
Lecture 3: Image Formation (continued)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (September 11, 2025)

Readings: 

— Today’s Lecture:  Szeliski Chapter 2, Forsyth & Ponce (2nd ed.) 1.1.1 — 1.1.3 

                                 Szeliski 3.1-3.2, Forsyth & Ponce (2nd ed.) 4.1, 4.5 

Reminders: 

— Complete Assignment 0 (ungraded) by Thursday, September 11 

— Assignment 1 (graded) is out Thursday, September 11 
— Lecture Notes for Image Formation will be posted by next class

Topics: 

— Lenses 

— Human eye (as a camera)

— Image as a function

— Linear filtering



Today’s “fun” Example #1: Nudging



Aerial view of the white stripes at the lake shore drive in Chicago.

Today’s “fun” Example #1: Nudging



Today’s “fun” Example #1: Anchoring and Ordering



Short Review of Lecture 2



The image formation process that produces a particular image depends on


— Lightening condition


— Scene geometry


— Surface properties 


— Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

source

surface

element

normal

sensor

eye

Lecture 2: Re-cap Image Formation
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constant, called albedo
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constant, called albedo

angle between surface normal 
and illumination direction

<latexit sha1_base64="bN67rtjhORe2r8KXJJszRNmJK44="></latexit>

L = I ·BRDF(✓i,�i, ✓v, ✓v) =
⇢d
⇡
I(~i · ~n)

<latexit sha1_base64="bN67rtjhORe2r8KXJJszRNmJK44="></latexit>

L = I ·BRDF(✓i,�i, ✓v, ✓v) =
⇢d
⇡
I(~i · ~n)



(✓i,�i)(✓r,�r)

Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 

(✓i,�i)(✓r,�r)

source

surface

element

normal sensor

(✓i,�i)(✓r,�r)
BRDF(✓i,�i, ✓v,�v) =

⇢d
⇡

(✓v,�v) = (✓r,�r)

(✓v,�v) = (✓r,�r)

BRDF(✓i,�i, ✓v,�v) =
⇢d
⇡

Lambertian surface: 

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)
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Note: not a function of (✓v,�v) = (✓r,�r)

constant, called albedo
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Lecture 2: Re-cap Light and Reflection

Lambertian surface: 

Semi-Mirror surface: all incident light reflected in one directions 
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Forsyth & Ponce (2nd ed.) Figure 1.2 

A pinhole camera is a box with a small hall (aperture) in it 

Lecture 2: Re-cap Pinhole Camera Abstraction
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Lecture 2: Re-cap Pinhole Camera Abstraction

Pinhole Camera Abstraction 



Lecture 2: Re-cap Projection 
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– If pinhole is too big then many directions are 
averaged, blurring the image 


– If pinhole is too small then diffraction 
becomes a factor, also blurring the image 


– Generally, pinhole cameras are dark, 
because only a very small set of rays from a 
particular scene point hits the image plane 


– Pinhole cameras are slow, because only a 
very small amount of light from a particular 
scene point hits the image plane per unit time 

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987 

Lecture 2: Re-cap Reason for Lenses



Lecture 2: Re-cap Reason for Lenses

circle of 

confusion


(blur)

point 

in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane



Reason for Lenses

circle of 

confusion


(blur)

point 

in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane

The role of a lens is to capture more light while preserving, as much as

possible, the abstraction of an ideal pinhole camera.



Snell’s Law

n1 sin↵1 = n2 sin↵2

Reflection

Refraction



Snell’s Law

n1 sin↵1 = n2 sin↵2

Index of refraction



Snell’s Law

n1 sin↵1 = n2 sin↵2

Index of refraction

Exercise: Would it make sense to make the lens from 
material who’s index of refraction equals to air? Why?



Pinhole Model with Lens
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General Lens



Thin Lens

https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-
_Optics_and_Modern_Physics_(OpenStax)/02%3A_Geometric_Optics_and_Image_Formation/2.05%3A_Thin_Lenses



Forsyth & Ponce (1st ed.) Figure 1.9 

1

z0
� 1

z
=

1

f

Thin Lens Equation



Forsyth & Ponce (1st ed.) Figure 1.9 

Focal Length: Property of the lens (geometry and refraction index)

1

z0
� 1

z
=

1

f

Thin Lens Equation



Forsyth & Ponce (1st ed.) Figure 1.9 

Focal Length: Property of the lens (geometry and refraction index)
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Forsyth & Ponce (1st ed.) Figure 1.9 

Focal Length: Property of the lens (geometry and refraction index)

Depth of the point 
(P) in the worldLocation of the 

imaging plane 
where the 
projection of this 
point (P) will be in 
focus 
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Thin Lens Equation



Pinhole Camera with a Lens
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Perspective Projection: location in the image where a 3D world point projects

Thin Lens Equation: depth of the imaging plane itself where this point will be in focus



Lens Basics 

from 1

f0

To focus closer, 

we have to move 


the image plane back

A lens focuses parallel rays (from points at infinity) at focal length of the lens

Rays passing through the center of the lens are not bent
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Plane of 

focus

In focus

blur

Lenses focus all rays from a (parallel to lens) plane in the world

Objects off the plane are blurred depending on the distance

Lens Basics 1
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https://www.physicsclassroom.com/class/refrn/Lesson-5/Converging-Lenses-Object-Image-Relations
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Perspective Projection + Thin Lens Examples
Where would the focusing plane be for various positions of the object?
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Where would the focusing plane be for various positions of the object?
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iPhone 11 Camera Lens: 26mm

Where would the focusing plane be for various positions of the object?

Perspective Projection + Thin Lens Examples



Effect of Aperture Size 

defocus

blur

smaller

blur

Smaller aperture ⇒ smaller blur,  larger depth of field

(also known as 

circle of confusion)

(also known as 

circle of confusion)



Depth of Field

Aperture size = f/N, ⇒ large N = small aperture



Video Source: https://www.youtube.com/watch?v=2c6lCdDFOY8

Today’s “fun” Example #2: 
Developed by the French company Varioptic, the lenses consist of an oil-
based and a water-based fluid sandwiched between glass discs. Electric 
charge causes the boundary between oil and water to change shape, altering 
the lens geometry and therefore the lens focal length 


The intended applications are: 
auto-focus and image 
stabilization. No moving parts. 
Fast response. Minimal power 
consumption.
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Video Source: https://www.youtube.com/watch?v=NjLJ77IuBdM

Electrostatic field between the column of water and the electron (other side of 
power supply attached to the pipe) — see full video for complete explanation

Today’s “fun” Example #2: 

https://www.youtube.com/watch?v=NjLJ77IuBdM
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Real Lenses

• Real Lenses have multiple stages of 
positive and negative elements with 
differing refractive indices


• This can help deal with issues such as 
chromatic aberration (different colours 
bent by different amounts), vignetting 
(light fall off at image edge) and sharp 
imaging across the zoom range



Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a 



Spherical Aberration



Compound Lens Systems 

A modern camera lens may 
contain multiple components, 
including aspherical elements 



Vignetting
Vignetting in a two-lens system

The shaded part of the beam never reaches the second lens  

Forsyth & Ponce (2nd ed.) Figure 1.12 



Vignetting

Image Credit: Cambridge in Colour



Chromatic Aberration 
— Index of refraction depends on wavelength, λ, of light 


— Light of different colours follows different paths


— Therefore, not all colours can be in equal focus 


Image Credit: Trevor Darrell



Other (Possibly Significant) Lens Effects 
Chromatic aberration 
— Index of refraction depends on wavelength, λ, of light                                 

— Light of different colours follows different paths

— Therefore, not all colours can be in equal focus 


Scattering at the lens surface

— Some light is reflected at each lens surface 


There are other geometric phenomena/distortions   
— pincushion distortion

— barrel distortion

— etc 



Lens Distortion 

Szeliski (1st ed.) Figure 2.13 

Fish-eye Lens

Lines in the world are no longer lines on the image, they are curves! 



Human Eye

— The eye has an iris (like a camera) 


— Focusing is done by changing 
shape of lens 


— When the eye is properly focused, 
light from an object outside the eye is 
imaged on the retina


— The retina contains light receptors 
called rods and cones 

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz



Fun Aside 

https://io9.gizmodo.com/does-your-brain-really-have-the-power-to-see-the-world-5905180

George M. Stratton
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retina = film / digital sensor
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called rods and cones 



Human Eye
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— The eye has an iris (like a camera) 


— Focusing is done by changing 
shape of lens 


— When the eye is properly focused, 
light from an object outside the eye is 
imaged on the retina


— The retina contains light receptors 
called rods and cones 



Two-types of Light Sensitive Receptors

Cones 
   6-7 million cone-shaped receptors

   color vision

   operate in high light

   less sensitive 

   yield higher resolution 

  


cone

rod

Rods 

   75-150 million rod-shaped receptors

   not involved in color vision, gray-scale vision only


operate at night

   highly sensitive, can responding to a single photon


 yield relatively poor spatial detail 

Slide adopted from: James Hays



Human Eye
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Slide adopted from: James Hays



Lecture Summary

— We discussed a “physics-based” approach to image formation. Basic 
abstraction is the pinhole camera. 


— Lenses overcome limitations of the pinhole model while trying to preserve 
it as a useful abstraction 


— Projection equations: perspective, weak perspective, orthographic 


— Thin lens equation 


— Some “aberrations and distortions” persist (e.g. spherical aberration, vignetting)


— The human eye functions much like a camera 



Lecture 3: Image Filtering

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Goal

1. Learn how to mathematically describe 
image processing


2. Basic building blocks



Image as a 2D Function
A (grayscale) image is a 2D function

grayscale image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )



Image as a 2D Function
A (grayscale) image is a 2D function

grayscale image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

domain: (X,Y ) 2 ([1, width], [1, hight])



Image as a 2D Function
A (grayscale) image is a 2D function

What is the range of the 
image function?

grayscale image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

domain: (X,Y ) 2 ([1, width], [1, hight])



Image as a 2D Function
A (grayscale) image is a 2D function

What is the range of the 
image function?

grayscale image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

domain: (X,Y ) 2 ([1, width], [1, hight])
I(X,Y ) 2 [0, 255] 2 Z



Adding two Images
Since images are functions, we can perform operations on them, e.g., average

I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2
I(X,Y ) G(X,Y )

I(X,Y )

2
+

G(X,Y )

2



Adding two Images

b =
I(X,Y ) +G(X,Y )

2

a =
I(X,Y )

2
+

G(X,Y )

2



Adding two Images

b =
I(X,Y ) +G(X,Y )

2

a =
I(X,Y )

2
+

G(X,Y )

2

a = b

a > b

b < a

Question:

a > ba > b



Adding two Images

a = b

a > b

b < a

Question:

a > ba > b

98

2
+

200

2
= 49 + 100 = 149

Red pixel in camera man image = 98

Red pixel in moon image = 200

98 + 200

2
=

b298c
2

=
255

2
= 127



Adding two Images

It is often convenient to convert images to 
doubles when doing processing  



Adding two Images

This will save you a LOT of headache in homeworks: 

1. Convert to doubles

2. (optionally) Normalize image to [0,1] range (by 

dividing by 255)

3. Perform any computations needed

4. (optionally) Undo normalization (by multiplying by 255)

5. Clamp values between [0, 255] 

6. Convert to uint8



I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

I 0(X,Y )

I 0(X,Y )



What types of filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Brightness v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel 
values stays the same 


Contrast: relative difference between pixel values becomes higher / lower

240 200

112 72

120 100

�128

÷2



Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

255� I(X,Y )

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y ) + 128255� I(X,Y )

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

I(X,Y )⇥ 2I(X,Y ) + 128255� I(X,Y )

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



✓
I(X,Y )

255
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⇥ 255

Examples of Point Processing 
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

✓
I(X,Y )

255

◆2

⇥ 255I(X,Y )⇥ 2I(X,Y ) + 128255� I(X,Y )

I(X,Y )

2
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



What types of filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Linear Neighborhood Operators (Filtering)
3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).
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(h) connected components. For the dilation and connected components, black (ink) pixels are
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

Original Image

blur sharpen edge filter



Non-Linear Neighborhood Operators (Filtering)3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).
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(a) (b)
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(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

Original Image

edge preserving

smoothing

median cenny edges



Let               be another             digital image (our “filter” or “kernel”)

Linear Filters
Let              be an           digital image (for convenience we let width = height)I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
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I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5For convenience we will assume      is odd. (Here,            )

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Filter

Image



Compute a new image,              , as follows 

Linear Filters
k =

jm
2

k
Let  

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

Intuition: each pixel in the output image is a linear combination of the same 
index pixel and its neighboring pixels in the original image 

-2 -1 0 1 2
-2
-1
0
1
2

i =

j =

F (i, j)I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)



Linear Filters

Y

X

For a given     and   , superimpose the 
filter on the image centered at I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
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m = 5



Linear Filters

Y

X

Compute the new pixel value,              , 
as the sum of             values, where each 
value is the product of the original pixel 
value in              and the corresponding 
values in the filter

I(X,Y )
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n⇥ n
m⇥m
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I(X,Y )
F (X,Y )
n⇥ n
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I 0(X,Y )
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Linear Filters

X

Y

The computation is repeated for each
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5



Linear Filter Example
I(X,Y )

F (X,Y )
n⇥ n
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m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Linear Filters: Boundary Effects 



1.  Ignore these locations: Make the computation undefined for the top and 

     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required   

      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the 

      leftmost column wraps around to the rightmost column  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Notice decrease in brightness at edges
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