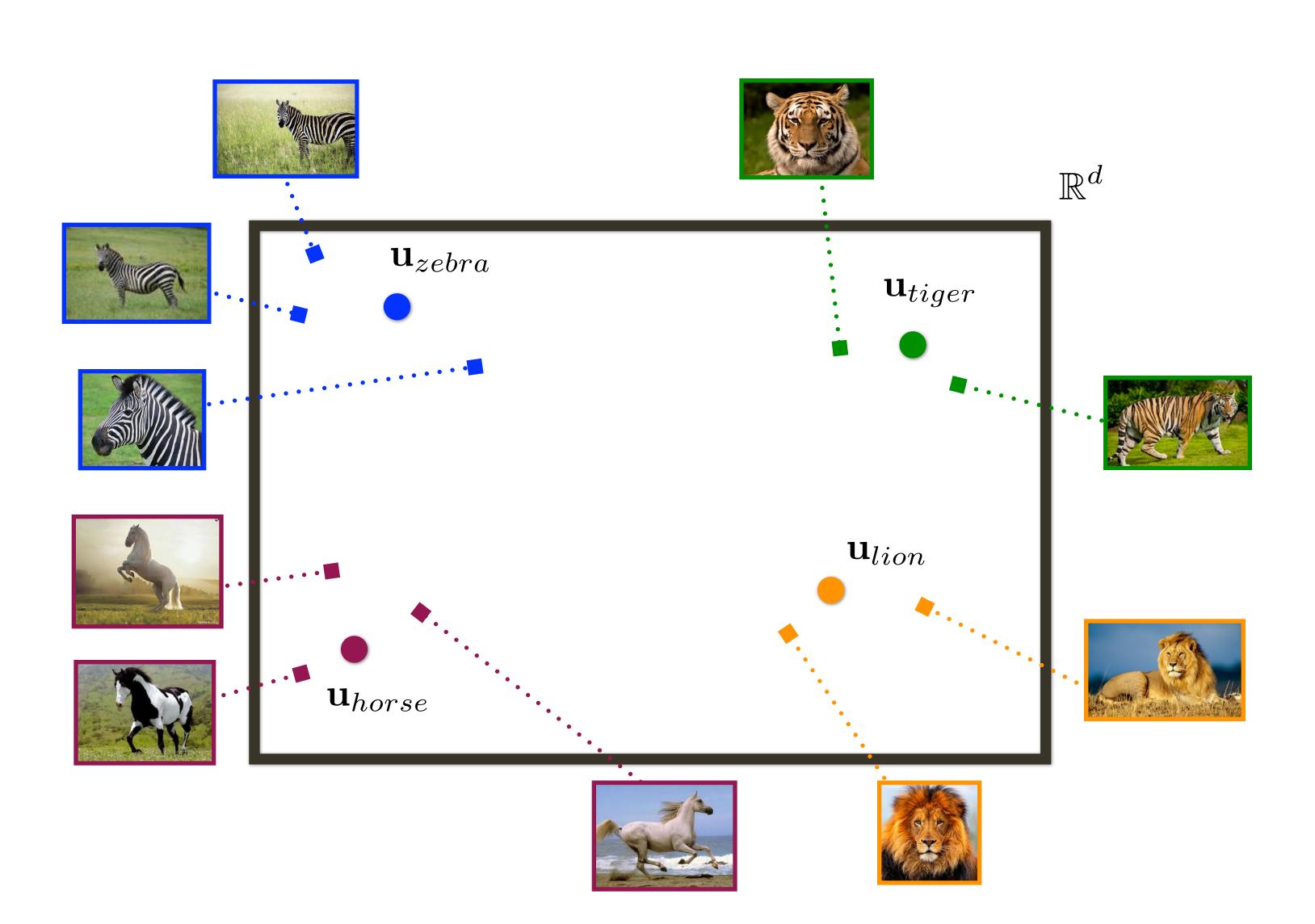
Semantic Embeddings

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

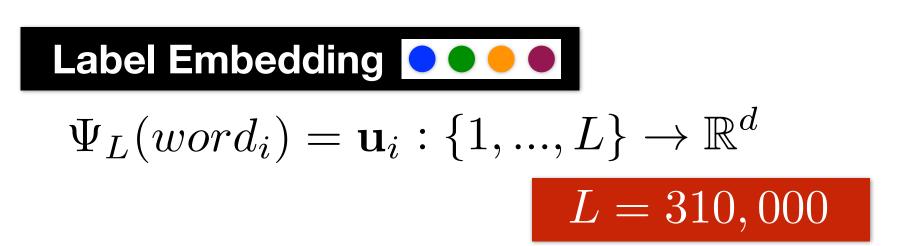
Label Embedding ••••

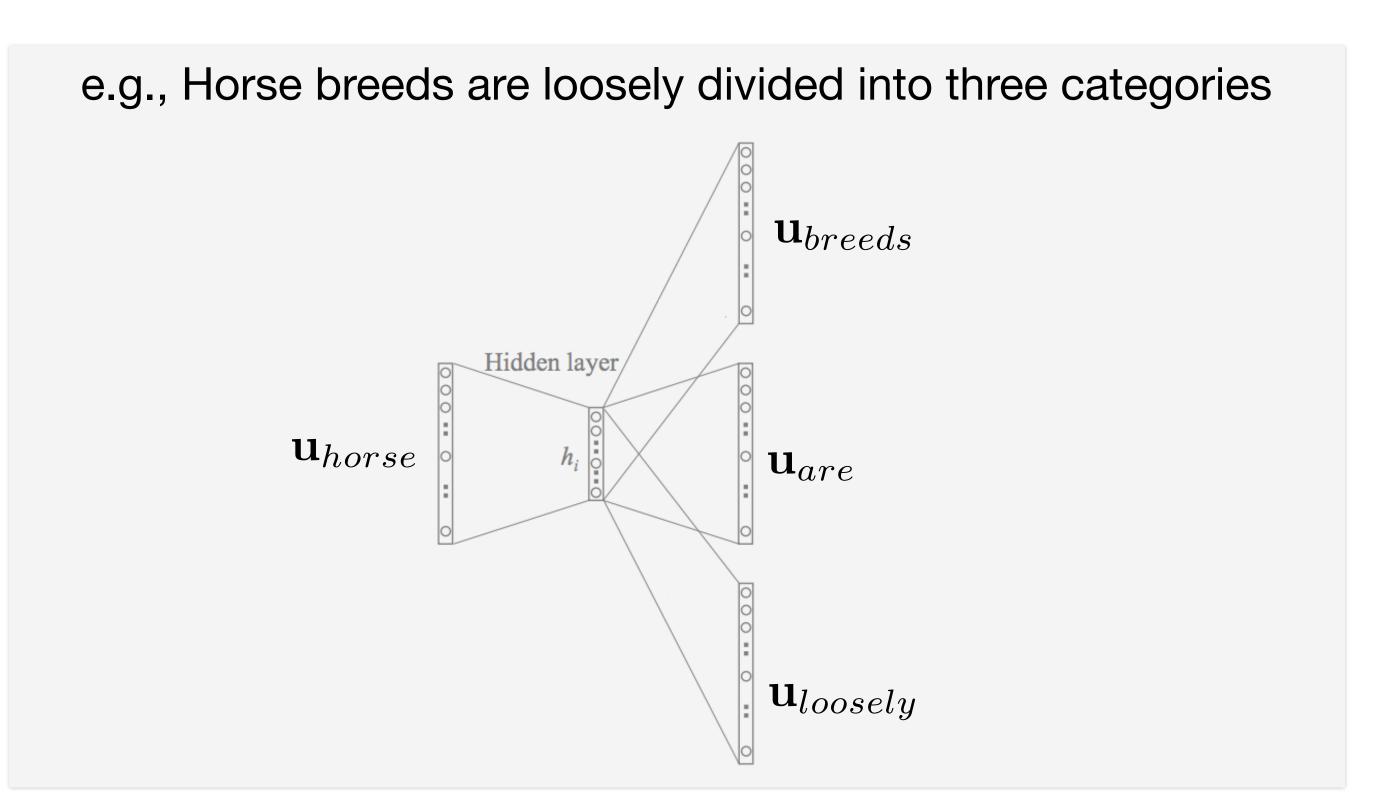
$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$



word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the same context tend to have similar meaning





Skip-gram Model: unsupervised semantic representation for words (trained from 7 billion word linguistic corpus)

[Fu et al., 2016]

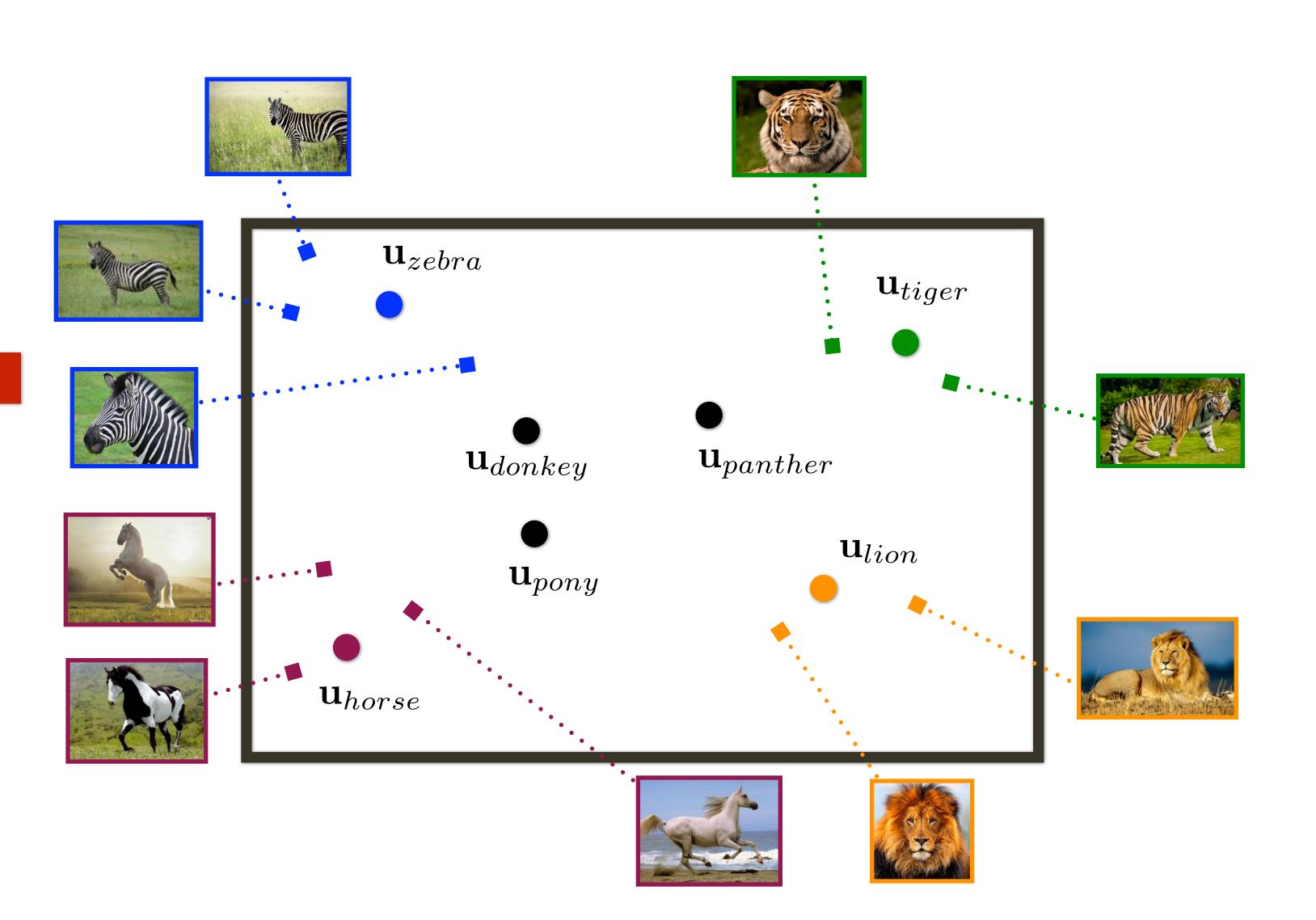
Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000



[Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

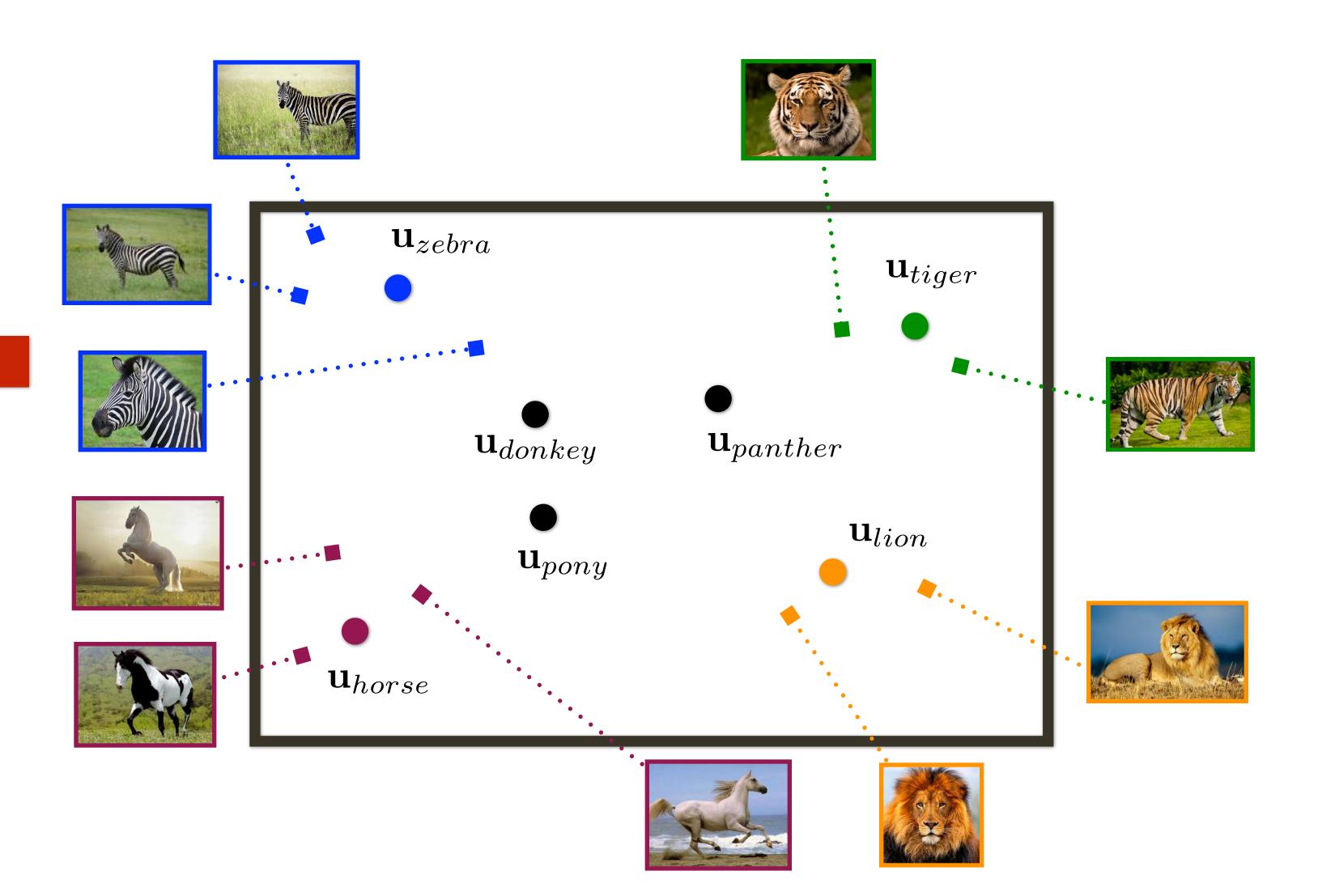
Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$



[Fu et al., 2016]

Image Embedding

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

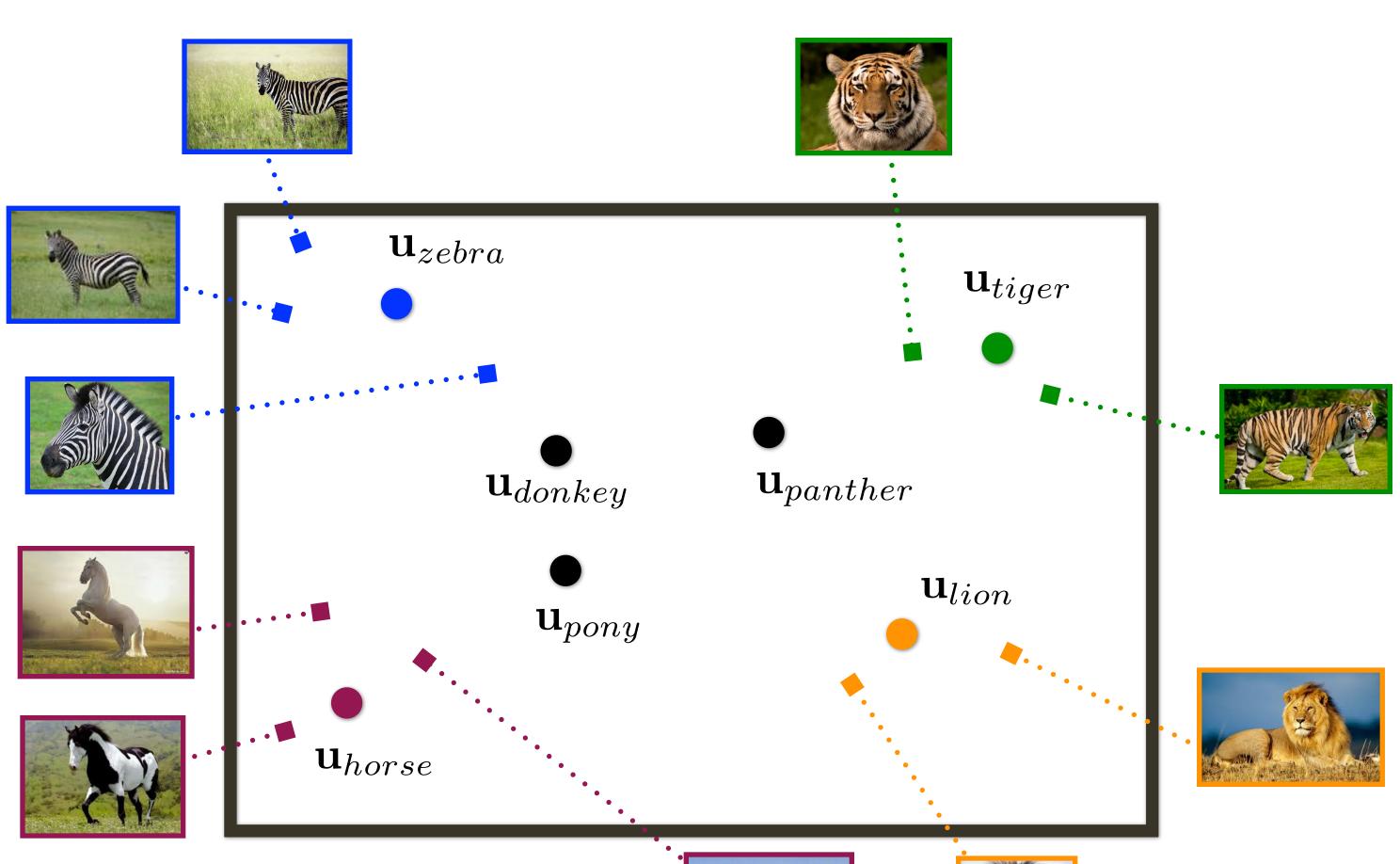
L = 310,000

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$$



[Fu et al., 2016]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000

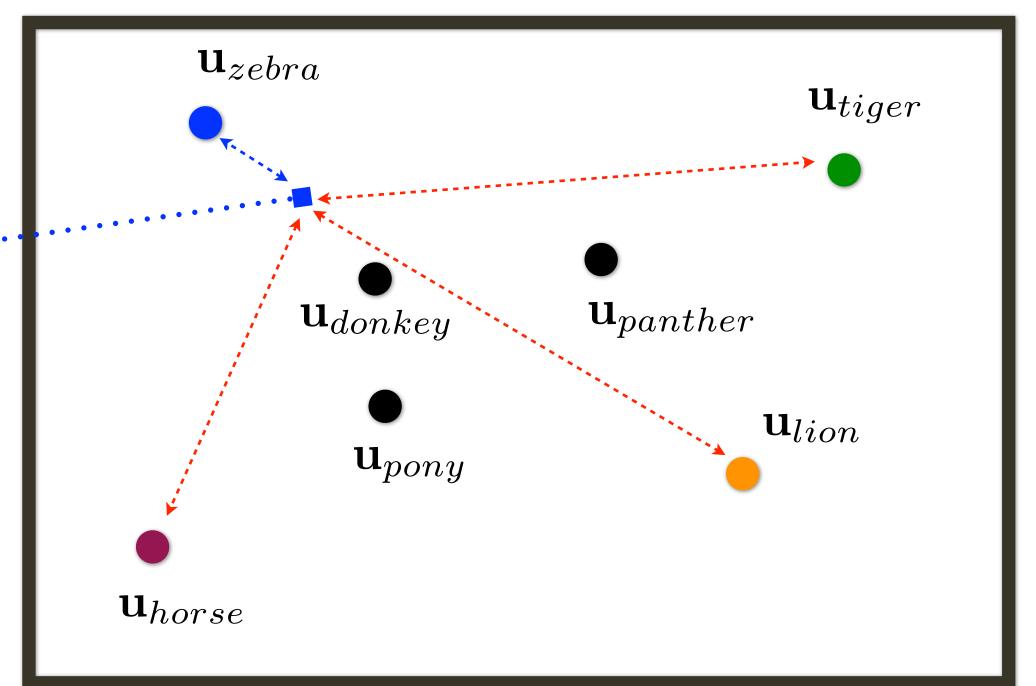
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$$

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$$



[Fu et al., 2016]

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Label Embedding •••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

L = 310,000

\mathbf{u}_{zebra} \mathbf{u}_{tiger} $\mathbf{u}_{panther}$ \mathbf{u}_{donkey} \mathbf{u}_{horse}

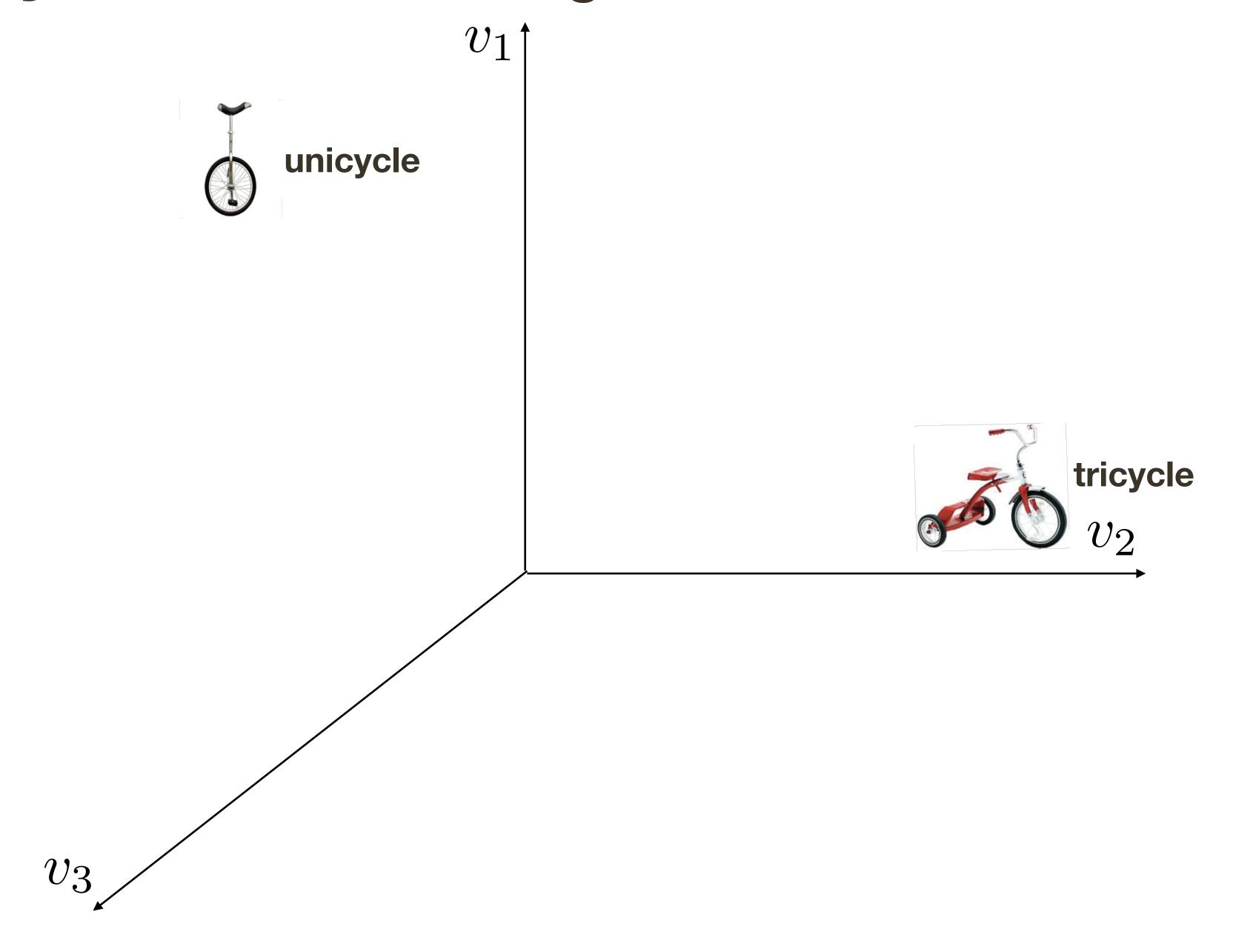
 $\mathcal{L}_C(\mathbf{W}, \mathbf{U}, \mathbf{x}_i, y_i) = \sum [1 + D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_{y_i}) - D(\mathbf{W}\mathbf{x}_i, \mathbf{u}_c)]$

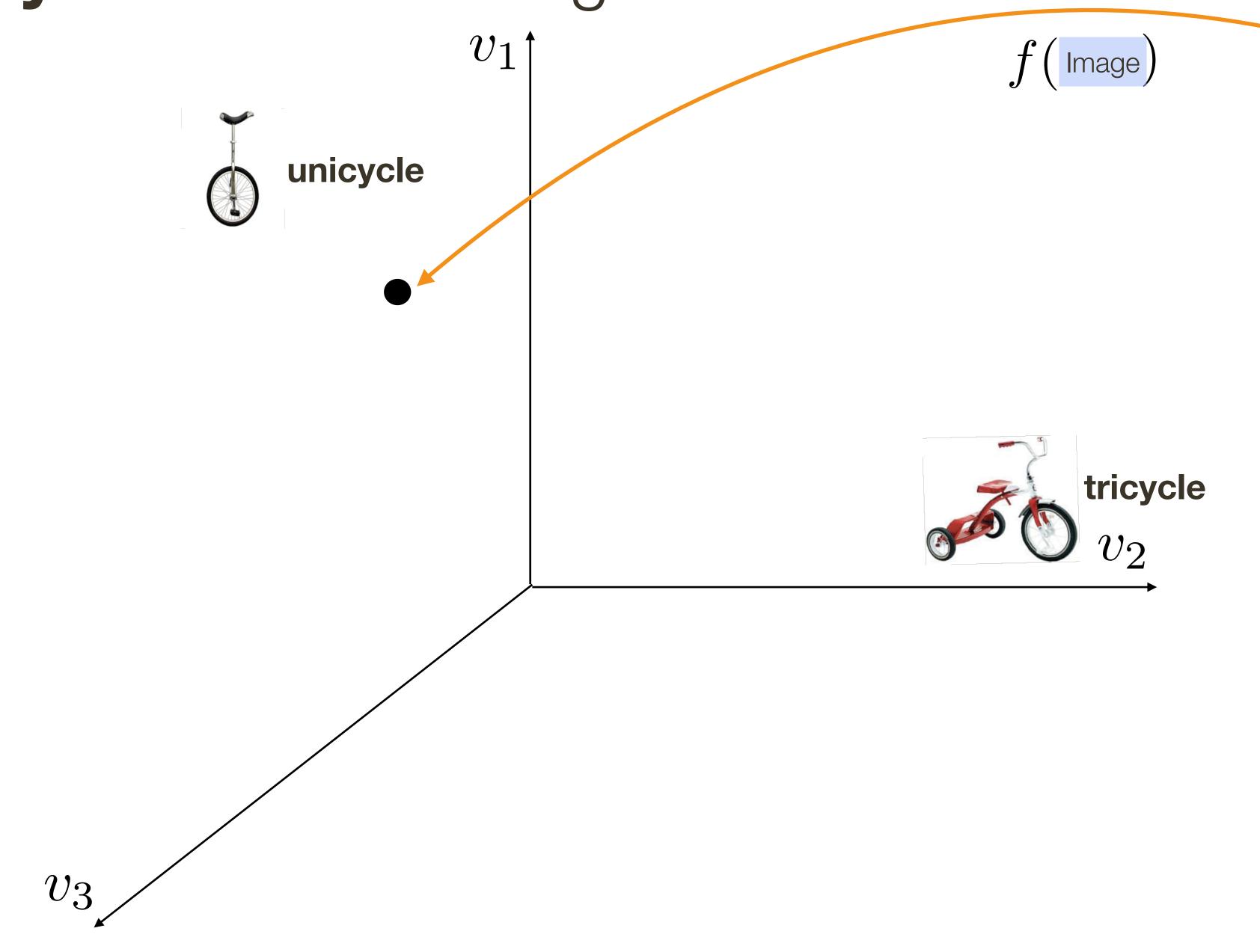
Similarity in Embedding Space

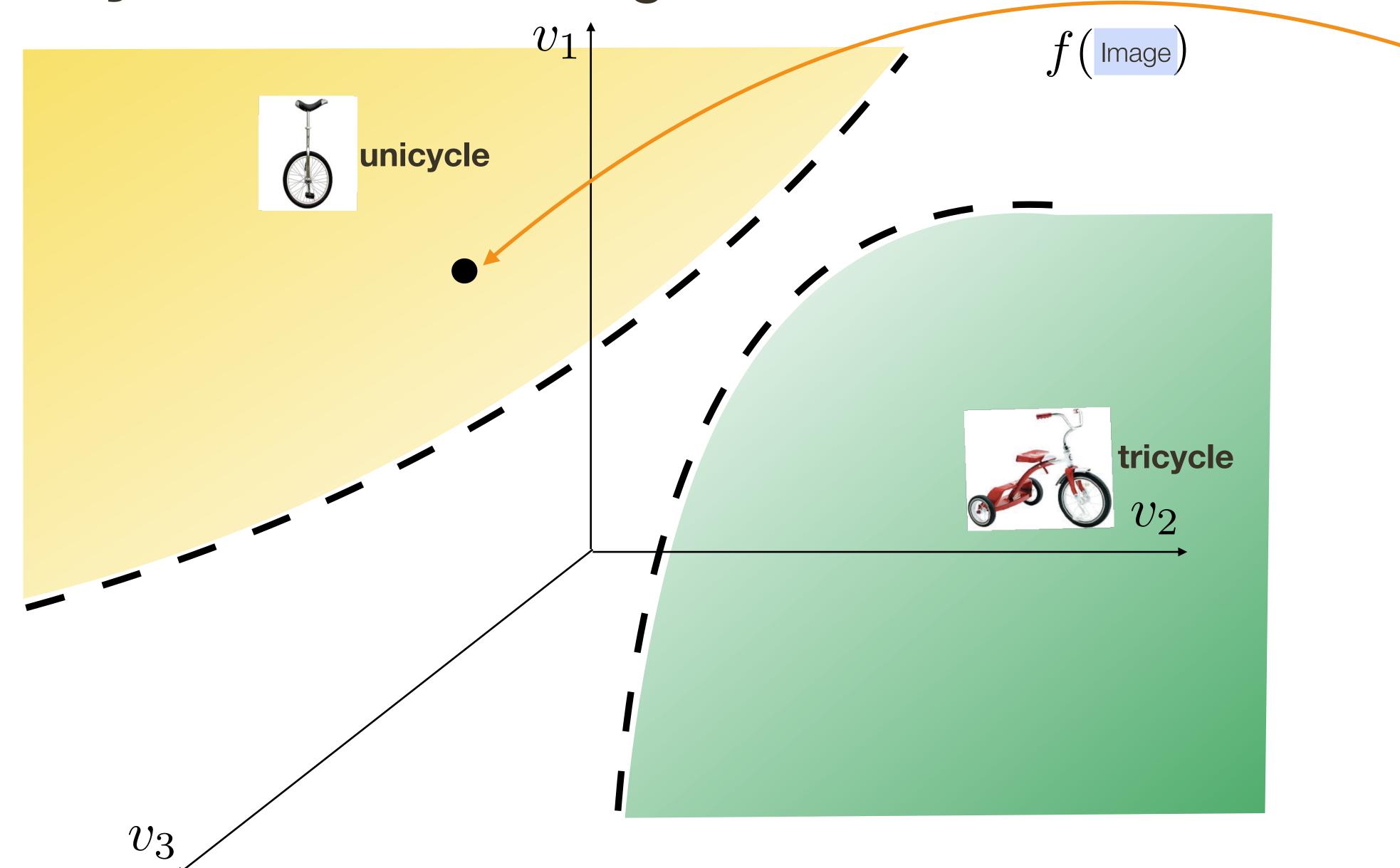
$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

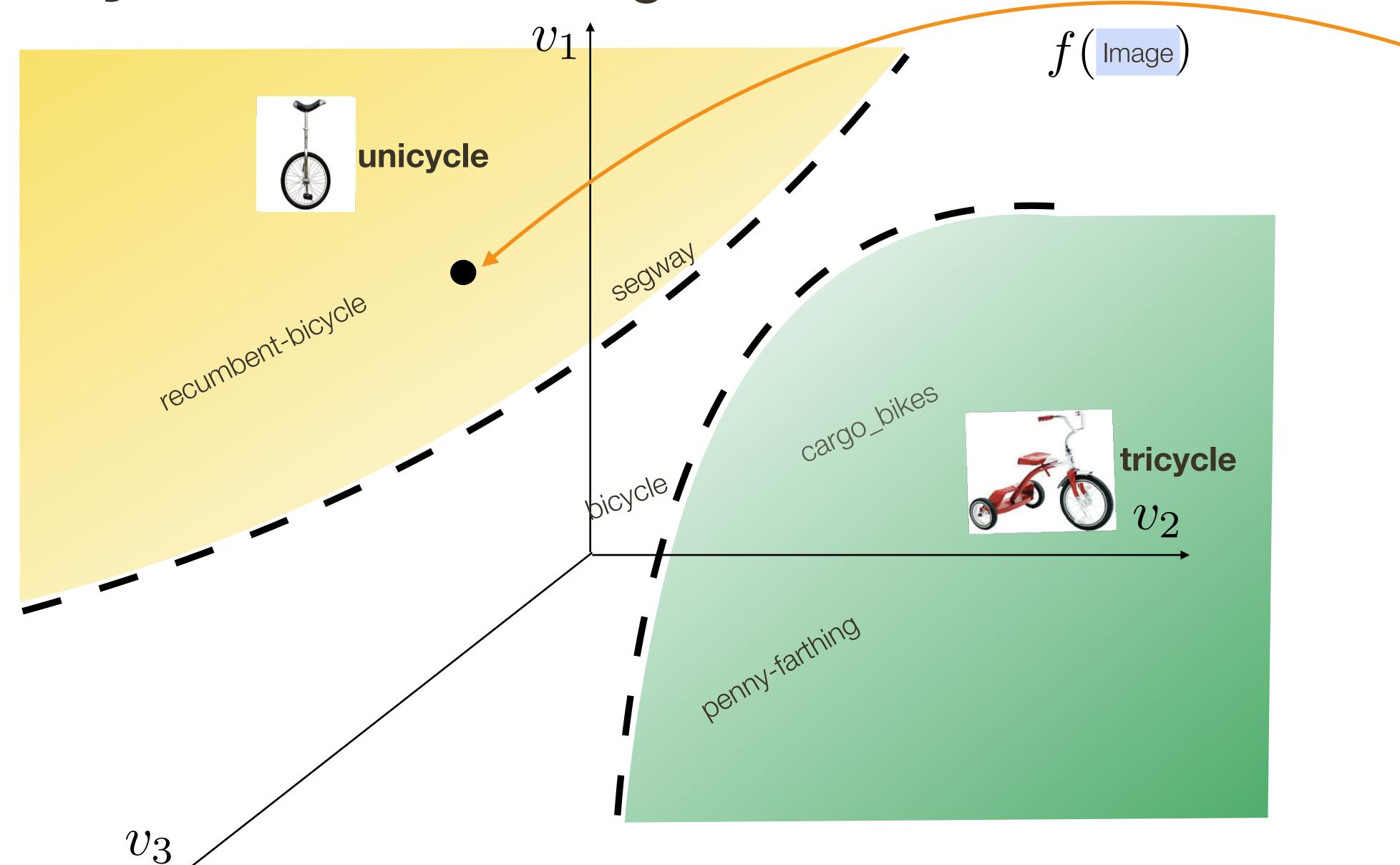
Objective Function:

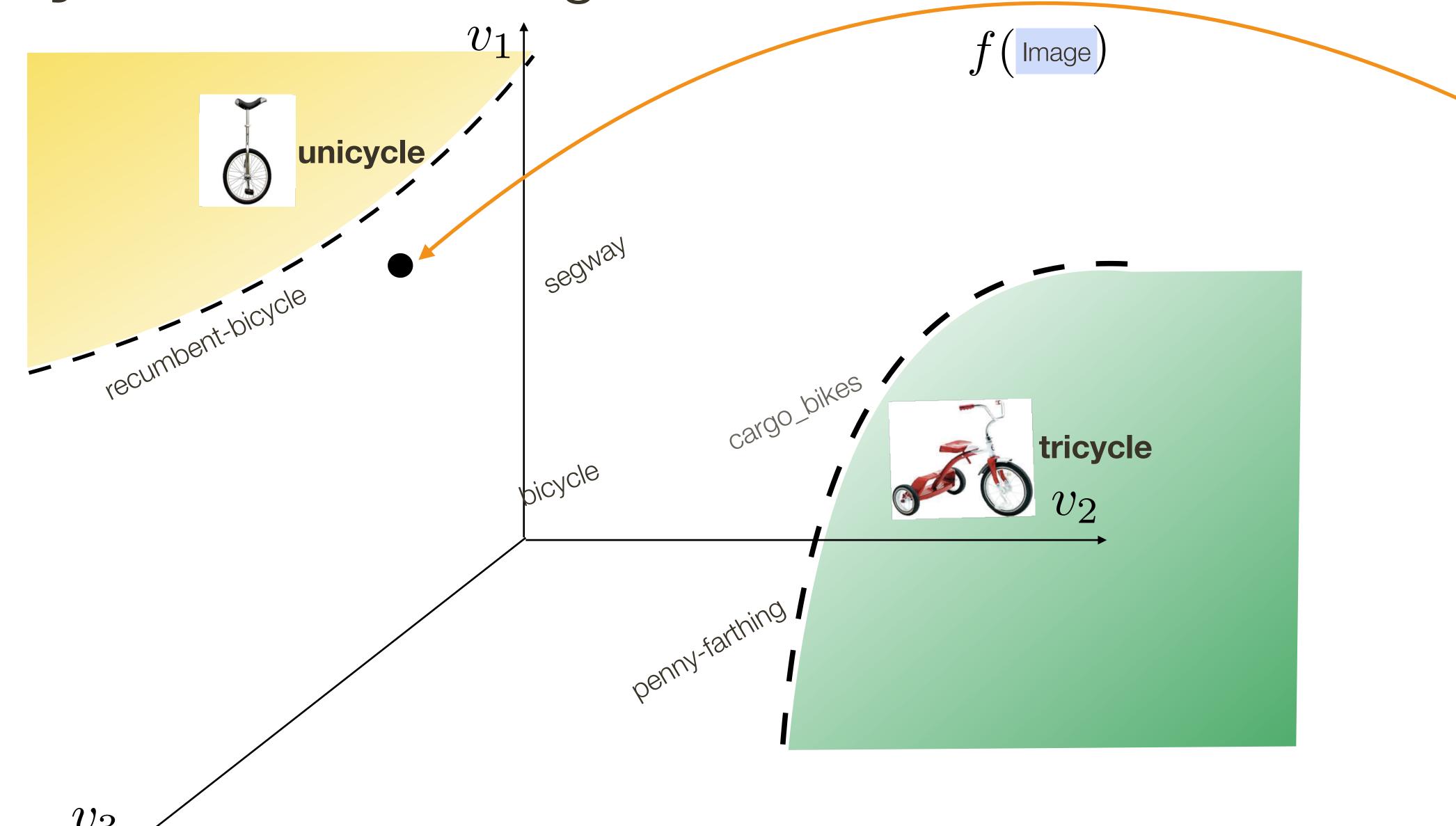
$$\min_{\mathbf{W}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mathcal{L}_{R}(\mathbf{W}, \mathbf{V}, I_{i}, y_{i}) + \mu ||V||_{F}^{2}$$











Experiments: Datasets

Animals with Attributes

Otter

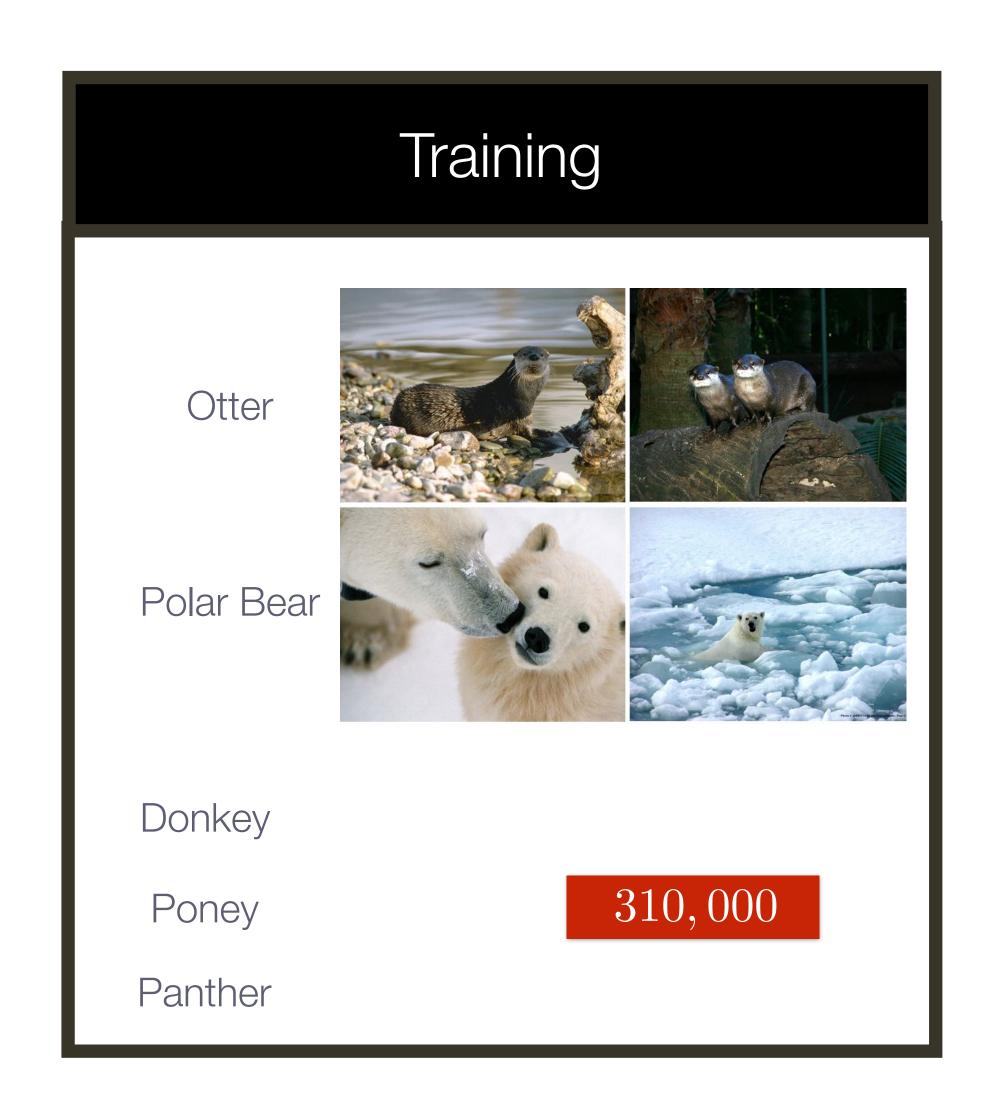
Auxiliary: 40 Animal Classes (annotated)

Target: 10 Animal Classes (NO annotation)

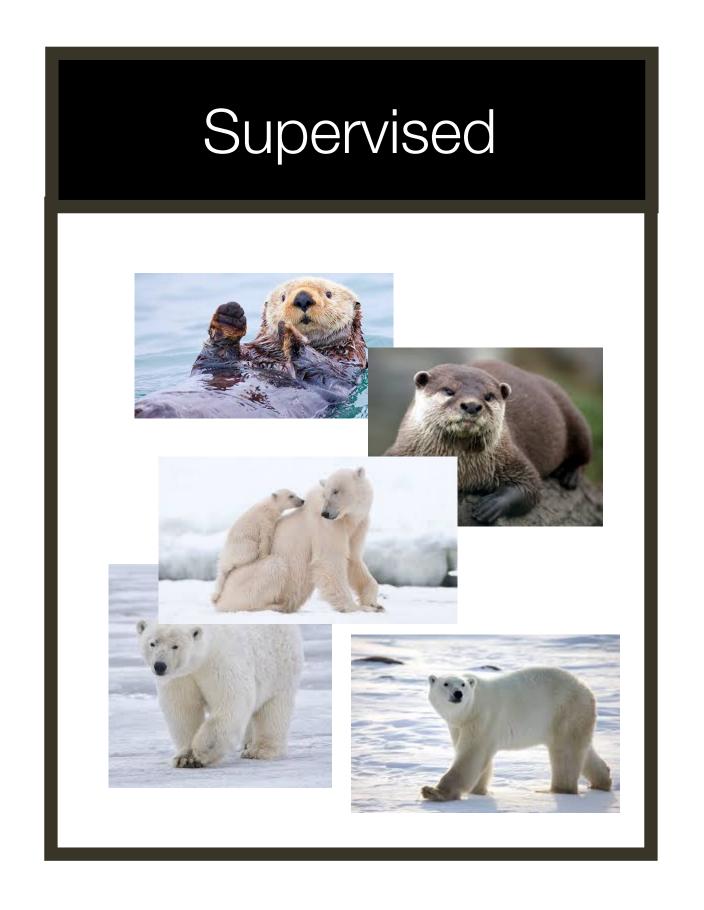
	No. Testing Classes			No. Testing Words		
AwA/ImageNet	Auxiliary	Target	Total	Vocabulary	Chance(%)	
SUPERVISED			40/1000	40/1000	2.5/0.1	
ZERO-SHOT			10/360	10/360	10/0.28	
OPEN-SET			50/1360	310K/310K	3.2E-04	

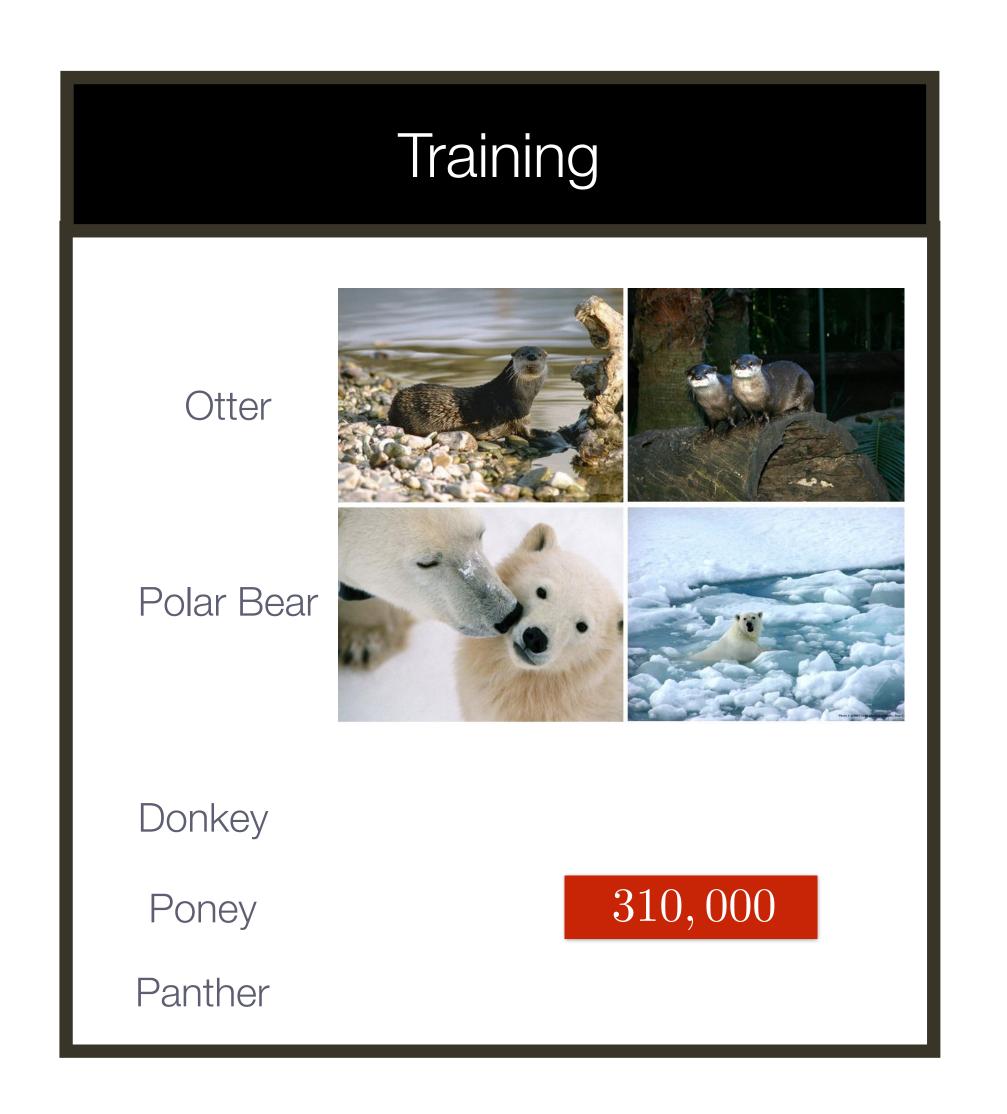
The tasks are only separated in **evaluation**;

We train **one unified model** for all the settings

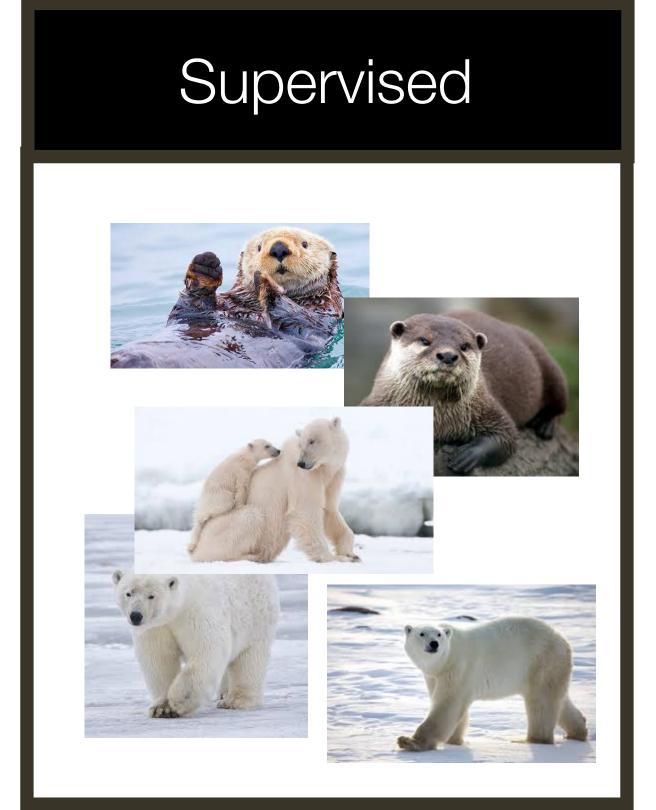


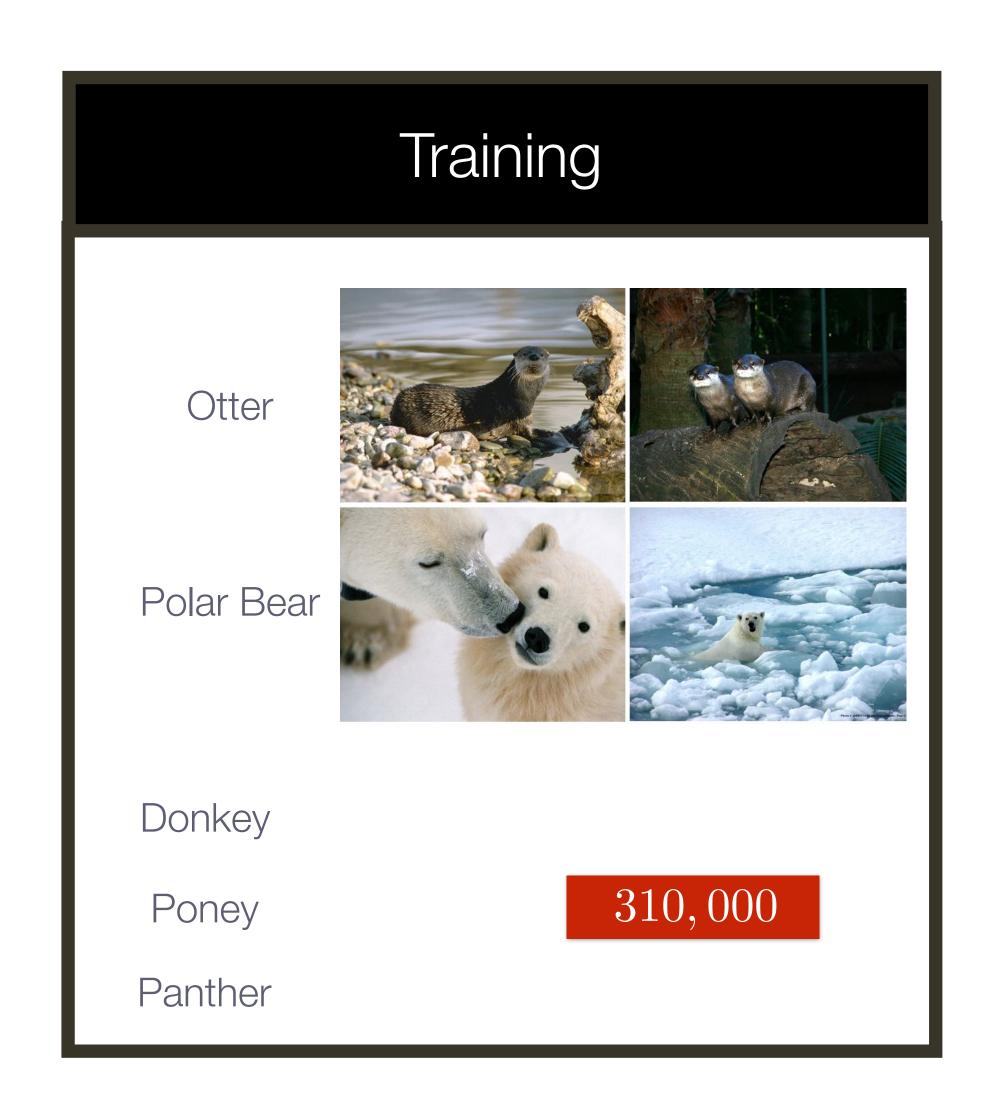
Testing





Testing





Testing

	No. Testing Classes			No. Testing Words		
AwA/ImageNet	Auxiliary	Target	Total	Vocabulary	Chance(%)	
SUPERVISED			40/1000	40/1000	2.5/0.1	
ZERO-SHOT			10 /360	10 /360	10 /0.28	
OPEN-SET			50/1360	310K/310K	3.2E-04	

The tasks are only separated in **evaluation**;

We train **one unified model** for all the settings

Zero-shot Results

Results with AWA

Method	Features	Accuracy	
SS-Voc: full instances	CNNoverFeat	78.3	+
Akata et al. CVPR 2015	CNNGoogLeNet	73.9	
TMV-BLP (Fu et al. ECCV 2014)	CNNoverFeat	69.9	
AMP (SR+SE) (Fu et al. CVPR 2015)	CNNoverFeat	66.0	
DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5	
PST (Rohrbach et al. NIPS 2013)	CNNoverFeat	53.2	
DS (Rohrbach et al. CVPR 2010)	CNN _{OverFeat}	52.7	
IAP (Lampert et al. TPAMI 2013)	CNNoverFeat	44.5	
HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2	

Zero-shot Results

Results with AWA

	Method	Features	Accuracy
	SS-Voc: full instances	CNN _{OverFeat}	78.3
3.3% of training data	800 instances (20 inst*40 class);	CNN _{OverFeat}	74.4
trairing date			
	Akata et al. CVPR 2015	CNNGoogLeNet	73.9
	TMV-BLP (Fu et al. ECCV 2014)	CNNoverFeat	69.9
	AMP (SR+SE) (Fu et al. CVPR 2015)	CNNoverFeat	66.0
	DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5
	PST (Rohrbach et al. NIPS 2013)	CNNoverFeat	53.2
	DS (Rohrbach et al. CVPR 2010)	CNNoverFeat	52.7
	IAP (Lampert et al. TPAMI 2013)	CNN _{OverFeat}	44.5
	HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2

Zero-shot Results

Results with AWA

0.82% of training data

Method	Features	Accuracy
SS-Voc: full instances	CNN _{OverFeat}	78.3
800 instances (20 inst*40 class);	CNN _{OverFeat}	74.4
200 instances (5 inst*40 class);	CNN _{OverFeat}	68.9
Akata et al. CVPR 2015	CNNGoogLeNet	73.9
TMV-BLP (Fu et al. ECCV 2014)	CNN _{OverFeat}	69.9
AMP (SR+SE) (Fu et al. CVPR 2015)	CNN _{OverFeat}	66.0
DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5
PST (Rohrbach et al. NIPS 2013)	CNN _{OverFeat}	53.2
DS (Rohrbach et al. CVPR 2010)	CNN _{OverFeat}	52.7
IAP (Lampert et al. TPAMI 2013)	CNN _{OverFeat}	44.5
HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2

[Xiao et al., 2017]

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

[Xiao et al., 2017]

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

a man

[Xiao et al., 2017]

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

a man

[Xiao et al., 2017]

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

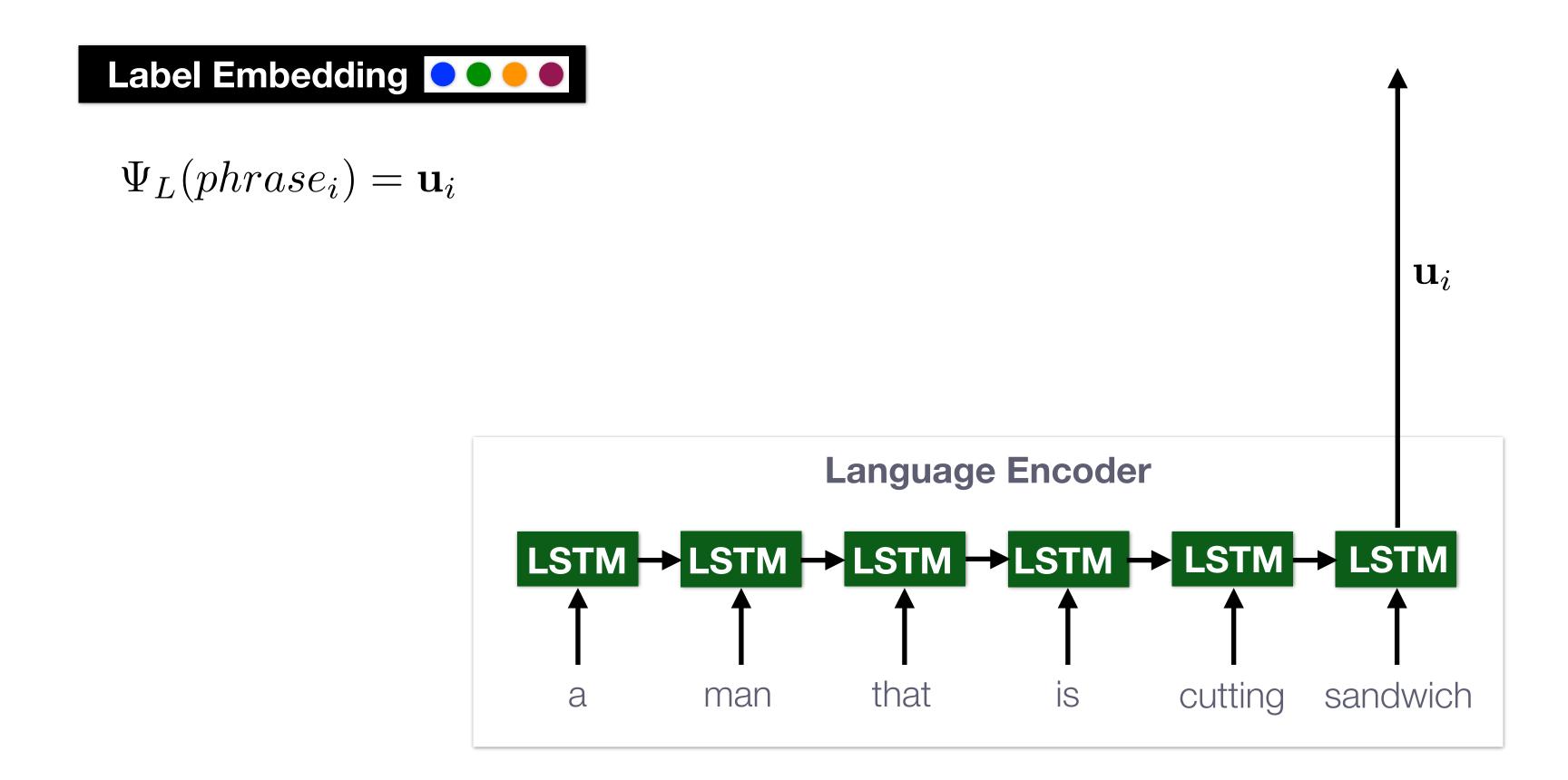
a table

[Xiao et al., 2017]

Label Embedding •••••

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

[Xiao et al., 2017]



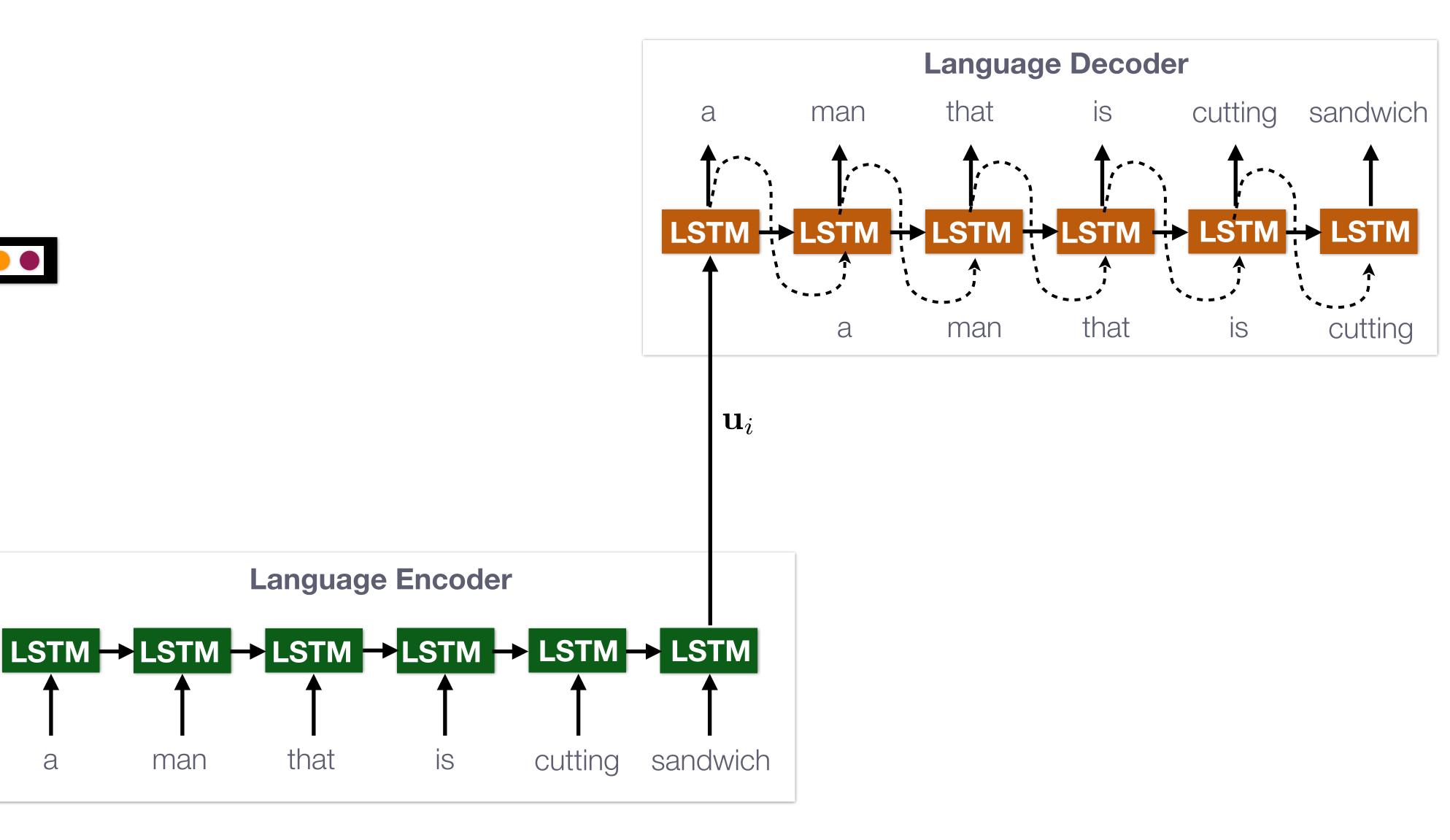
Language Encoder

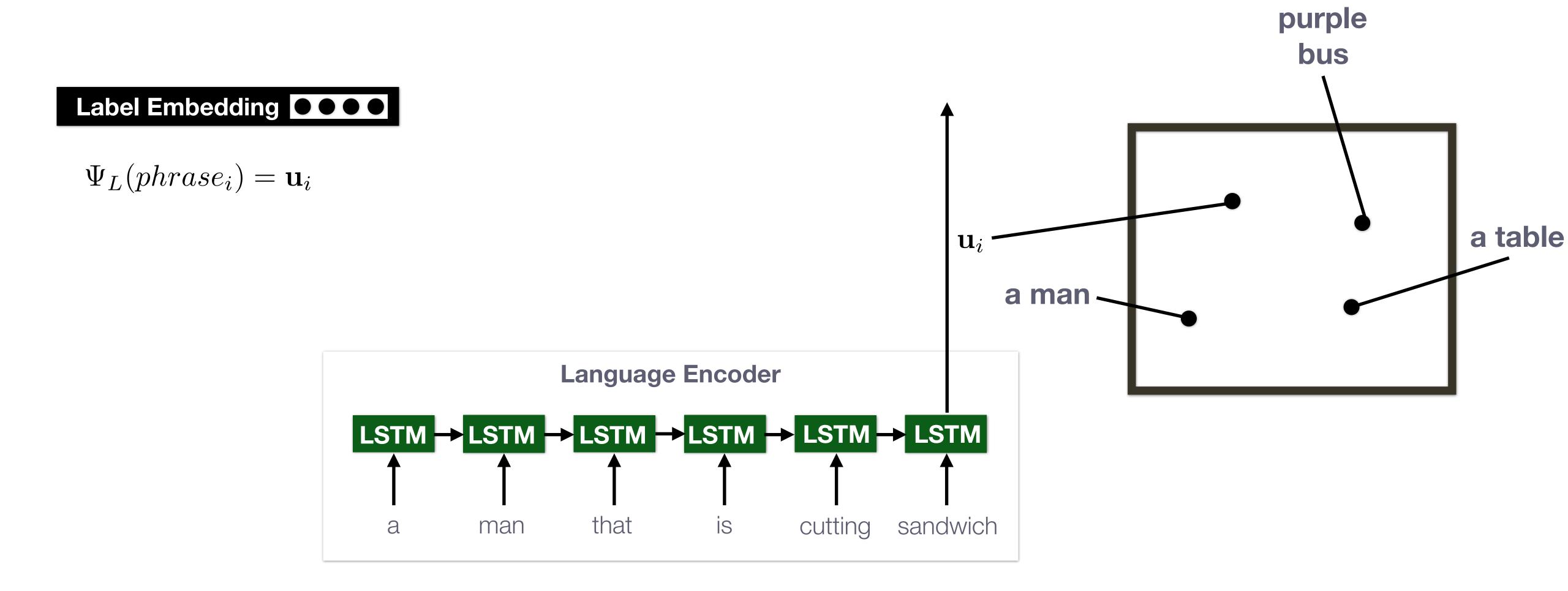
that

man

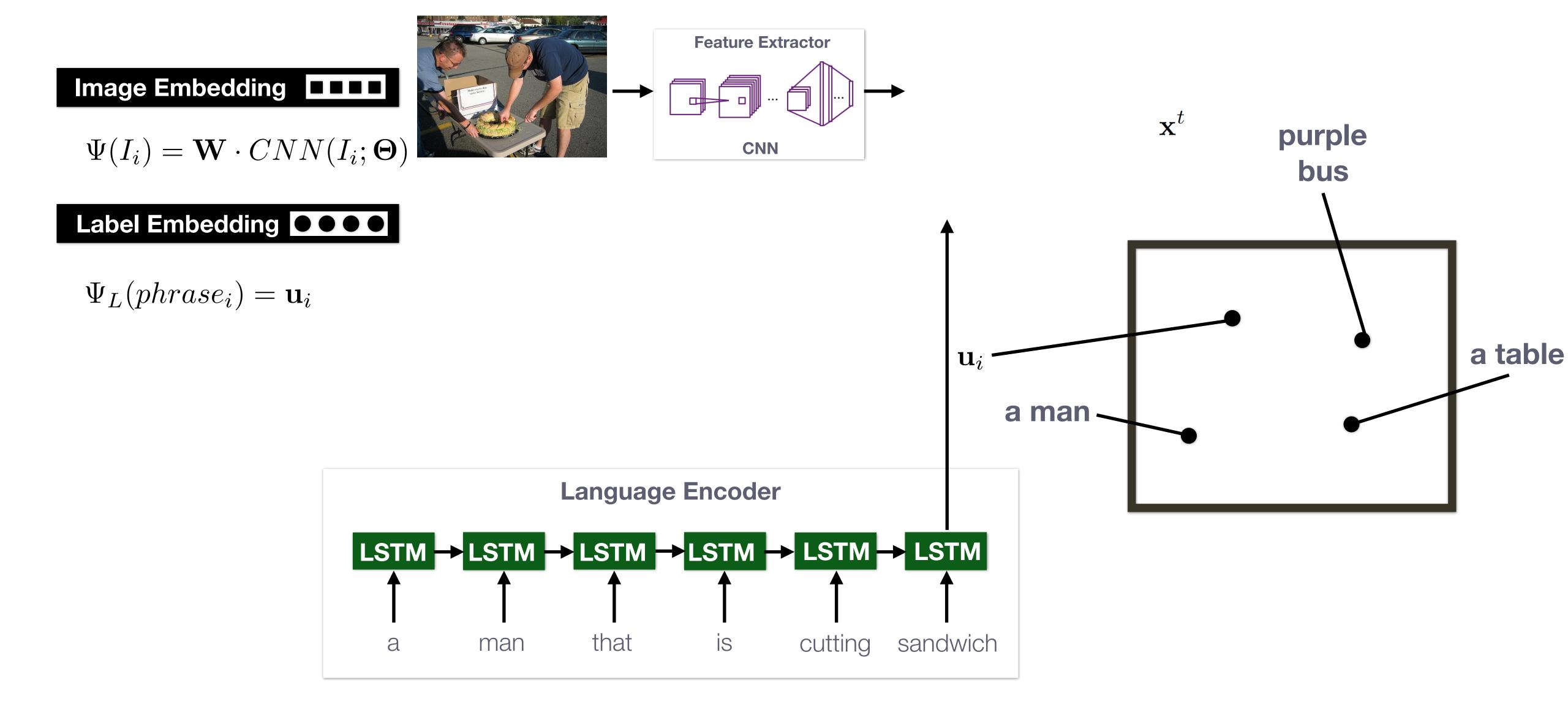
[Xiao et al., 2017]

 $\Psi_L(phrase_i) = \mathbf{u}_i$

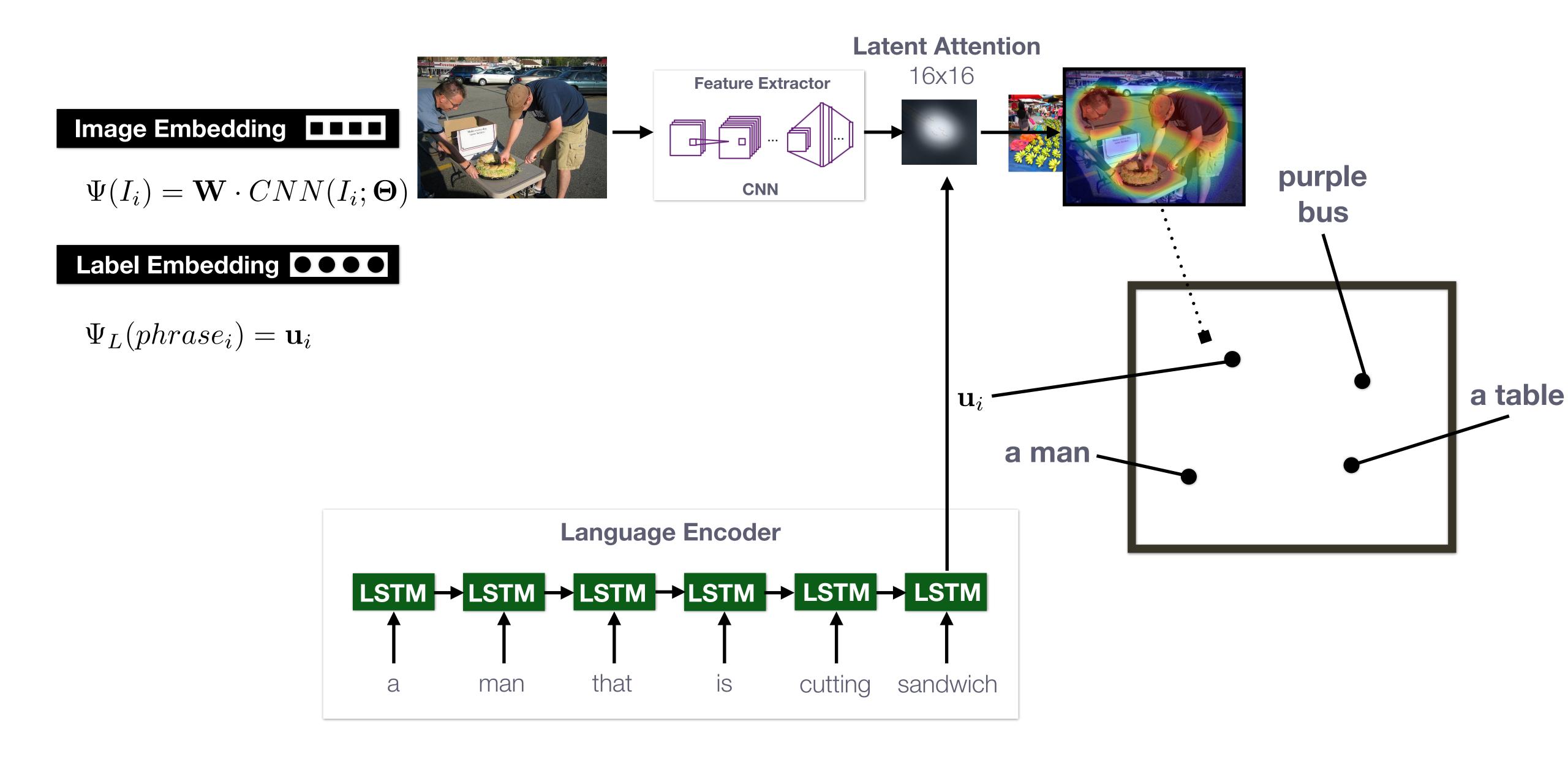




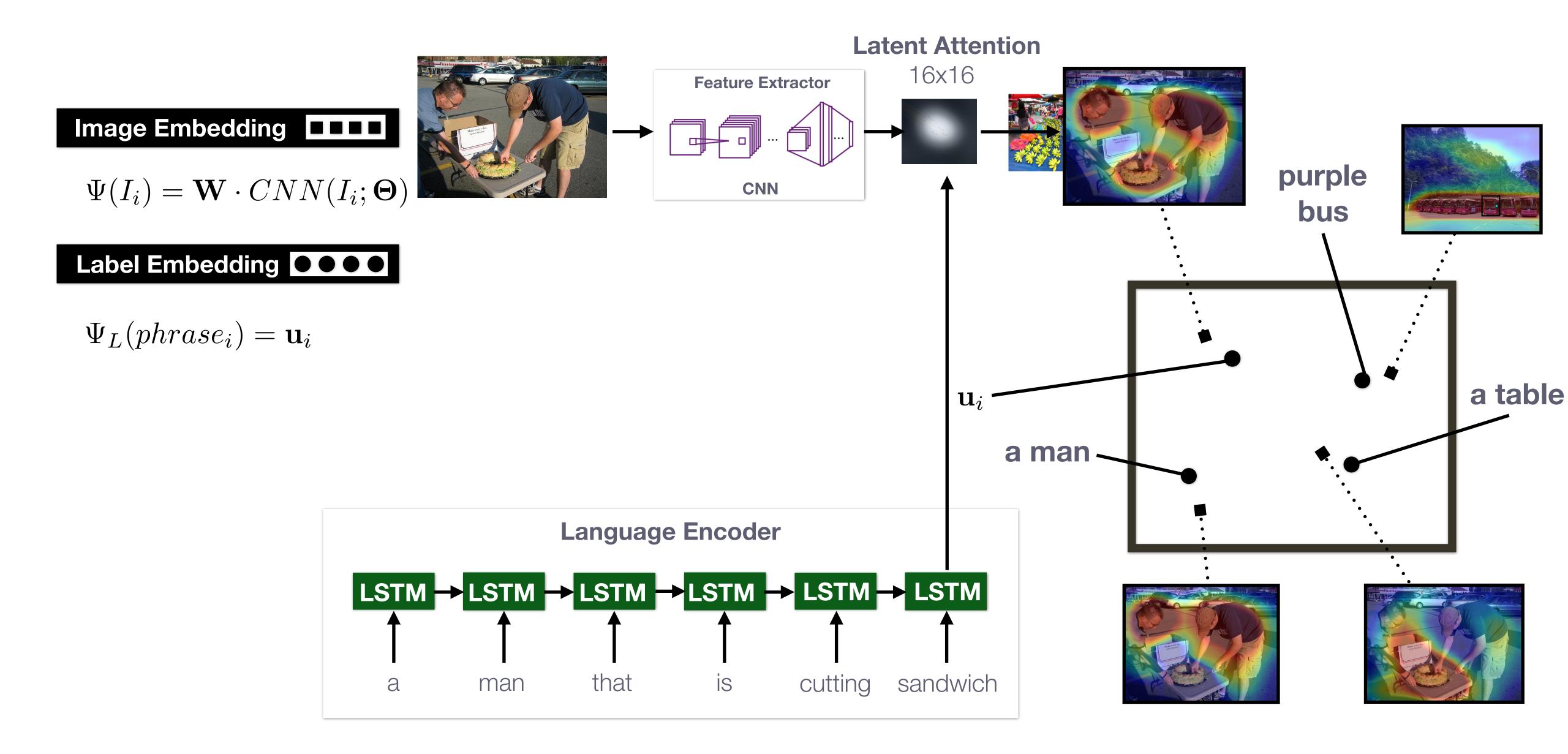
[Xiao et al., 2017]



[Xiao et al., 2017]



[Xiao et al., 2017]



[Xiao et al., 2017]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

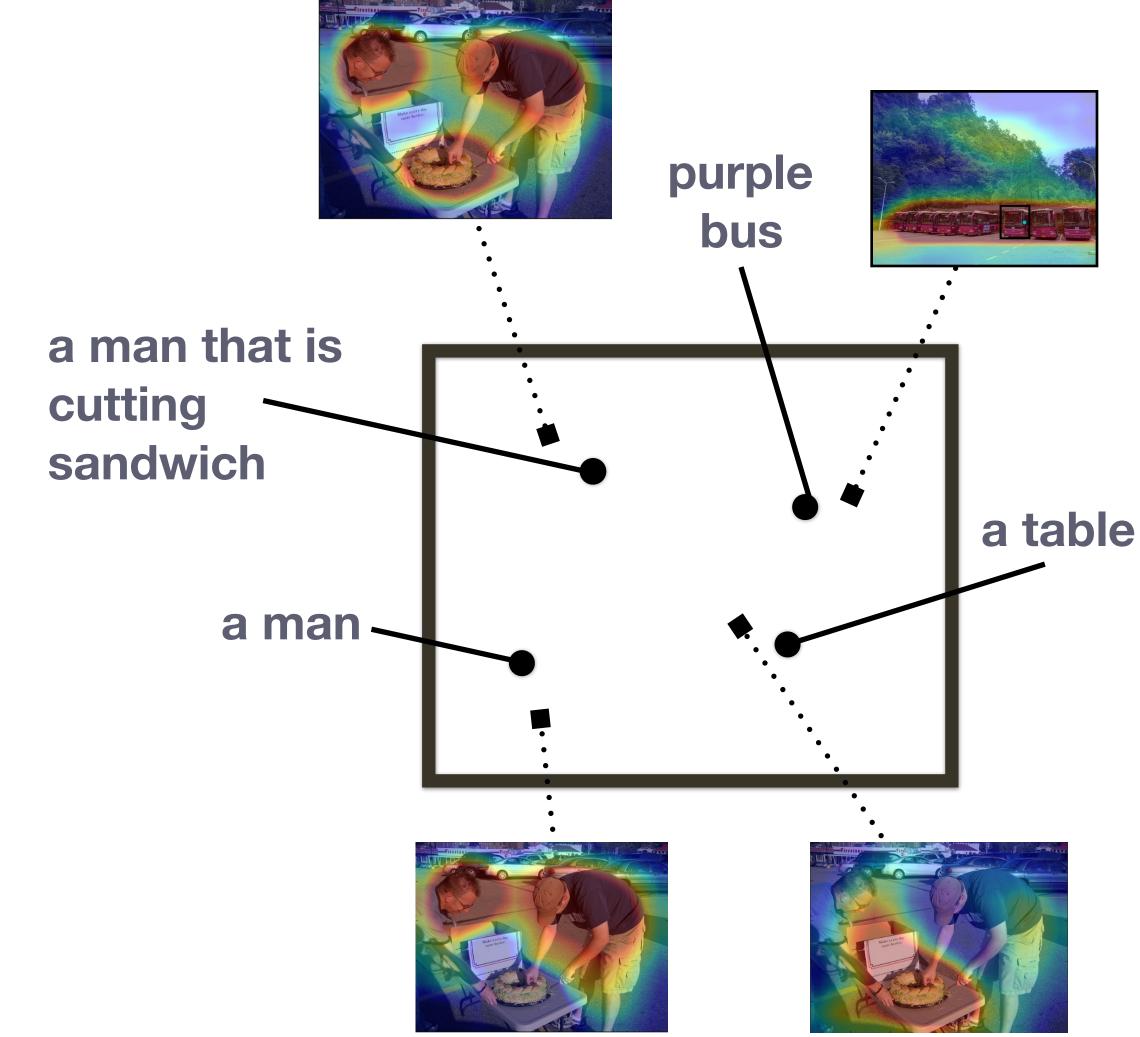
Label Embedding Output Description:

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:



[Xiao et al., 2017]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

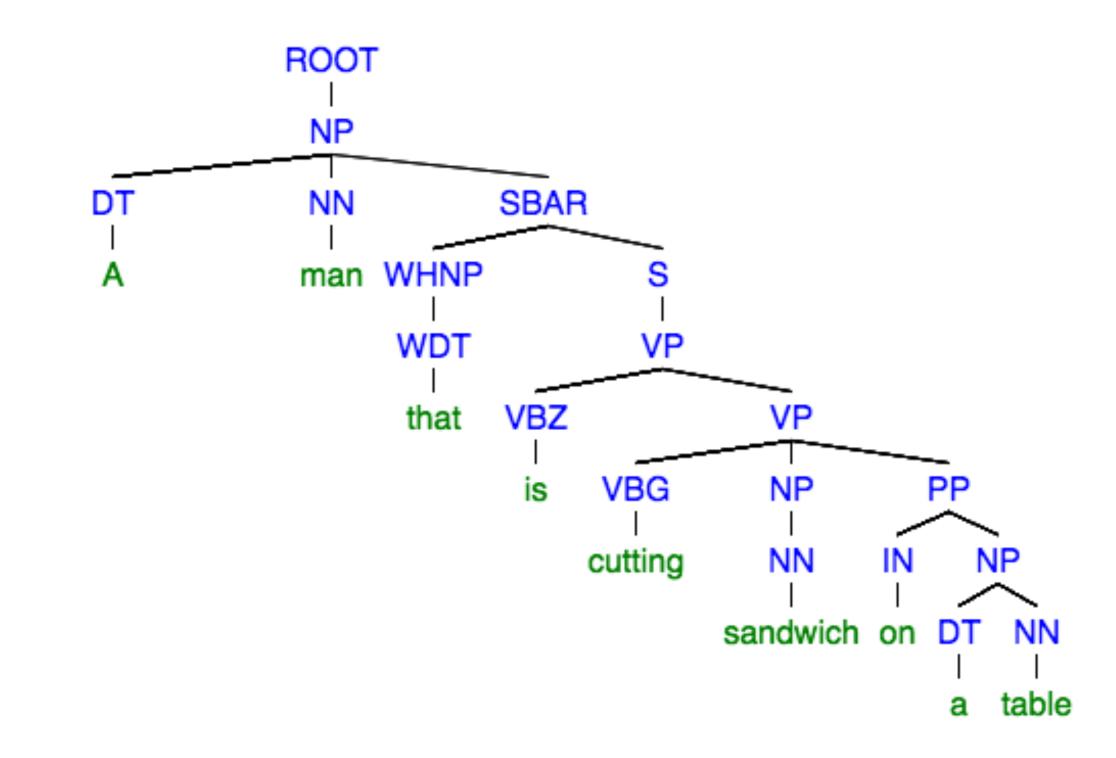
Label Embedding OOOO

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:



[Xiao et al., 2017]

For noun phrases:

siblings should have disjoint masks

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

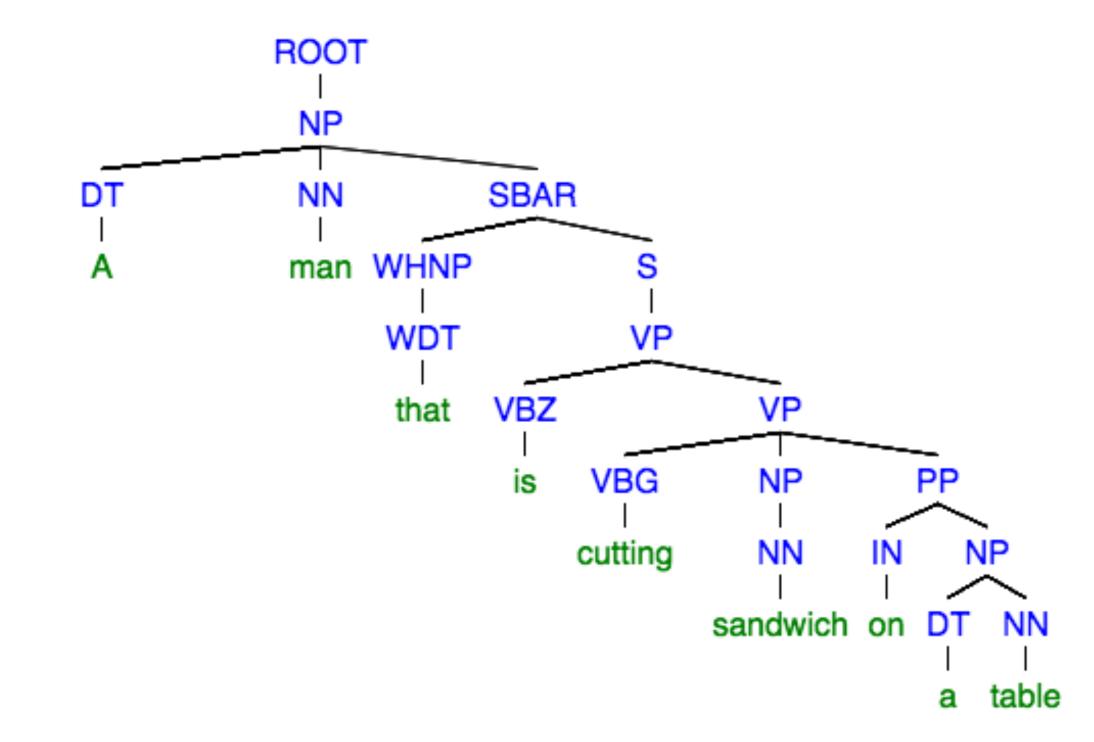
Label Embedding Output Description:

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:



[Xiao et al., 2017]

For noun phrases:

siblings should have disjoint masks

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

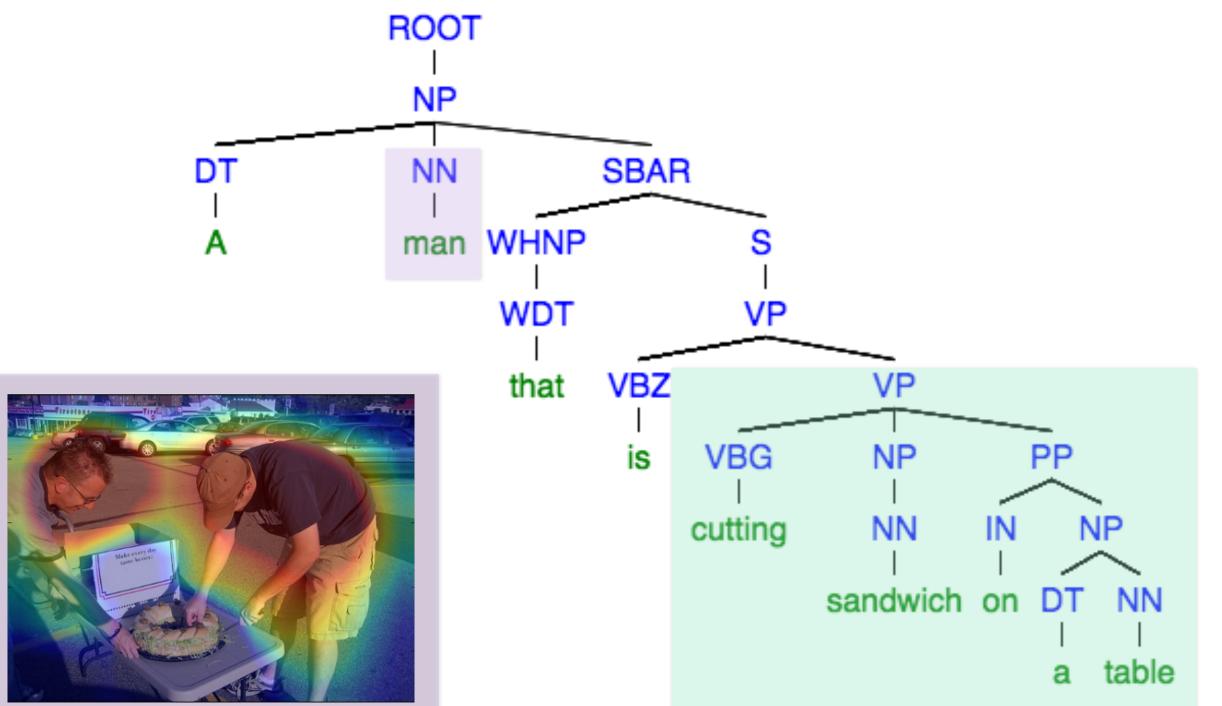
Label Embedding ••••

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:



[Xiao et al., 2017]

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta})$$

Label Embedding Output Description:

$$\Psi_L(phrase_i) = \mathbf{u}_i$$

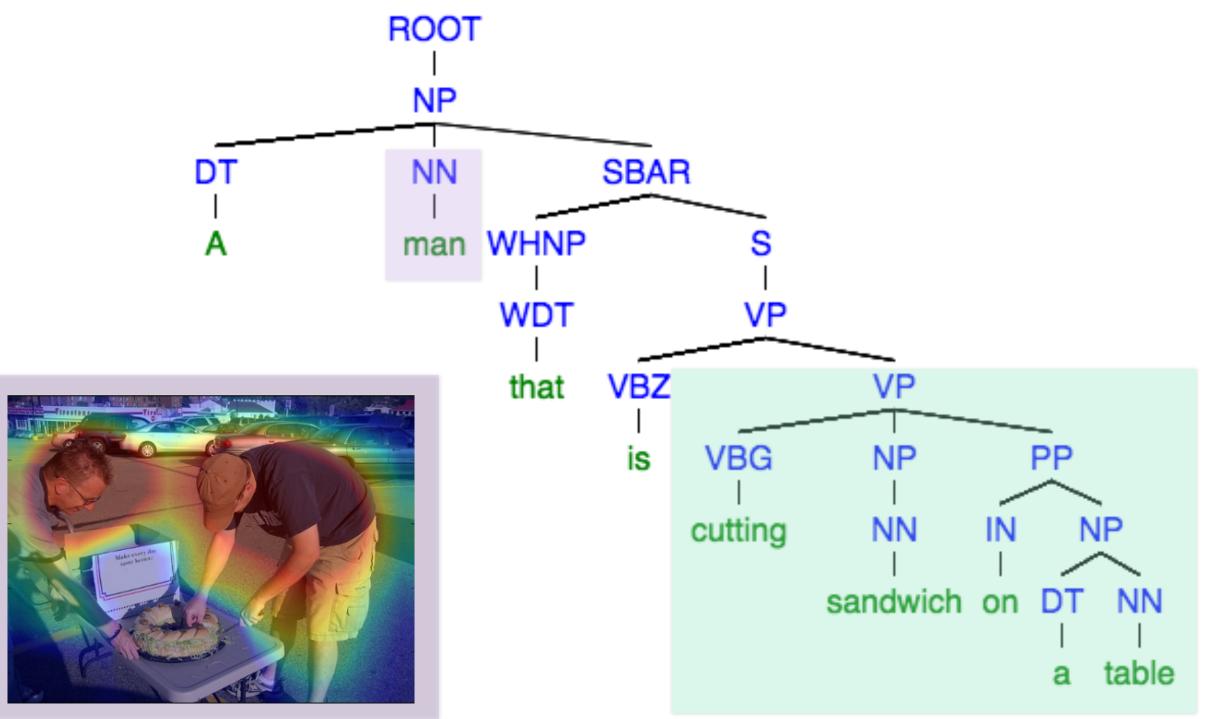
Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

For noun phrases:

- · siblings should have disjoint masks
- parents should be union of children masks



[Xiao et al., 2017]

Image Embedding

Label Embedding Output Description:

 $\Psi_L(phrase_i) = \mathbf{u}_i$

Similarity in Embedding Space

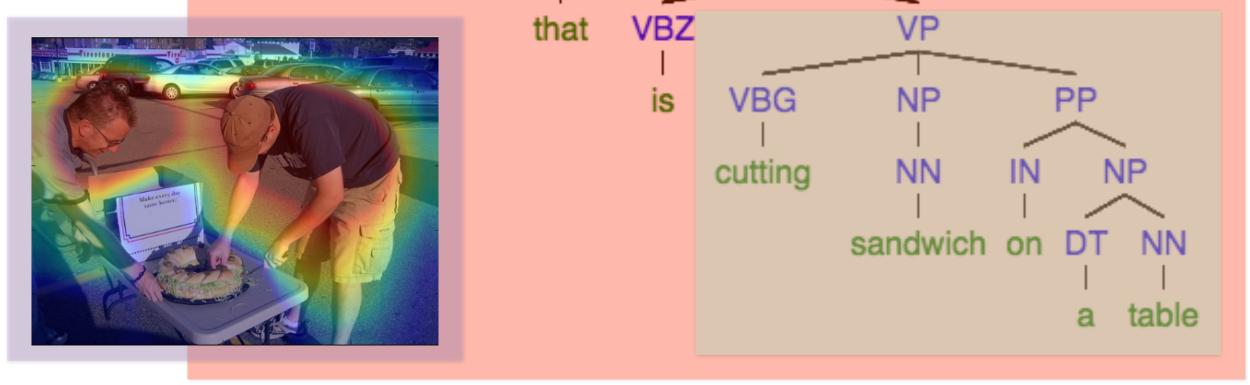
$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

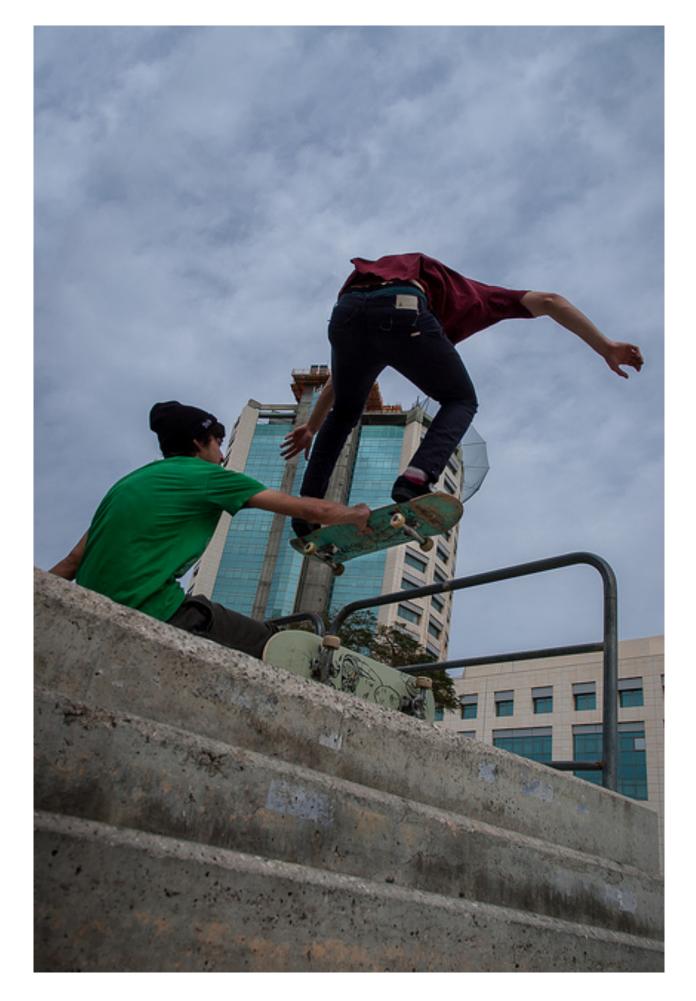
For noun phrases:

siblings should have disjoin

parents should be union of

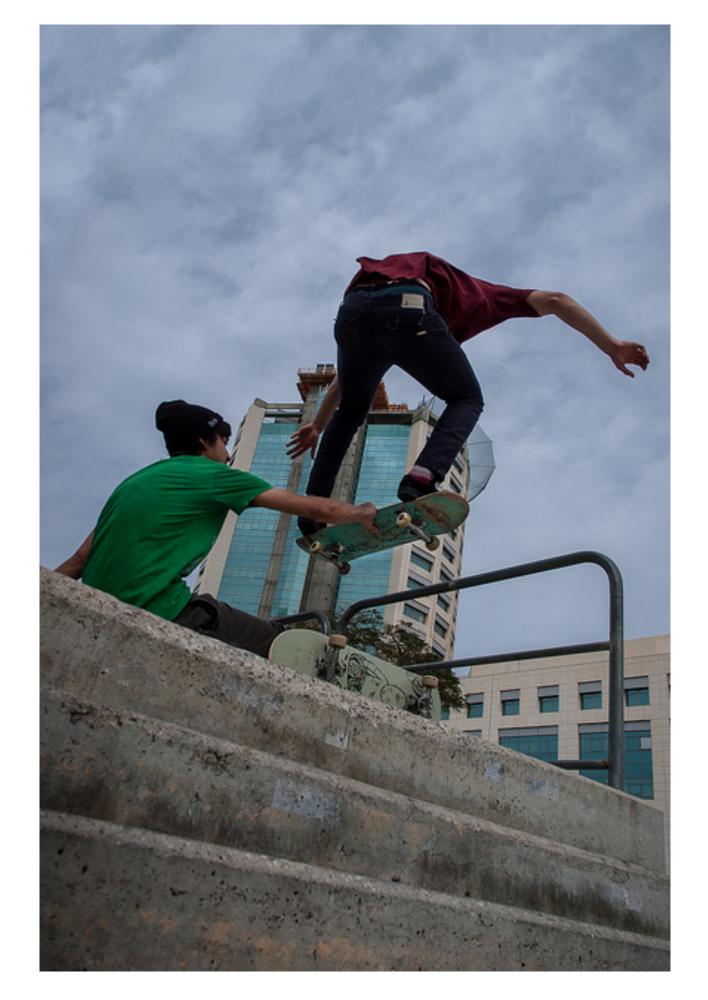


Input:



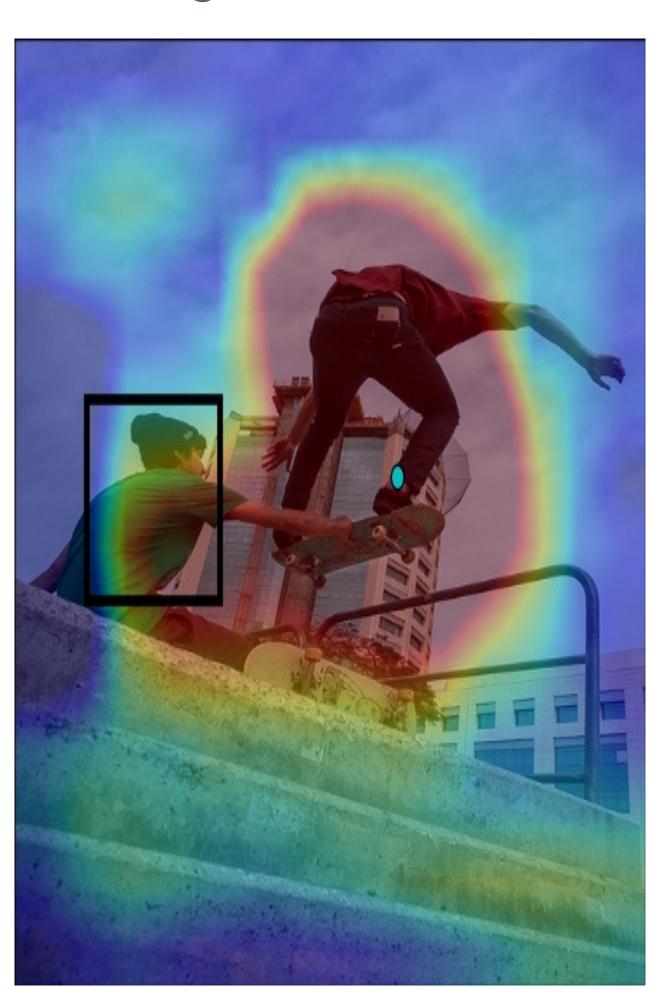
guy in green t-shirt holding skateboard

Input:

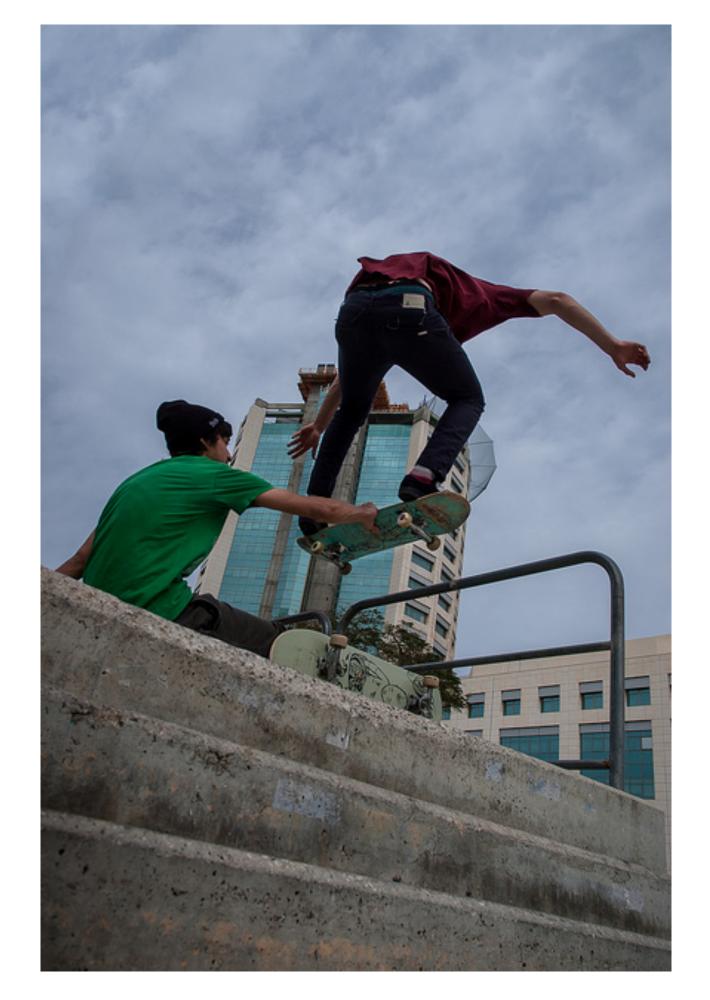


guy in green t-shirt holding skateboard

NO linguistic constraints

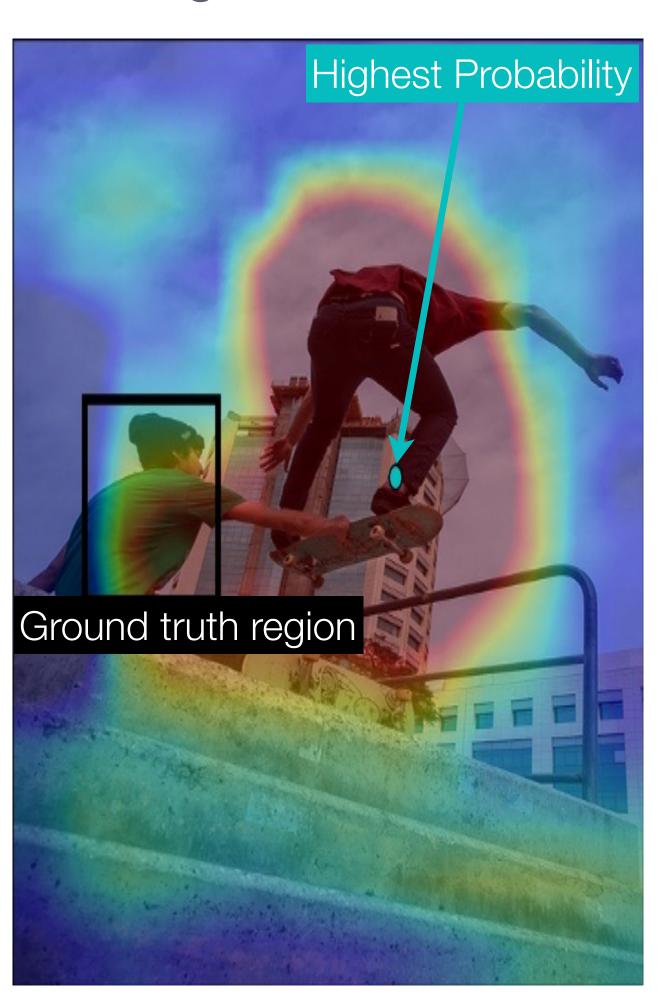


Input:

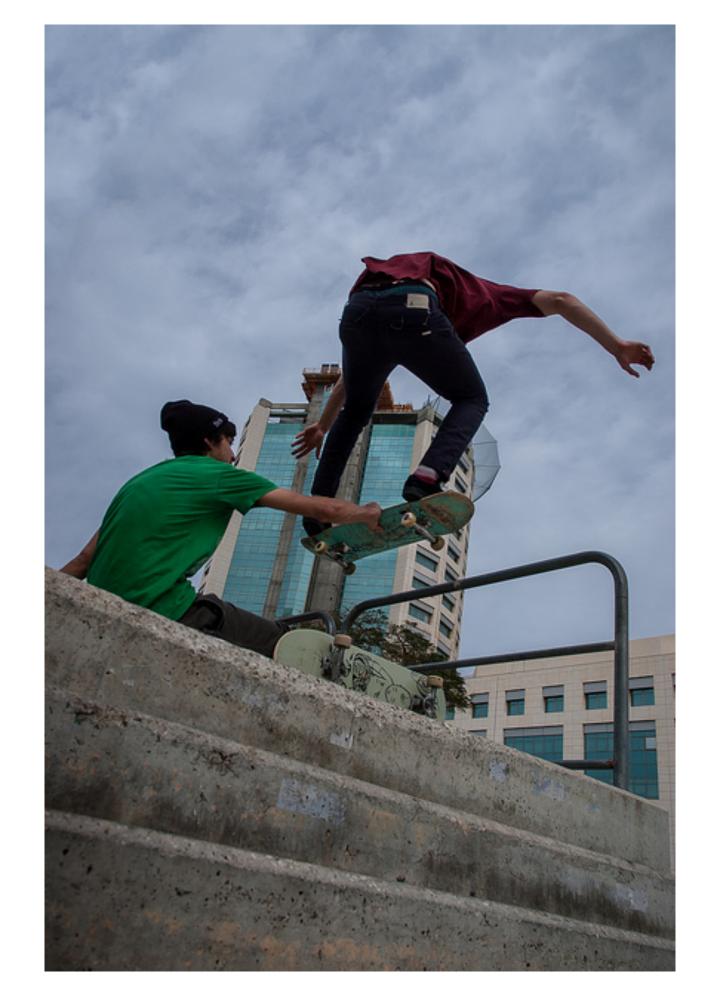


guy in green t-shirt holding skateboard

NO linguistic constraints

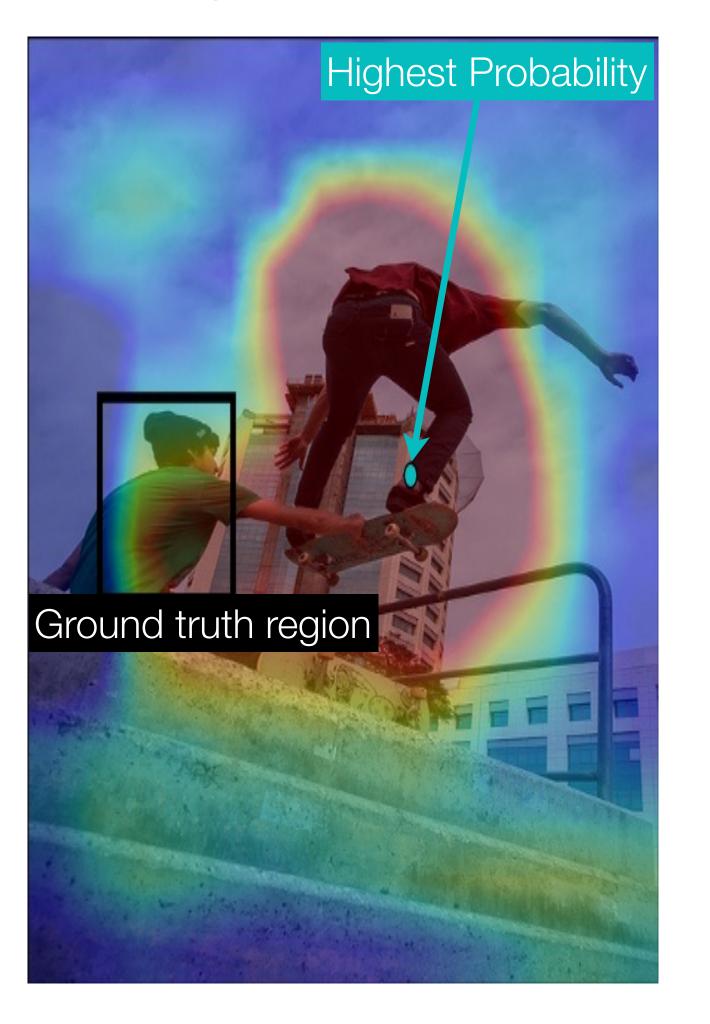


Input:

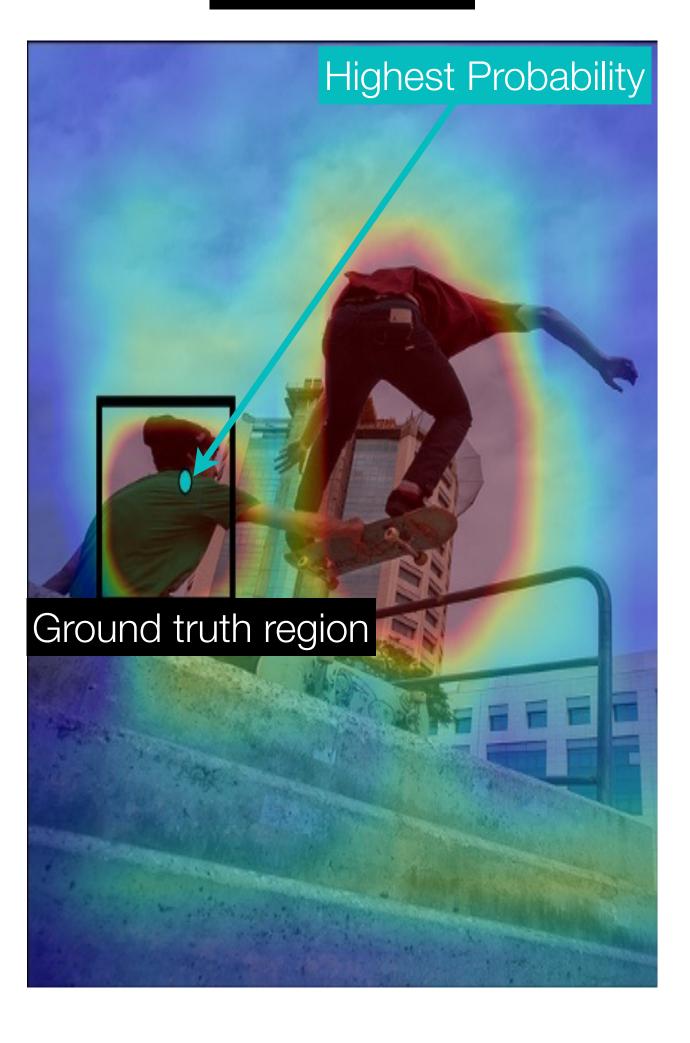


guy in green t-shirt holding skateboard

NO linguistic constraints



Our Model

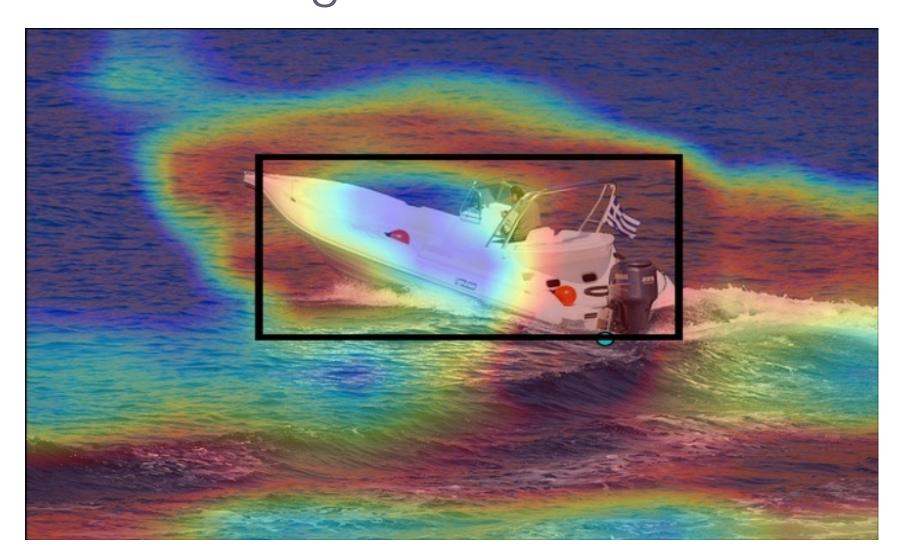


[Xiao et al., 2017]

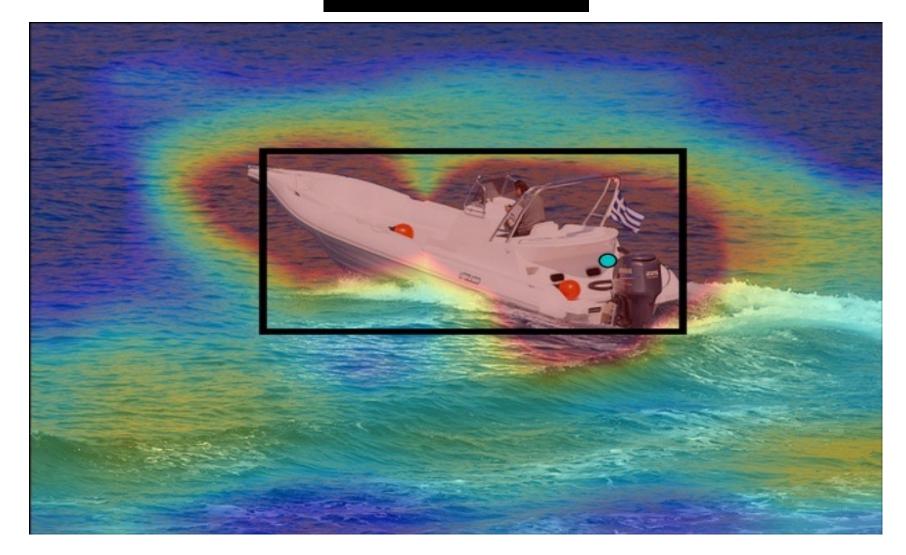
NO linguistic constraints

Input:

Qualitative Results

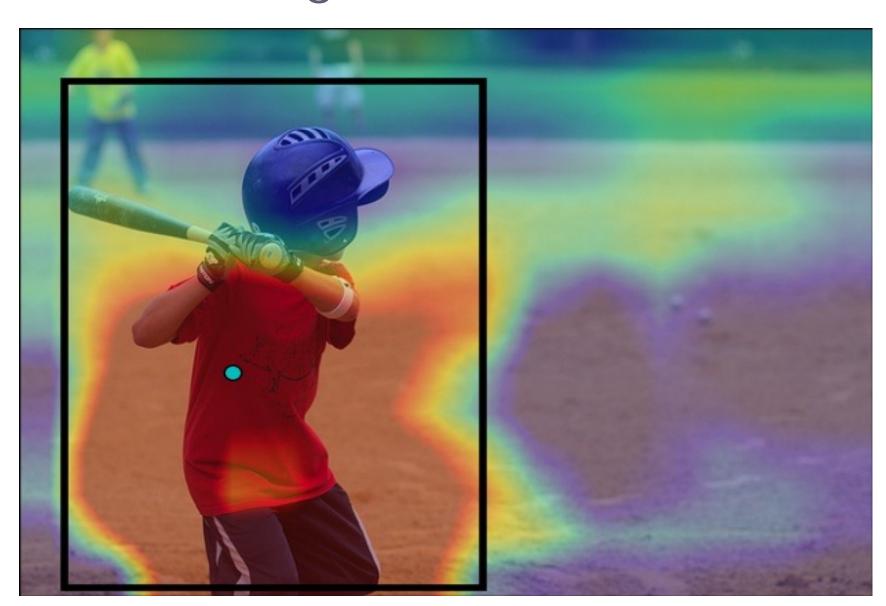


Our Model

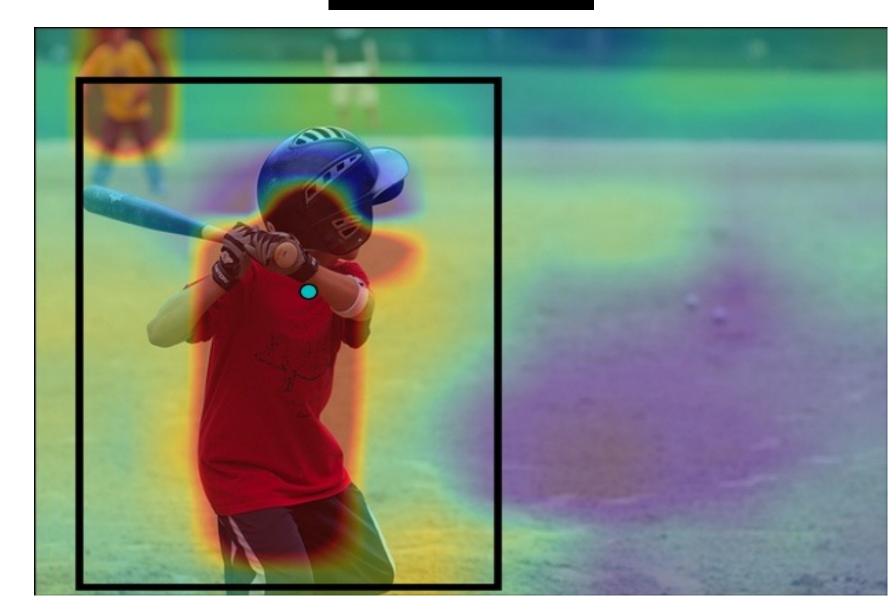


NO linguistic constraints [Xiao et al., 2017]

Input:



Our Model

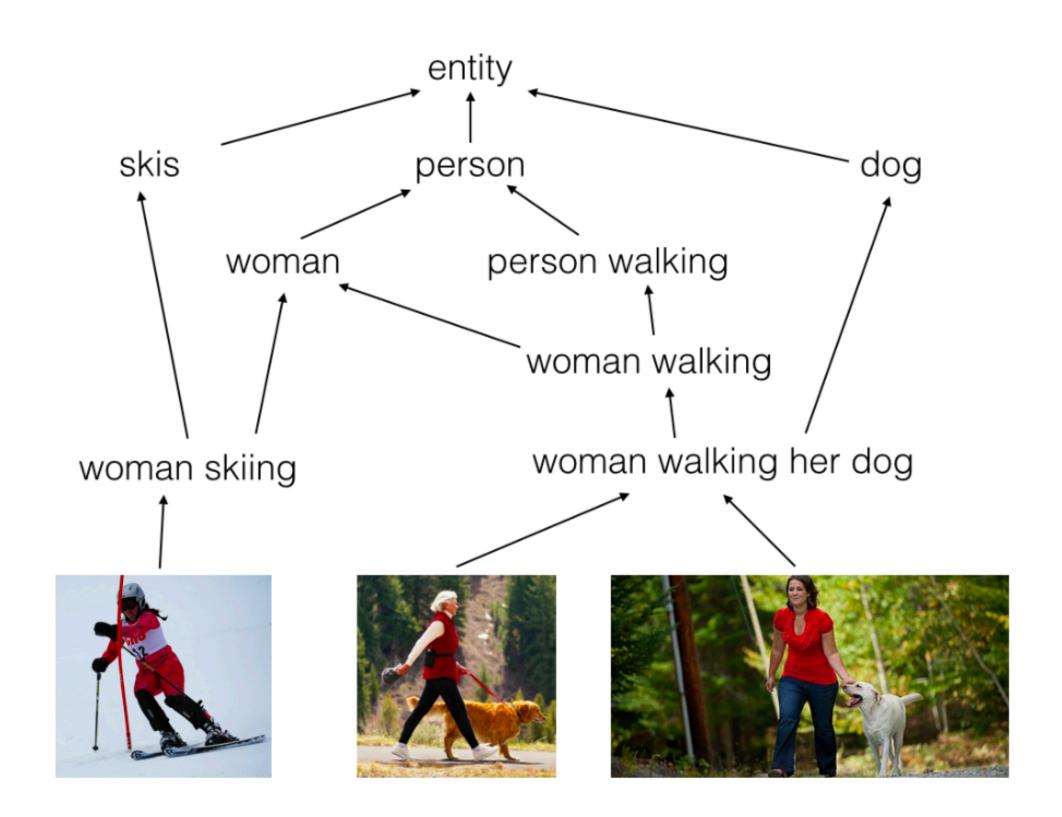


Segmentation performance on COCO dataset

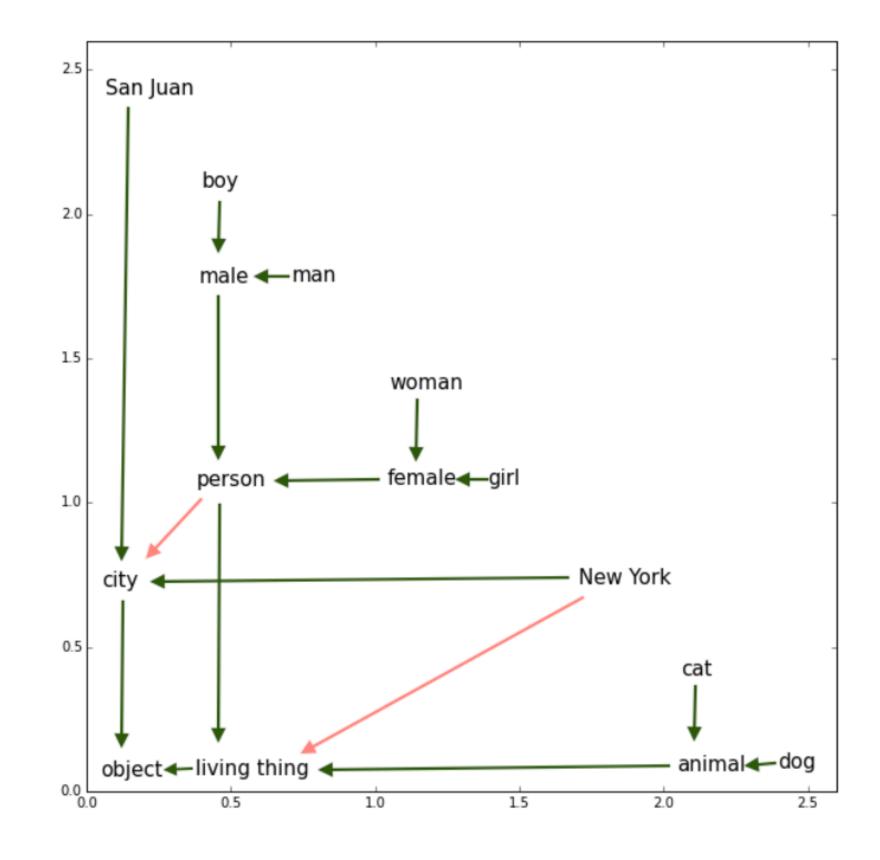
[Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV'14]

	loU@0.3	loU@0.4	loU@0.5	Avg mAP
Non-strcutred	0.302	0.199	0.110	0.203
Parent-Child	0.327	0.213	0.118	0.219
Sibling	0.316	0.203	0.114	0.211
Ours	0.347	0.246	0.159	0.251

Order Embeddings

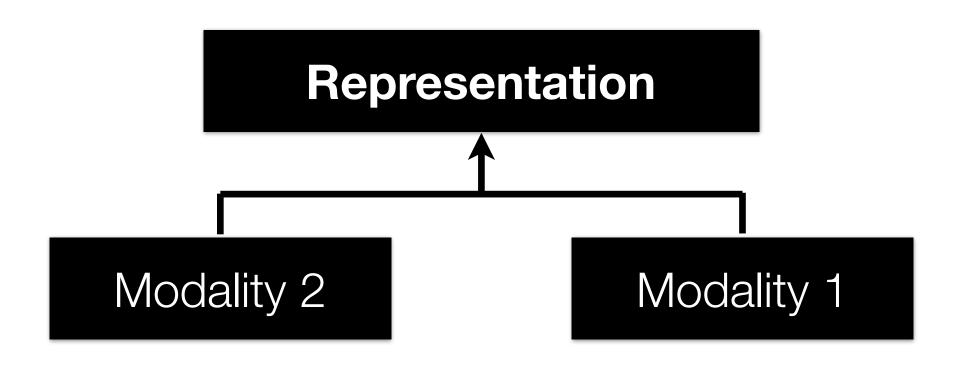


[Vendrov et al., 2016]



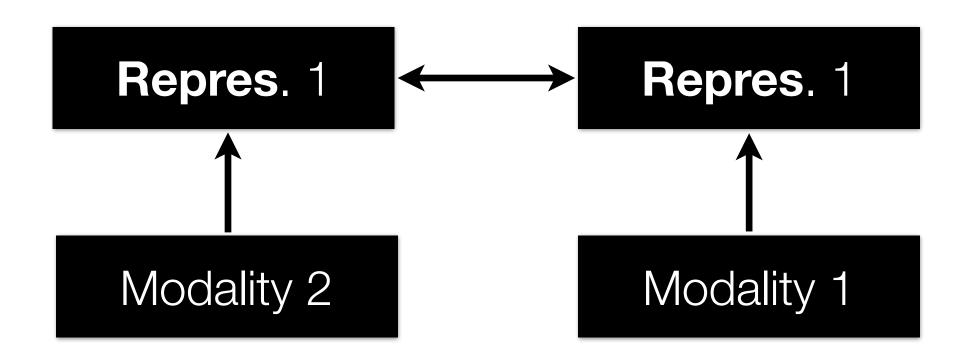
Multimodal Representation Types

Joint representations:



- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised

Coordinated representations:



- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- CCA (unsupervised), joint embeddings (supervised)

Final Words ...

Joint representations

- Project modalities to the same space
- Use when all the modalities are present during test time
- Suitable for multi-model fusion

Coordinated representations

- Project modalities to their own coordinated spaces
- Use when only one of the modalities is present during test-time
- Suitable for multimodal translation
- Good for multimodal retrieval