
Lecture 8: Scaled Representations (cont.), Edge Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html


Menu for Today (October 2, 2024)
Topics: 

— Imaging Blending

— Scaled Representations  

Readings: 

— Today’s Lecture:  Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

Reminders: 

— Assignment 2: Scaled Representations, Face Detection and Image Blending

— Lecture Notes for last week in the next 1 to 2 days

— Quiz 2 next Monday

— Edge Detection




Goal

1. Understand the idea behind image pyramids 

2. Understand laplacian pyramids



Today’s “fun” Example: Eulerian Video Magnification

Video From: Wu at al., Siggraph 2012
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Figure From: Wu at al., Siggraph 2012

Today’s “fun” Example: Eulerian Video Magnification



Today’s BONUS “fun” Example: Visual Microphone



Today’s BONUS “fun” Example: Visual Microphone



Today’s BONUS “fun” Example: Beam AI



Slide Credit: Kristen Grauman

Lecture 7: Re-cap Template Matching



Similarity measures between a filter      local image region  


Correlation, CORR =  


Normalised Correlation,  NCORR =

Sum Squared Difference,  SSD = 


Normalized correlation varies between −1 and 1, attains the value 1 when the 
filter and image region are identical (up to a scale factor) 


Minimising SSD and maximizing Normalized Correlation 

are equivalent if 
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Assignment 2

Discussed in Class



Template Matching

⇤

Correlate image with a template



Template Matching

⇤

Correlate image with a template

!⇤ Non-max suppress!



Template Matching

⇤

Correlate image with a template

!⇤ Non-max suppress!
+ threshold



Detection Performance

TP = True positive (true face and detected)
FP = False positive (not face and detected)

TN = True negative (not face and no detection)
FN = False negative (true face and not detected) 

TP TN FNFP

Types of errors in detection:



Detection Performance

TP = True positive (true face and detected)
FP = False positive (not face and detected)

TN = True negative (not face and no detection)
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TP TN FNFP

Types of errors in detection:



Detection Performance
Depending on where we set the threshold, we can tradeoff between true 
positives and false positives:

Classify as FaceClassify as Non-Face

threshold

true faces 

correlation 
response

non-faces



Classify as FaceClassify 
as Non-Face

red = actual faces, blue = actual non-faces

ROC Curves
Note that we can easily get 100% true positives (if we are prepared to get 
100% false positives as well!)


It is a tradeoff between true positive rate (TP) and false positive rate (FP) 

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold


This is a Receiver Operating Characteristic (ROC) curve



Classify as FaceClassify 
as Non-Face

red = actual faces, blue = actual non-faces

ROC Curves
Note that we can easily get 100% true positives (if we are prepared to get 
100% false positives as well!)


It is a tradeoff between true positive rate (TP) and false positive rate (FP) 

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold


This is a Receiver Operating Characteristic (ROC) curve

Optimal Classifier Random Classifier



Correlation with a fixed-sized template only detects faces at specific scales


Template Matching



Correlation with a fixed-sized template only detects faces at specific scales


Template Matching



Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale



Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale



Image Pyramid

An image pyramid is an efficient way to represent an image at multiple scales


In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and 
resampled to get the next layer, taking advantage of the fact that 

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)



Gaussian vs Laplacian Pyramid
Shown in opposite 

order for space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Blur with a Gaussian 
kernel, then select 

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)
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Gaussian vs Laplacian Pyramid
Shown in opposite 

order for space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Subtle point: Need to downsample + upsample to guarantee 
perfect reconstruction of Gaussian from Laplacian Pyramid

These images are theoretically the same (Nyquist) but in practice 
slightly different due to imperfect filtering/interpolation and edge effects



Gaussian vs Laplacian Pyramid
Shown in opposite 

order for space

Which one takes 

more space to 

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Application: Image Blending

Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM 
Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Burt and Adelson, “A multiresolution spline with application to image mosaics,”
ACM Transactions on Graphics, 1983, Vol.2, pp.217-236. 

Application: Image Pyramid Blending160 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) c� 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

3.5.5 Application: Image blending

One of the most engaging and fun applications of the Laplacian pyramid presented in Sec-
tion 3.5.3 is the creation of blended composite images, as shown in Figure 3.41 (Burt and
Adelson 1983b). While splicing the apple and orange images together along the midline
produces a noticeable cut, splining them together (as Burt and Adelson (1983b) called their
procedure) creates a beautiful illusion of a truly hybrid fruit. The key to their approach is
that the low-frequency color variations between the red apple and the orange are smoothly
blended, while the higher-frequency textures on each fruit are blended more quickly to avoid
“ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Lapla-
cian pyramid (Figure 3.42, left and middle columns). Each band is then multiplied by a
smooth weighting function whose extent is proportional to the pyramid level. The simplest
and most general way to create these weights is to take a binary mask image (Figure 3.43c)
and to construct a Gaussian pyramid from this mask. Each Laplacian pyramid image is then



Image Blending

Required for creating panoramas 



Image Blending



Image Blending: Alpha Blending



Image Blending: Alpha Blending



Image Blending: Alpha Blending



Image Blending: Alpha Blending



Image Blending: Alpha Blending



Application: Image Pyramid Blending



Application: Image Pyramid Blending

⇤ ⇤+ =

Step 1: Specify an Image Mask
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Step 2: blend lower frequency bands over 
larger spatial ranges, high frequency bands 

over small spatial ranges



Application: Image Blending

Algorithm:


1. Build Laplacian pyramid LA and LB from images A and B


2. Build a Gaussian pyramid GR from mask image R (the mask defines which 
image pixels should be coming from A or B)


3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as 
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j)


4. Reconstruct the final blended image from LS



Polar Bear
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[ Jim Kajiya, Andries van Dam]
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Alpha blend with sharp fall-off



Alpha blend with gradual fall-off



Pyramid Blend



More examples …



More examples …



Summary: Scaled Representations

Gaussian Pyramid


—Each level represents a low-pass filtered image at a different scale


—Generated by successive Gaussian blurring and downsampling

—Useful for image resizing, sampling


Laplacian Pyramid 


—Each level is a band-pass image at a different scale


—Generated by differences between successive levels of a Gaussian Pyramid

—Used for pyramid blending, feature extraction etc.



Recap: Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales
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Recap: Multi-Scale Template Matching

= Template

Correlation with a fixed-sized image only detects faces at specific scales



Solution: form a Gaussian Pyramid and 
convolve with the template at each scale

Recap: Multi-Scale Template Matching

= TemplateQ. Why scale the image and not the template?

Correlation with a fixed-sized image only detects faces at specific scales



Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

Improving Template Matching



Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba

Improving Template Matching



Improving Template Matching

Improved detection algorithms make use of image features 

These can be hand coded or learned



From Template Matching to Local Feature Detection
Image Template

Test Image



From Template Matching to Local Feature Detection
Image Template

Test Image

Edge Template

Test Edge Image



From Template Matching to Local Feature Detection
Image Template Interest Points

Test Image

Edge Template

Test Edge Image



Template Matching with HoG 

Template matching can be improved by using better features, e.g., Histograms 
of Gradients (HOG)  [ Dalal Triggs 2005 ]


The authors use a Learning-based approach (Support Vector Machine) to find an optimally 
weighted template
666 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f) (g)

Figure 14.8 Pedestrian detection using histograms of oriented gradients (Dalal and Triggs
2005) c� 2005 IEEE: (a) the average gradient image over the training examples; (b) each
“pixel” shows the maximum positive SVM weight in the block centered on the pixel; (c) like-
wise, for the negative SVM weights; (d) a test image; (e) the computed R-HOG (rectangular
histogram of gradients) descriptor; (f) the R-HOG descriptor weighted by the positive SVM
weights; (g) the R-HOG descriptor weighted by the negative SVM weights.

14.1.2 Pedestrian detection

While a lot of the research on object detection has focused on faces, the detection of other
objects, such as pedestrians and cars, has also received widespread attention (Gavrila and
Philomin 1999; Gavrila 1999; Papageorgiou and Poggio 2000; Mohan, Papageorgiou, and
Poggio 2001; Schneiderman and Kanade 2004). Some of these techniques maintain the same
focus as face detection on speed and efficiency. Others, however, focus instead on accuracy,
viewing detection as a more challenging variant of generic class recognition (Section 14.4)
in which the locations and extents of objects are to be determined as accurately as possible.
(See, for example, the PASCAL VOC detection challenge, http://pascallin.ecs.soton.ac.uk/
challenges/VOC/.)

An example of a well-known pedestrian detector is the algorithm developed by Dalal
and Triggs (2005), who use a set of overlapping histogram of oriented gradients (HOG) de-
scriptors fed into a support vector machine (Figure 14.8). Each HOG has cells to accumulate
magnitude-weighted votes for gradients at particular orientations, just as in the scale invariant
feature transform (SIFT) developed by Lowe (2004), which we discussed in Section 4.1.2 and
Figure 4.18. Unlike SIFT, however, which is only evaluated at interest point locations, HOGs
are evaluated on a regular overlapping grid and their descriptor magnitudes are normalized
using an even coarser grid; they are only computed at a single scale and a fixed orientation. In
order to capture the subtle variations in orientation around a person’s outline, a large number
of orientation bins is used and no smoothing is performed in the central difference gradi-
ent computation—see the work of Dalal and Triggs (2005) for more implementation details.

SVM weightsavg grad
+ �

HOG weighted HOG



Convnet Object Detection
Think of each feature vector vij  as 
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Receptive Field

V

[ Images: Jonathan Huang ]

— Convnet based object detectors resemble sliding 
window template matching in feature space


— Architectures typically involve multiple scales and 
aspect ratios, and regress to a 2D offset in addition to 
category scores

Solution: use multiple Wloc and Wcls (one for each 
aspect ratio/scale)

SoftMax(Wcls,ar1·vij)
Wloc,ar1·vij

SoftMax(Wcls,ar2·vij)
Wloc,ar2·vij

SoftMax(Wcls,ar3·vij)
Wloc,ar3·vij
...



Summary 
Template matching as (normalized) correlation. Template matching is not 
robust to changes in: 

— 2D spatial scale and 2D orientation

— 3D pose and viewing direction

— illumination 


Scaled representations facilitate

— template matching at multiple scales

— efficient search for image–to–image correspondences 

— image analysis at multiple levels of detail 


A Gaussian pyramid reduces artifacts introduced when sub-sampling to 
coarser scales 



From Template Matching to Local Feature Detection

We’ll now shift from global template matching to local feature detection


Consider the problem of finding images of an elephant using a template




From Template Matching to Local Feature Detection

We’ll now shift from global template matching to local feature detection


Consider the problem of finding images of an elephant using a template


An elephant looks different from different viewpoints

— from above (as in an aerial photograph or satellite image) 

— head on

— sideways (i.e., in profile)

— rear on 


What happens if parts of an elephant are obscured from view by trees, rocks, 
other elephants? 



— Move from global template matching to local template matching  

— Local template matching also called local feature detection  

— Obvious local features to detect are edges and corners  

From Template Matching to Local Feature Detection



Existential Question 



Lecture 9: Edge Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Edge Detection

Goal: Identify sudden changes in image 
intensity 


This is where most shape information is 
encoded 


Example: artist’s line drawing (but artist 
also is using object-level knowledge) 




What Causes Edges?What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen



Recall, for a 2D (continuous) function, f(x,y) 

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution 


Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x



Recall, for a 2D (continuous) function, f(x,y) 

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution 


A (discrete) approximation is 


Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc="></latexit>

@f

@X
⇡ F (X + 1, Y )� F (X,Y )

�X



Recall, for a 2D (continuous) function, f(x,y) 

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution 


A (discrete) approximation is 

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc="></latexit>

@f

@X
⇡ F (X + 1, Y )� F (X,Y )

�X

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

�1 1
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�11

“forward difference” implemented as

�1 1

correlation convolution

from left 

Estimating Derivatives

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc="></latexit>

@f

@X
⇡ F (X + 1, Y )� F (X,Y )

�X



A (discrete) approximation is 


�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

   correlation convolution

from left from right 

Estimating Derivatives

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc="></latexit>

@f

@X
⇡ F (X + 1, Y )� F (X,Y )

�X



A (discrete) approximation is 


�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

   correlation convolution

from left from right 

Estimating Derivatives

<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc="></latexit>

@f

@X
⇡ F (X + 1, Y )� F (X,Y )

�X



“forward difference” implemented as

�1 1

correlation 

�1 1

“backward difference” implemented as

   correlation 

from left from right 

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.
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rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.
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