THE UNIVERSITY OF BRITISH COLUMBIA

Lecture 10: Coordinated Representations and Joint Embeddings



Course Logistics

— Assignment 3 due \Wednsday

— Paper presentation assignments are done, will post later in the week



Multimodal Representation Types

Joint representations:

Representation

, , — (Can be learned supervised or unsupervised
Coordinated representations:

s o M e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — CCA (unsupervised), joint embeddings (supervised)

*slide from Louis-Philippe Morency

— Simplest version: modality concatenation (early fusion)

— Similarity-based methods (e.g., cosine distance)

Modality 2
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Joint Representation: Deep Multimodal Autoencoders

Each modality can be pre-trained
— using denoising autoencoder

To train the model, reconstruct both

modalities using
— both Audio & Video
— just Audio
— Jjust Video

[ Ngiam et al., 2011 |
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Coordinated representations:
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Data with Multiple Views

demographic properties responses to survey

Becee- - —— o o

audio features at time ¢ video features at time 1

*slide from Andrew, Arora, Bilmes, Livescu



Correlated Representations

Goal: Find representations fi(x1), f2(x2) for each view that maximize correlation:

corr(f1(x1), fa(x2)) = cov(f1(x1), f2(x2))
(f( )7f( )) \/Var(fl(X1))'VaF(f2(X2))
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FInding correlated representations can be useful for
— Gaining insights into the data

— Detecting of asynchrony in test data

— Removing noise uncorrelated across views
— [ranslation or retrieval across views

*slide from Andrew, Arora, Bilmes, Livescu



Correlated Representations

Goal: Find representations fi(x1), f2(x2) for each view that maximize correlation:

corr(f1(x1), fa(x2)) = cov(f1(x1), f2(x2))
(f( )7f( )) \/Var(fl(Xl))’Var(fQ(X2))

FInding correlated representations can be useful for
— Gaining insights into the data

— Detecting of asynchrony in test data

— Removing noise uncorrelated across views
— [ranslation or retrieval across views

Has been applied widely to problems in computer vision, speech, NLP,
medicine, chemometrics, metrology, neurology, etc.
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CCA: Canonical Correlation Analysis

Classical technigue to find linear correlated representations, 1.e.,

f1 (Xl) — W?Xl W1 - Rlek
where
fa(x2) = W3 X W, € R42xkK
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Classical technigue to find linear correlated representations, 1.e.,

f1 (Xl) — W?Xl W1 - Rlek
where
fa(x2) = W3 X W, € R42xkK

The first columns (w1 .1, we .1) of the matrices W1 and W, are found to
maximize the correlation of the projections:

(Wl,:la W2711) — arg 1nax COI‘I‘(WflljﬂXl, WTQZ:&XQ)

*slide from Andrew, Arora, Bilmes, Livescu



CCA: Canonical Correlation Analysis

Classical technigue to find linear correlated representations, 1.e.,

f1 (Xl) — W?Xl W1 - Rlek
where
fa(x2) = W3 X W, € R42xkK

The first columns (w1 .1, we .1) of the matrices W1 and W, are found to
maximize the correlation of the projections:

(Wl,:la W2711) — arg 1nax COI‘I‘(WflljﬂXl, WTQZ:&XQ)

Subsequent pairs are constrained to be uncorrelated with previous
components (i.e., for 7 <)

corr(wfin, Wf:le) — corr(w%::ng, Wg’:ng) =0
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CCA lllustration

f1(X1) = wi X4 <m f2(Xs2) = wi X

AN AN

1 f2

X, € R? X, € R?

Two views of each instance have the same color
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CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
S = oy ) —x)6d) —x)T e nl S = s S w6 -
R R
TN ;(X@ x1)06” —%2)" 22 = i;(x;” %2) (x5 — %2)" + ]
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CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
1 i) i 1 N N
211 = N_li;(xﬁ)—x )(Xg)—X1)T+T1I 2119 = N—1;(Xg)_x )(Xg)_x2)T
— —
Si2 = 7 () — X)) — %) Sap = = () = 50) () — %) + 7o

- - . —1/2 —1/2 . .
2. Form normalized covariance matrix;: T = >4 / 21122199 / and Its singular

value decomposition T = UDV*
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value decomposition T = UDV*
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CCA: Canonical Correlation Analysis

1. Estimate covariance matrix with regularization:

N N
1 i) i) - 1 ) i)
Y1 = T ;(Xg) — X )(Xg) — x4+ I Yo = N ;(xg) — X )(Xé) — %ot
- -
Si2 = 7 () — X)) — %) Sap = = () = 50) () — %) + 7o

—1 2
2. Form normalized covariance matrix: T = 2., / 21

value decomposition T = IiDVT
3. Total correlation at & is Z;Dm-
4. The optimal projection matri—ces are: W7 = 2_1/ ZUk
5 = 2_1/2Vk

where Uy is the first k columns of U,
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KCCA: Kernel CCA

There maybe non-linear functions fi(x1), f2(x2) that produce more highly
correlated (better) representations than linear projections

Kernel CCA is a principal method for finding such function

— Learns functions from any reproducing kernel Hiloert space
— May use different kernels for each view

Using RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that
form clusters in both views
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KCCA vs. CCA

Pros:
— More complex function space of KCCA can yield dramatically higher correlations

Cons:
— KCCA is slower to train
— For KCCA training set must be stored and referenced at test time
— KCCA model is more difficult to interpret
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[Canonical Correlation Analysis]

0 0

View 1 View 2
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Benefits of Deep CCA

Pros:
— Better suited for natural, real-world data

— Parametric model
— The training set can be disregarded once the model is learned
— Computational speed at test time Is fast
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Deep CCA: Training

Training a Deep CCA model:
1. Pretrain the layers of each side individually

2. Jointly fine-tune all parameters to maximize
the total correlation of the output layers.
Requires computing correlation gradient:

— Forward propagate activations on both sides.
— Compute correlation and its gradient w.r.t. output layers.

— Backpropagate gradient on both sides.

[Canonical Correlation Analysis]

0 0

View 1 View 2

*slide from Andrew, Arora, Bilmes, Livescu



Deep CCA: Training

Training a Deep CCA model:
1. Pretrain the layers of each side individually

2. Jointly fine-tune all parameters to maximize
the total correlation of the output layers.
Requires computing correlation gradient:

— Forward propagate activations on both sides.
— Compute correlation and its gradient w.r.t. output layers.

— Backpropagate gradient on both sides.

Correlation is a population objective, so instead
of one instance (or minibatch) training, requires
L-BFGS second-order method (with full-batch)

[Canonical Correlation Analysis]
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Multimodal Representation Types

Coordinated representations:

s o M e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — CCA (unsupervised), joint embeddings (supervised)
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— Similarity-based methods (e.g., cosine distance)

Modality 2




Correlated Representations vs. Joint Embeddings

Correlated Representations: Find representations fi(x1), f2(x2) for each view
that maximize correlation:

corr(f1(x1), fa(x2)) = cov(fi(x1), f2(x2))
(f( )af( )) \/VE1r(f1(X1))'VaI‘(f2(X2))

Joint Embeddings: Models that minimize distance between ground truth pairs
of samples:

ming, ,D (fl (Xﬁi)), f2(Xg)))



Object Classification

Category Prediction

Dog No
Cat No
Y Couch No
Flowers NO
Leopard Yes

Problem: For each image predict which category it belongs to out of a fixed set
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Object Classification

Category Prediction
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Problem: For each image predict which category it belongs to out of a fixed set



Discriminative Embeddings

Images and class labels are embedded into the same space
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Image Embedding R
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Feature Extractor
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Similarity in Embedding Space

D(u,u’) = [[u—u'l];
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Discriminative Embeddings

Image Categorization / Annotation
which object category does image belong to?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space
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Discriminative Embeddings

Image Categorization / Annotation
which object category does image belong to?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Distance can be interpreted as probability



Discriminative Embeddings
Search by Image

most similar image to a query?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];




Discriminative Embeddings
Search by Label

most representative image for a label?

Image Embedding R

U(I;) =W -CNN(I;;®): R — R

Label Embedding
Uy (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];
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Image Embedding R
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Label Embedding
U (word;) =u; : {1,...., L} — RY

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:

N
min ch(w, U, L, vi) + M||W||% + X[ |U||% [ Bengio et al.,, NIPS'10 ]
w,uU i [ Weinberger, Chapelle, NIPS’09 |
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Discriminative Embeddings

Image Embedding R
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Discriminative Embeddings

This is a very convenient model

Inducing semantics on
the embedding space




Semantic Embeddings

Why adding semantics is useful”

— Allows for transference ot knowledge from classes that have a lot of data to those that have
few (or no labeled instances)

— (Can serve as additional regularization, so can be more efficient for learning.



Long Talil of Categories

Few most frequent categories contain most of the samples, most of the
categories contain few samples
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Long Tail of Categories

Few most frequent categories contain most of the samples, most of the
categories contain few samples

- As granularity of categories increases, the amount

Person of data per category decreases
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Unified Semantic Embedding
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Unified Semantic Em bedd”’]g Attributes : has(zebra, Stripes)

Attributes embedded as (basis) vectors in the semantic space

Image Embedding R

U;(;)=W-CNN(L):RP - R?

Label Embedding CXEK]

U (word;) =u; : {1,...., L} — RY

Attribute Embedding

U4 (attr;) = a; : {1,..., A} - R% st ||a;]|* < 1

Similarity in Embedding Space

Wi ammalia

D(u,u’) = [Ju—u’|[3

N
min 3" Lo(W. U Lyi) + Ls(W. U, Ly) + La(W. U, Lyg) + R(UB) + A [[W][+ Aol [U]J3




Unified Semantic Embedding Hwang et al., 2014]
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R(U,B) =) _|luc—u, —U"Bc|5 + 72(18: + B3

Image Embedding [ each category is a parent + sparse

U, (I;) =W -CNN(L): RP - R? subset of attribute bases o

Label Embedding CXEK]
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Attribute Embedding
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Unified Semantic Embedding Hwang et al., 2014]

Image Embedding [TIL] Alternating optimization

U;(;)=W-CNN(L):RP - R?

Label Embedding CXEK]
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Experiments: Animals with Attributes (AwA) Dataset

| abeled Images Semantic Attributes

blue
brown
gray
orange
red
yellow
patches

Polar Bear

Paws
longlegs
longneck

tall
chew teeth
meat teeth
buck teeth
horns
claws
tusks

30,475 Images 85 Attributes

50 Animal Classes [ Lampert, Nickisch, Harmeling, CVPR’09 ]
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Experiments: Animals with Attributes (AwA) Dataset

(we assume no association between classes and attributes)

L abeled Images

30,475 Images

50 Animal Classes

Semantic Attributes

blue
brown
gray
orange
red
yellow
patches

Paws
longlegs
longneck

tall
chew teeth
meat teeth
buck teeth
horns
claws
tusks

85 Attributes

Class Ontology

WordNet ,
A lexical database for English

50 Animal Classes
are Leaves

| Lampert, Nickisch, Harmeling, CVPR’09 |



Experiments [ Hwang et al., 2014 ]

Results with AWA (with latent attributes)

flippers
furry

Musteline Mammal

ungulate
lean
active

Odd-toed ungulate

longneck
vellow

Animal

Deer

muscle \

Primate
hands arctic
bipedal stripes
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Experiments [ Hwang et al., 2014 ]

Results with AWA (with latent attributes)
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e efficient In learning
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Experiments

Results with AWA (with latent attributes)

Model benefits:
* highly interpretable

e efficient In learning

zebra

giant panda
deer
bobcat

P19

lion

mouse
polar bear

collie
walrus [ ]
raccoon
cow B
dolphin | |
c > NS CO=—ncVWnunLL OX— c n n
Sl S roR 3 E 0N T iR G 5000200 REESS2EY
TG =e==2scccQak0 00 eSO/~ VUV =0
Scooog TuouaecPc? ER32a53a38392c o vwom® S5
o =2 al © Vo wn ;s - C n =2 Q_rco cS $LeLESE
Q 5 >0 » ©®° 5 =<2 o2 =T8XC
- | -

alternative attribute-based representations

Musteline Mammal

Deer

muscle

| Hwang et al., 2014 |

flippers
furry

SPOtS
nests
longneck
vellow

arctic
stripes

black



| Hwang et al., 2014 |

Experiments

Results with AWA (with latent attributes)

Flat hit @ k (%) Hierarchical precision @ k (%)
Method 1 2 S 2 S

No Ridge Regression 38.39 4= 1.48 48.61 £ 1.29 62.12 = 1.20 38.51 = 0.61 41.73 == 0.54
semantics NCM [1] 4349 +1.23 5745091 7548 £0.58 | 45.25+£0.52  50.32 =047
LME 4476 = 1.77 58.08 £2.05 75.11 =£1.48 | 44.84 =098 49.87 = 0.39
LMTE |2] 3892 £1.12 4997+ 1.16 6335138 | 38.67 046 41.72 1+ 0.45
Implicit ALE [3] 36.40 = 1.03 5043 +£192 7025197 | 4252+ 1.17 52.46 + 0.37
semantics HLE |31 33.566 =1.64 4593 256 64.66 =1.77 | 46.11 4= 2.65 56.79 + 2.05
AHLE |[3] 38.01 £1.69 5207 +1.19 7153 +1.41 | 44.43 + 0.66 54.39 4+ 0.55

Explicit LME-MTL-S
semantics LME-MTL-A 4555 =171 58.60x=1.76 7497 £ 1.15 | 44.23 £ 0.95 48.52 == 0.29
USE USE-No Reg. 4593 x=1.76 5937 1.32 7497 = 1.15 47.13 = 0.62 51.04 &= 0.46
USE—Reg. 4642 = 1.33 5954 = 0.73 76.62 = 1.45 47.39 £ 0.82 53.35 = 0.30

Variants of our Unified Semantic
Embedding (USE) model:

Ontology

Attributes

Parent + Sparse Attributes

[1] Mensink, Varbeek, Perronnin, Csurka Chapelle, TPAMI’13

[2] Weinberger, Chapelle, NIPS’09
[3] Akata, Perronnin, Harchaoui, Schmid, CVPR’13




Experiments

Results with AWA (with latent attributes)

Explicit
semantics

LME-MTL-S
LME-MTL-A

Method 1
No Ridge Regression
semantics NCM [1]
LME 38.93

LMTE |2]
Implicit ALE [3]
semantics HLE |31

AHLE [3]

USE

Variants of our Unified Semantic
Embedding (USE) model:

USE-No Reg.
USE-Reg.

Ontology

Attributes

Parent + Sparse Attributes

A
| Hwang et al., 2014 |

with 2 samples/category

[1] Mensink, Varbeek, Perronnin, Csurka Chapelle, TPAMI’13

[2] Weinberger, Chapelle, NIPS’09
[3] Akata, Perronnin, Harchaoui, Schmid, CVPR’13



Semantic Embeddings

Image Embedding LRI

U(I;) =W -CNN(I;;®): R — R

Label Embedding XK

Uy (word;) =u; : {1,...., L} — RY




word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the
same context tend to have similar meaning

Label Embedding CXREK]

U, (word;) =, : {1,...,L} — R




word2vec: Unsupervised Word Embedding

Distributional Semantics Hypothesis: words that are used and occur in the
same context tend to have similar meaning

e.g., Horse breeds are loosely divided into three categories

Label Embedding XK Sl Wpreeds

Uy (word;) =u; : {1,...., L} — RY

o—Hidden layer L

O
- O
u O h. :\ : O
horse | 1 _ Ugre

. Wloosely

Skip-gram Model: unsupervised semantic representation for words

| Mikolov, Sutskever, Chen, Corrado, Dean, NIPS’13 |



DeVISE: A Deep Visual-Semantic Embedding Model

| Frome et al., 2013 |

Traditional Deep Visual Semantic Skip-gram
Visual Model Embedding Model Language Model
label nearby word

softmax layer

transformation

softmax layer

embedding embedding
parameter lookup table parameter lookup table
initialization initialization
image image label source word

loss(image, label) = Z max[0, margin — tjqpe M(image) + t; Mv(image)]
j#label



DeVISE: A Deep Visual-Semantic Embedding Model

Supervised Results

| Frome et al., 2013 |

Flat hit@k (%) Hierarchical precision@k
Model type dim 1 2 S 10 2 S 10 20
Softmax baseline N/A || 55.6 | 674 | 78.5 | 85.0 || 0.452 | 0.342 | 0.313 | 0.319
DeViSE 500 53.2 | 652 | 76.7 | 83.3 || 0.447 | 0.352 | 0.331 | 0.341
1000 || 549 | 669 | 78.4 | 85.0 || 0.454 | 0.351 | 0.325 | 0.331
Random embeddings | 500 524 | 639 | 74.8 | 80.6 || 0.428 | 0.315 | 0.271 | 0.248
1000 || 50.5 | 622 | 742 | 81.5 || 0.418 | 0.318 | 0.290 | 0.292
Chance N/A 0.1 0.2 0.5 1.0 0.007 | 0.013 | 0.022 | 0.042
Zero-shot Results
Model 200 labels | 1000 labels
DeViSE 31.8% 9.0%
Mensink et al. 2012 [12] 35.7% 1.9%
Rohrbach et al. 2011 [17] 34.8% -




Semantic Embeddings

Image Embedding LRI

U(I;) =W -CNN(I;;®): R — R

Label Embedding XK

Uy (word;) =u; : {1,...., L} — RY




word2vec: Unsupervised VWWord Embedding Fuetal., 2016]

Distributional Semantics Hypothesis: words that are used and occur in the
same context tend to have similar meaning

e.g., Horse breeds are loosely divided into three categories

Label Embedding XK 0 Upreeds
\IJL(QUOTCZ?;) =u,; : {1, ooy L} — Rd o
— —_Hiddenlayer/ /-
L = 310,000
Uhofr‘se C:D /‘ZI; x C:) uare

. Wloosely

Skip-gram Model: unsupervised semantic representation for words
(trained from 7 billion word linguistic corpus)




Semi-supervised Vocabulary Informed Learning  (fuetal. 2016)

Image Embedding CLEL]

U(I;) =W -CNN(I;;®): R — R

Label Embedding XK

U, (word;) =u; : {1,...,L} — R“

L = 310,000
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Uy (word;) =u; : {1,...., L} — R4

L = 310,000

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:




Semi-supervised Vocabulary Informed Learning  (Fuetal, 2016]

Co(W. Uus) = D[+ D(W,) — D(Wo )

U(I;) =W -CNN(I;;®): R — R

Label Embedding
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Objective Function:

N
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Vocabulary Informed Recognition [Fuetal., 2016]
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Vocabulary Informed Recognition [Fuetal., 2016]
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Experiments: Datasets [Fuetal, 2016

Animals with Attributes ImageNet

. H : \ .
‘:'( o~ 1 N )
WA, vl 4
- o Pl VLR Akt y e
A Lo VYL » -
. A <Lr } g g
= AU L oy 1 L
-:V‘ el - ~= b
F .3 o o PO P

IMJZGE

'l

£ ol <
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Auxiliary: 40 Animal Classes (annotated) Auxiliary: 1,000 General Classes (annotated)

Target: 10 Animal Classes (NO annotation) Target: 360 General Classes (NO annotation)

| Lampert, Nickisch, Harmeling CVPR’09 | [ Deng et al., CVPR’09 |



Experiments: Settings

| Fuetal., 2010 ]

No. Testing Classes No. Testing Words

AwA/ImageNet

SUPERVISED v

Chance(%)

ZERO-SHOT

OPEN-SET v v

40/1000 40/1000 2 5/0.1
\/ 10/360 10/360 10/0.28
50/1360 310K/310K 3.2E-04

The tasks are only separated in evaluation;
We train one unified model for all the settings
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Experiments: Settings (Fuetal, 2016
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Experiments: Settings (Fuetal, 2016
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Experiments: Settings

| Fuetal., 2010 ]

No. Testing Classes No. Testing Words

AwA/ImageNet

SUPERVISED v

Chance(%)

ZERO-SHOT

OPEN-SET v v

40/1000 40/1000 2.5/0.1
\/ 10/360 10/360 10/0.28
50/1360 310K/310K 3.2E-04

The tasks are only separated in evaluation;
We train one unified model for all the settings



Zero-shot Results

Results with AWA

[Fu et al., 2016 ]

+4.4%

Features Accuracy
SS-Voc: full instances CNNoverFeat /8.3
Akata et al. CVPR 2015 CNNGaoogLeNet 73.9
TMV-BLP (Fu et al. ECCV 2014) CNNoverFeat 69.9
AMP (SR+SE) (Fu et al. CVPR 2015) CNNoverFeat 66.0
DAP (Lampert et al. TPAMI 2013) CNNvaga19 57.5
PST (Rohrbach et al. NIPS 2013) CNNoverFeat 53.2
DS (Rohrbach et al. CVPR 2010) CNNoverFeat 52.7
IAP (Lampert et al. TPAMI 2013) CNNoverFeat 44 .5
HEX (Deng et al. ECCV 2014) CNNDECAF 44 .2




Zero-shot Results

Results with AWA

[Fu et al., 2016 ]
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training data

Method

800 instances (20 inst*40 class);

Features

C NN OverFeat

Accuracy

/4.4

+0.5%

Akata et al. CVPR 2015 CNNGaoogLeNet 73.9
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HEX (Deng et al. ECCV 2014) CNNDbDEecaF 44.2




Zero-shot Results

Results with AWA

[Fu et al., 2016 ]

0.82% of
training data

SS-Voc: full instances

800 instances (20 inst*40 class);

200 instances (5 inst*40 class);

Features Accuracy
CN NOverFeat /8.3
CN NOverFeat /4.4

CNN OverFeat

Akata et al. CVPR 2015 CNNGaoogLeNet 73.9
TMV-BLP (Fu et al. ECCV 2014) CNNoverFeat 69.9
AMP (SR+SE) (Fu et al. CVPR 2015) CNNoverFeat 66.0
DAP (Lampert et al. TPAMI 2013) CNNvcai9 57.5
PST (Rohrbach et al. NIPS 2013) CNNoverFeat 53.2
DS (Rohrbach et al. CVPR 2010) CNNoverFeat 52.7
IAP (Lampert et al. TPAMI 2013) CNNoverFeat 44 .5
HEX (Deng et al. ECCV 2014) CNNDbDEecaF 44.2




Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Given image-sentence pairs learn how to localize arbitrary language phrase
Or sentence In new Images

The man at bat readies to swing at the
pitch while the umpire looks on.

A large bus sitting next to a very tall
building.

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 |



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Given image-sentence pairs learn how to localize arbitrary language phrase
Or sentence In new Images

The man at bat readies to swing at the
pitch while the umpire looks on.

A large bus sitting next to a very tall
building.

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 |



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Given image-sentence pairs learn how to localize arbitrary language phrase
Or sentence In new Images

The man at bat readies to swing at the
pitch while the umpire looks on.

A large bus sitting next to a very tall
building.

[ Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 |
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Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Label Embedding CXEK]

U (phrase;) = u;
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Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Language Decoder

man that IS cutting sandwich

Language Encoder

a
Label Embedding CXEK] \ A _ : \ — .
a man that IS c-uttin
U (phrase;) = u; J

LT B STW B LSTw IS I LST g LT
I T

a man that S cutting sandwich



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

purple
bus
U (phrase;) = u;
u; a table

d man

Language Encoder

LT B8 STW B LSTw LS I LST g LT
I A E N

a man that IS cutting sandwich



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Feature Extractor

Image Embedding [IXXL]

le
I;)=W-CNN(I;;® CNN purp
V(l;) =W - -CNN(;0) e
U (phrase;) = u;
u; a table

d man

Language Encoder

LT B8 STW B LSTw LS I LST g LT
I T

man that IS cutting sandwich

Q



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Latent Attention

U(I;) = W - CNN(I;; ©)

Feature Extractor 16x16 5 i Nt
image Embedding CITT] 1. ﬂ) R
CNN T .

Label Embedding XX X]

U (phrase;) = u;

a table

d madn

Language Encoder

LT B8 STW B LSTw LS I LST g LT
I T

a man that IS cutting sandwich



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Latent Attention
Feature Extractor 16X16

£
ﬁ e |
E _— D LR ‘
| R TL LS
™ ~N
°
°

Image Embedding [IXXL]

U(I;) = W - CNN(I;; ©)

Label Embedding XX X]

U (phrase;) = u;

a table

d man

Language Encoder

LT B8 STW B LSTw LS I LST g LT
I T

man that S cutting sandwich

Q




Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

Image Embedding [IXXL]

U(I;) = W - CNN(I;; ©)

Label Embedding

a man that is
cutting

V1 (phrase;) = u; :
r(phrase;) = u sandwich

a table

d madn

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:

Combination of previous discriminative similarity and linguistic regularization



Weakly-supervised Visual Grounding of Phrases

Image Embedding [ITT]

U(I;) = W - CNN(I;; ©)

Label Embedding

U (phrase;) = u;

Similarity in Embedding Space

D(u,u’) = [[u—u'l];

Objective Function:

ROOT
|
NP
— I -
DT NN SBAR
A man WHNP S
| |
WDT VP
| e —
that VBZ VP
I - i -
s VBG NP PP
| N
cutting NN IN NP
| 2N

sandwich on DT NN
| |

a table

| Xiao et al., 2017 ]

Combination of previous discriminative similarity and linguistic regularization



Weakly-supervised Visual Grounding of Phrases

For noun phrases:
siblings should have disjoint masks

Image Embedding [ITT]

U(I;) = W - CNN(I;; ©)

ROOT
Label Embedding |
NP
— | _
U (phrase;) = u; o NN SEAR
A man WHNP S
| |
WDT VP
| A
that VBZ VP
- ey en s i | ~ | -
Similarity in Embedding Space s VBG NP PP
| N
cutting NN IN NP
Du,v) = |ju—u'||3 PN

sandwich on DT NN
| I

a table

Objective Function:

| Xiao et al., 2017 |

Combination of previous discriminative similarity and linguistic regularization



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

For noun phrases:
siblings should have disjoint masks

Image Embedding [ITT]

U(I;) = W - CNN(I;; ©)

ROOT
Label Embedding |
NP
- | _
U, (phrase;) = u; DlT NIN #j_ﬁa_,m\
A man WHNP S
| I
WDT VP
I A
that VBZ VP
c ey en s ] | ~ | -
Similarity in Embedding Space is  VBG NP PP
| Py
cutting NN IN NP
D(u»u/):Hu—u/H% N

sandwich on DT NN
I I

a table

Objective Function:

Combination of previous discriminative similarity and linguistic regularization



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

For noun phrases:
siblings should have disjoint masks

Image Embedding [ITT]

U(I;) = W - CNN(I;; ©)

parents should be union of children masks

ROOT
Label Embedding |
NP
- | _
U, (phrase;) = u; DlT NIN #j_ﬁa_,m\
A man WHNP S
| I
WDT VP
I A
that VBZ VP
c ey en s ] | ~ | -
Similarity in Embedding Space is  VBG NP PP
| Py
cutting NN IN NP
D(u»u/):Hu—u/H% N

sandwich on DT NN
I I

a table

Objective Function:

Combination of previous discriminative similarity and linguistic regularization



Weakly-supervised Visual Grounding of Phrases [xeoetal, 2017]

For noun phrases:
siblings should have disjoin

Image Embedding [ITT]

U(I;) = W - CNN(I;; ©)

parents should be union of

ROOT
Label Embedding |
NP
_—~——’---_I- -
U (phrase;) = u; DIT NlN #ﬂfﬂ%n\
A man WHNP S
I I
WDT VP
| A
that VBZ VP
| - | _
Similarity in Embedding Space is  VBG NP PP
| P
cutting NN IN NP
D(u,u’):|Iu—u’||§ A

sandwich on DT NN
| I

a table

Objective Function:

Combination of previous discriminative similarity and linguistic regularization



Qualitative Results [ Xiao et al., 2017

Input:

guy Iin green t-shirt holding
skateboard
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Qualitative Results [ Xiao et al., 2017

Input: NO linguistic constraints Our Model

Highest Probabllity Highest Probability

Ground truth region

guy Iin green t-shirt holding
skateboard




Qualitative Results [ Xiao et al., 2017

NO linguistic constraints

Input:

a person driving a boat




Qualitative Results NO linguistic constraints [ Xi@o etal., 2017 ]

Input:

a child wearing black protective helmet




Quantitative Results [ Xiao et al., 2017 ]

Segmentation performance on COCO dataset

| Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick, ECCV’14 |

loU@0.3 loU@0.4 loU@0.5 Avg mAP

Non-strcutred 0.302

0.199 0.110 0.203
Parent-Child 0.327 0.213 0.118 0.219

Sibling 0.316 0.203 0.114 0.211
Ours 0.347 0.246 0.159 0.251




Order Embeddings

[ Vendrov et al., 2016 ]

/ enflty \ | T
skis person dog boy
woman person walking mla.e <—man

~__ |

woman walking woman

| . |

woman skiing woman walking her dog person ¢——— female<—agirl

-
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05} _
- cat
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Multimodal Representation Types

Joint representations:

Representation

, , — (Can be learned supervised or unsupervised
Coordinated representations:

s N e

T T — Structure constraints (e.g., orthogonality, sparseness)

Modality 1 — CCA (unsupervised), joint embeddings (supervised)

*slide from Louis-Philippe Morency

— Simplest version: modality concatenation (early fusion)

— Similarity-based methods (e.g., cosine distance)

Modality 2




Final Words ...

Joint representations
— Project modalities to the same space

— Use when all the modalities are present during test time
— Suitable for multi-model fusion

Coordinated representations
— Project modalities to their own coordinated spaces

— Use when only one of the modalities is present during test-time
— Suitable for multimodal translation
— Good for multimodal retrieval

*slide from Louis-Philippe Morency



