

## CPSC 425: Computer Vision



Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine\_vision\_guide/TemplateMatching.html

Lecture 8: Scaled Representations (cont.), Edge Detection

( unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung** )

## Menu for Today (October 1, 2024)

#### **Topics:**

- Imaging Blending
- Scaled Representations

Edge Detection

#### Readings:

— Today's Lecture: Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

#### Reminders:

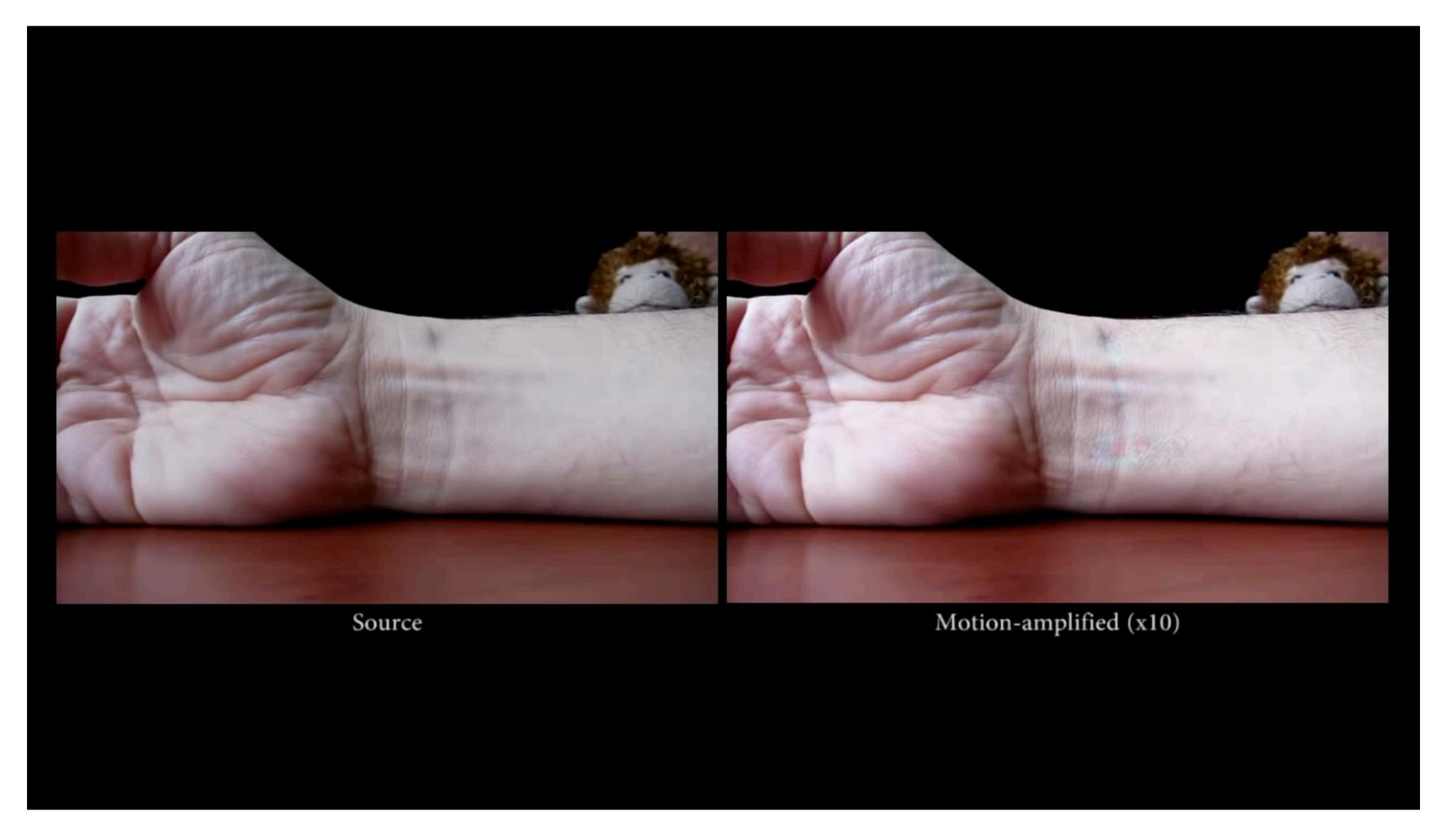
- Assignment 2: Scaled Representations, Face Detection and Image Blending
- Quiz 2 next Monday

### Goal

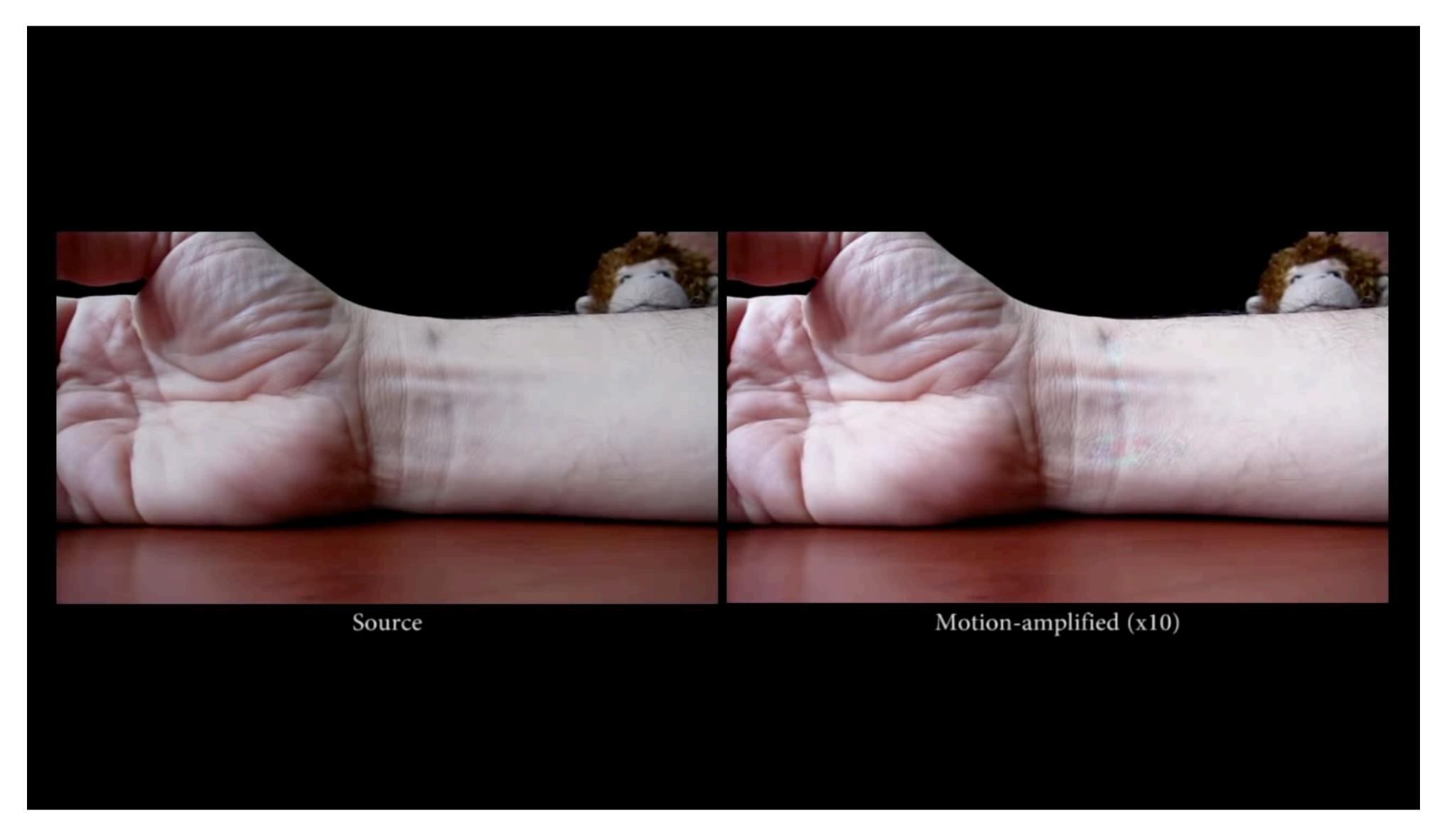
1. Understand the idea behind image pyramids

2. Understand laplacian pyramids

## Today's "fun" Example: Eulerian Video Magnification



## Today's "fun" Example: Eulerian Video Magnification



## Today's "fun" Example: Eulerian Video Magnification

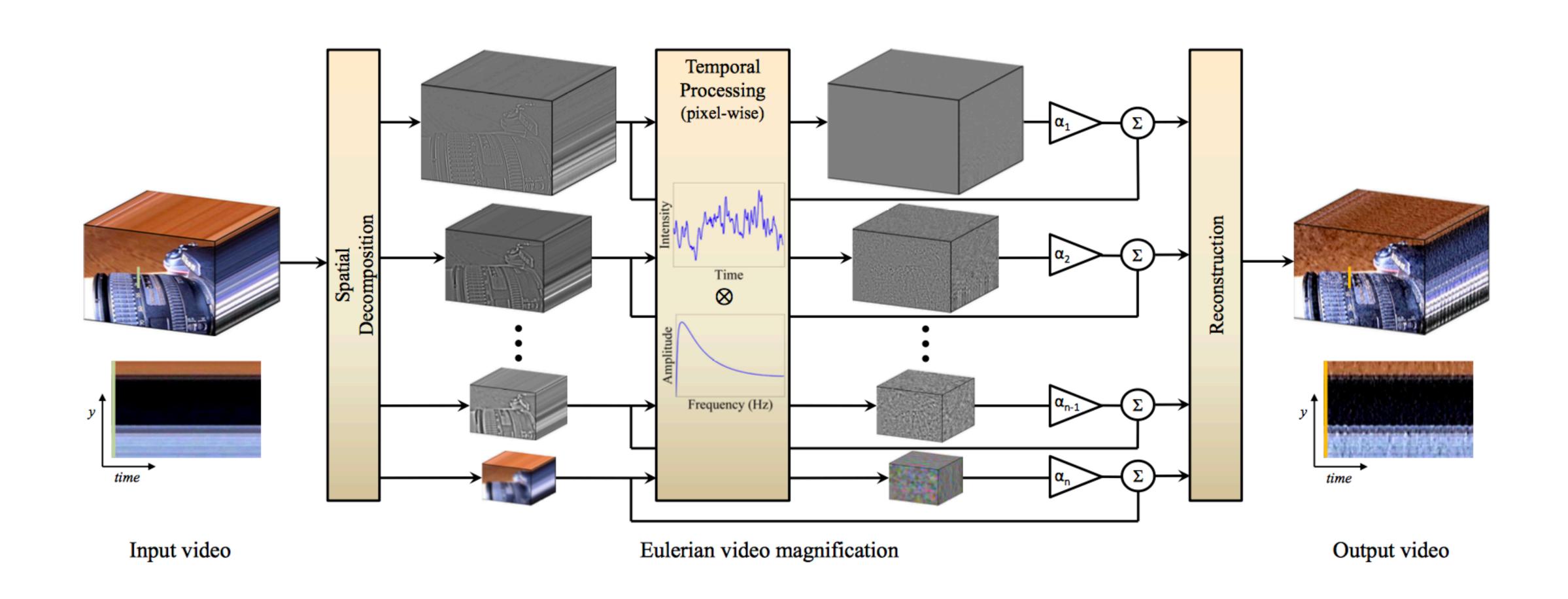
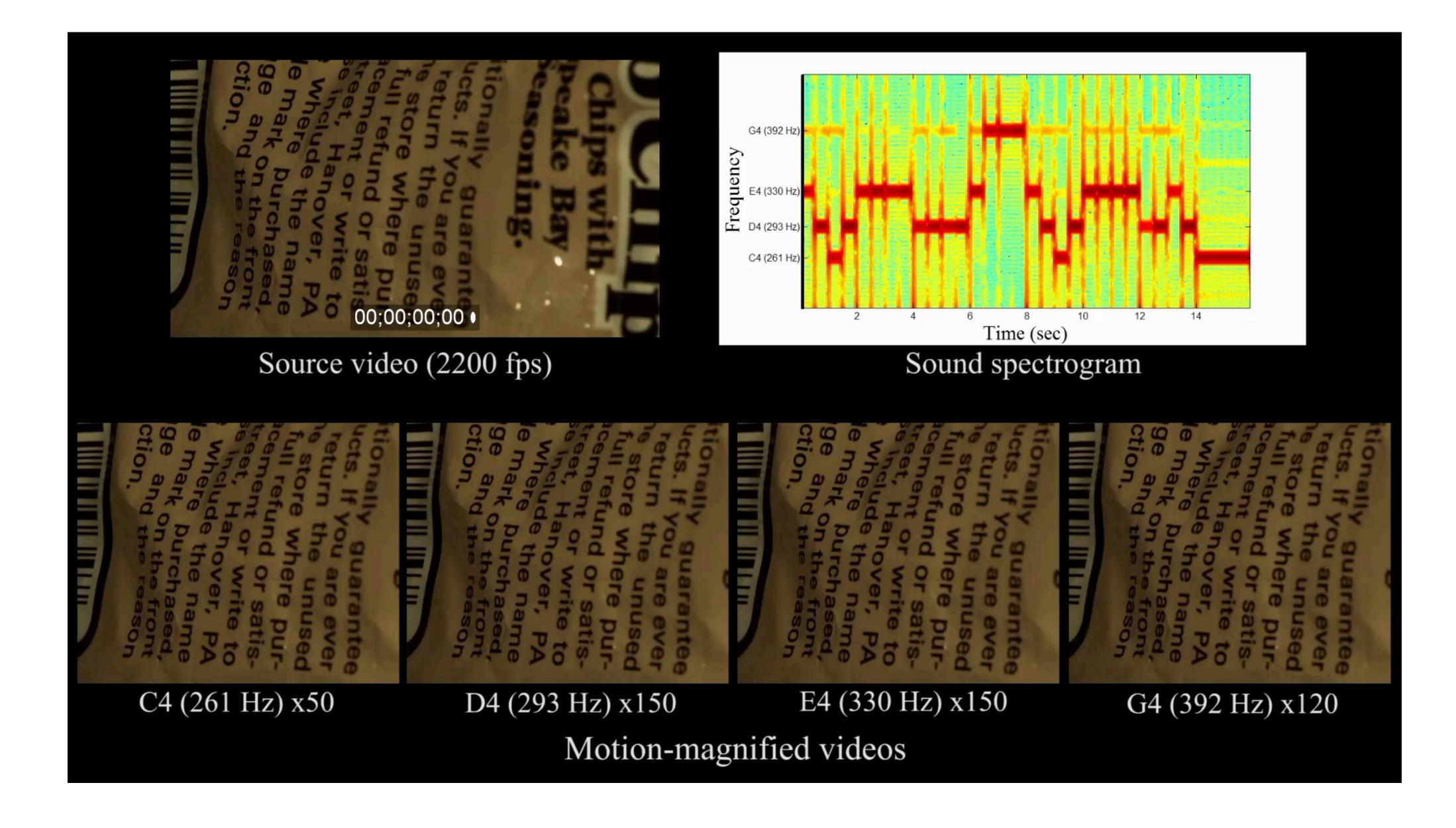
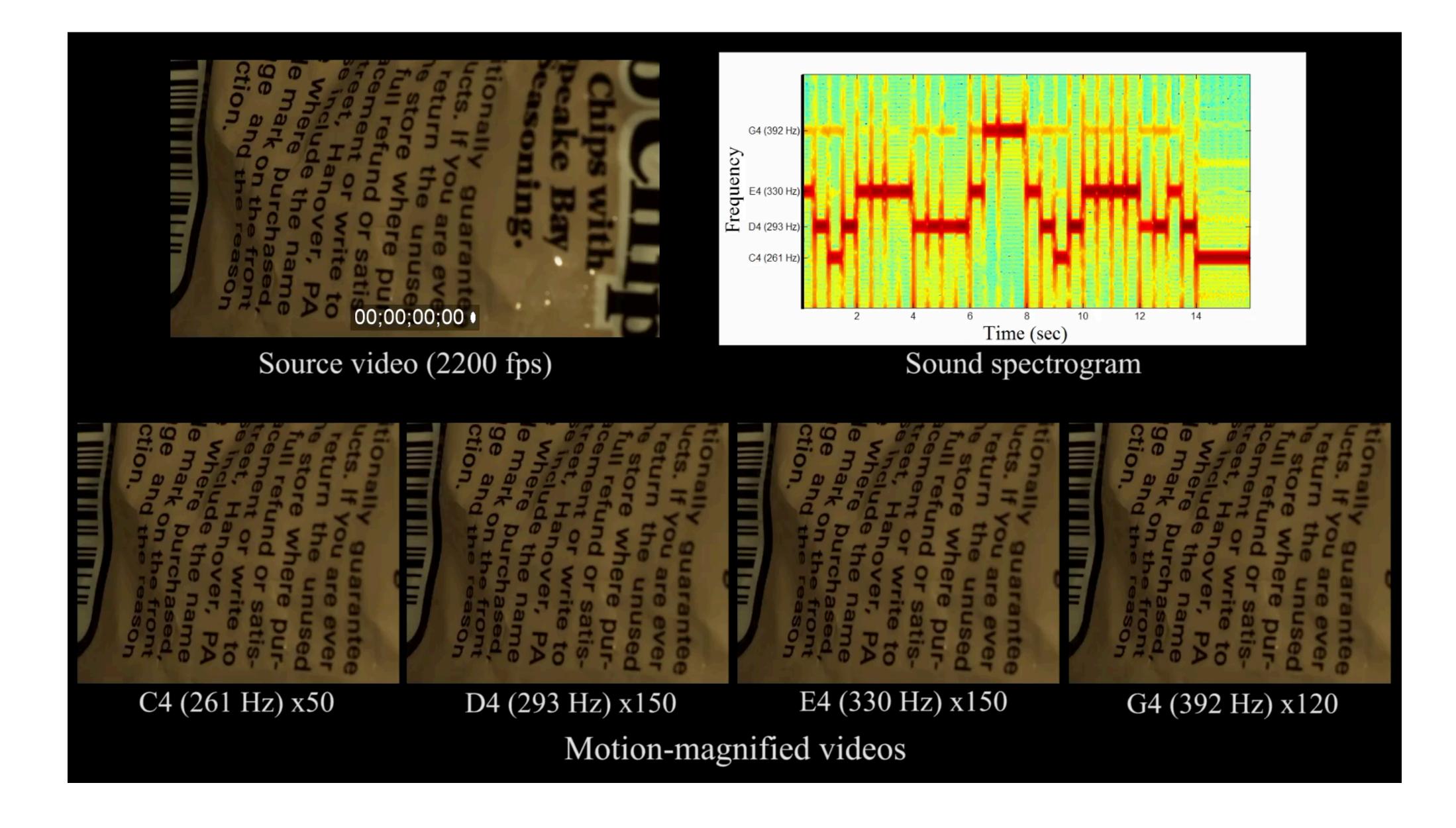


Figure From: Wu at al., Siggraph 2012

## Today's BONUS "fun" Example: Visual Microphone

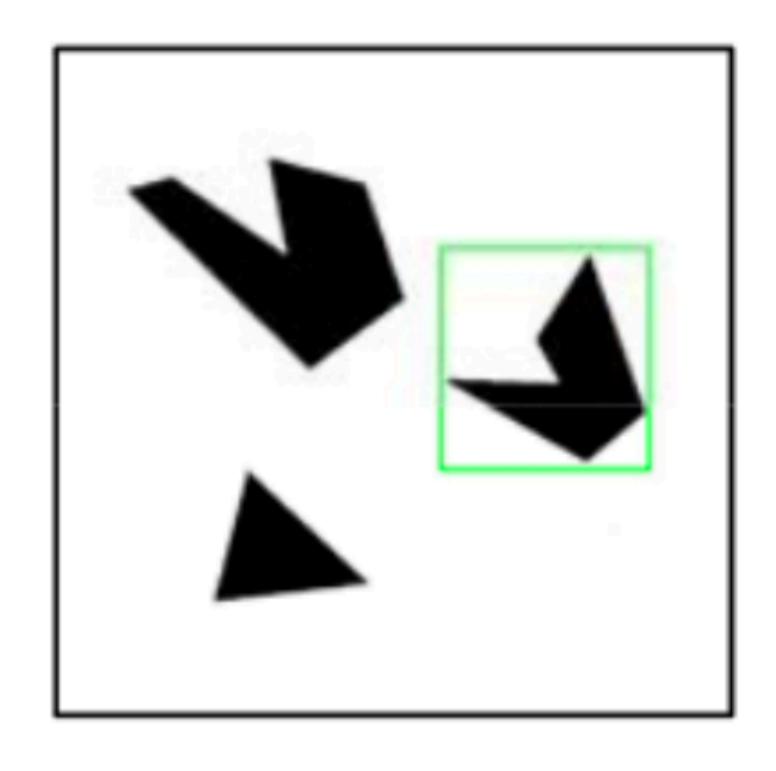


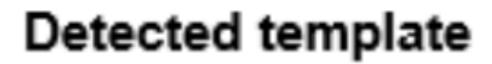
## Today's BONUS "fun" Example: Visual Microphone

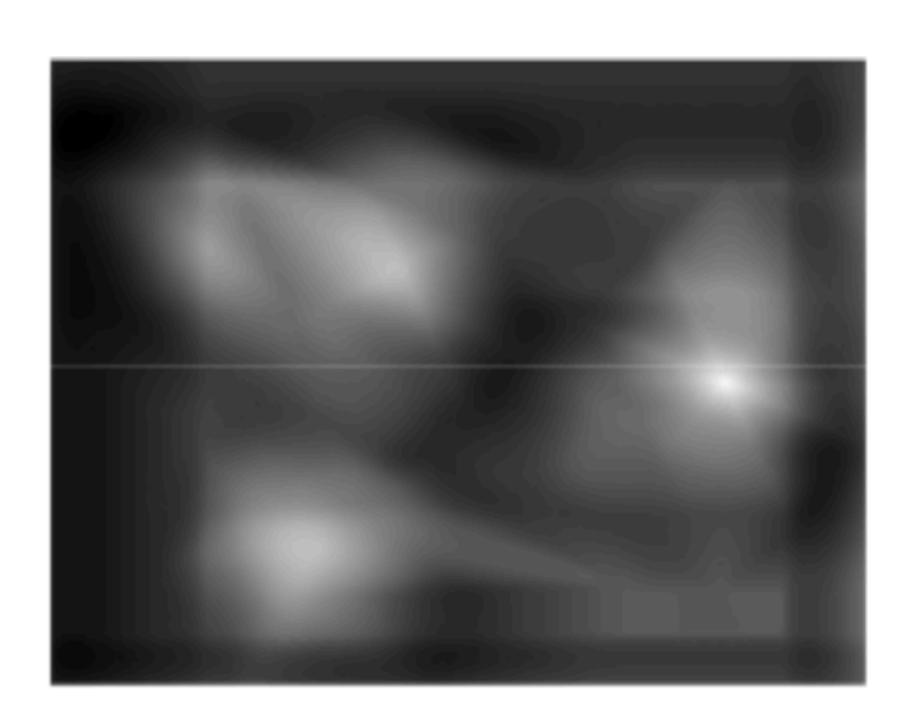


## Lecture 7: Re-cap Template Matching









Correlation map

Slide Credit: Kristen Grauman

## Lecture 7: Re-cap Template Matching

Similarity measures between a filter J local image region I

Correlation, 
$$CORR = \mathbf{I} \cdot \mathbf{J} = \mathbf{I}^T \mathbf{J}$$

Normalised Correlation, NCORR = 
$$\mathbf{I} \cdot \mathbf{J} = \mathbf{I}^T \mathbf{J}$$
  
 $|\mathbf{I}||\mathbf{J}| = \cos \theta$ 

Sum Squared Difference, SSD = 
$$|\mathbf{I} - \mathbf{J}|^2$$

Normalized correlation varies between -1 and 1, attains the value 1 when the filter and image region are identical (up to a scale factor)

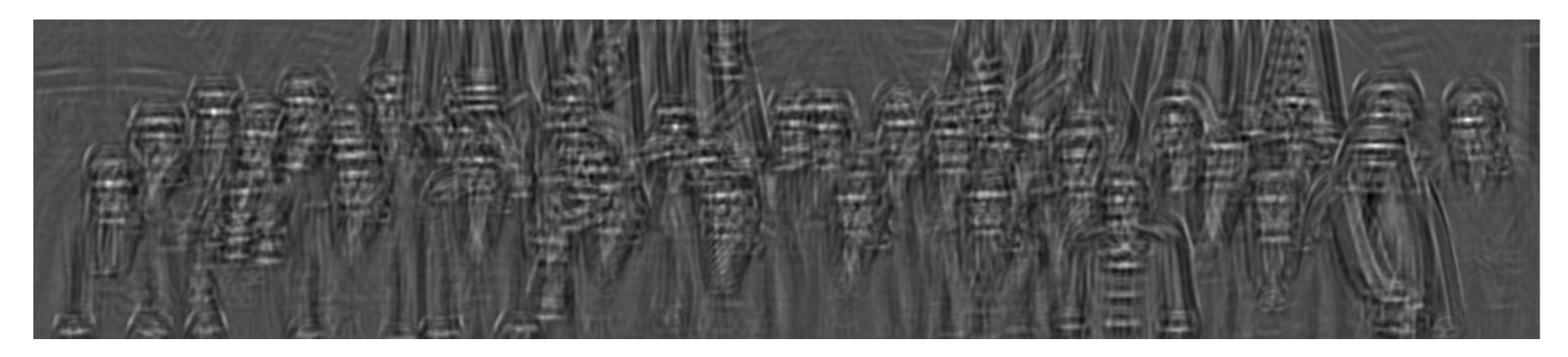
Minimising SSD and maximizing Normalized Correlation are equivalent if  $|\mathbf{I}| = |\mathbf{J}| = 1$ 

Correlate image with a template









Correlate image with a template



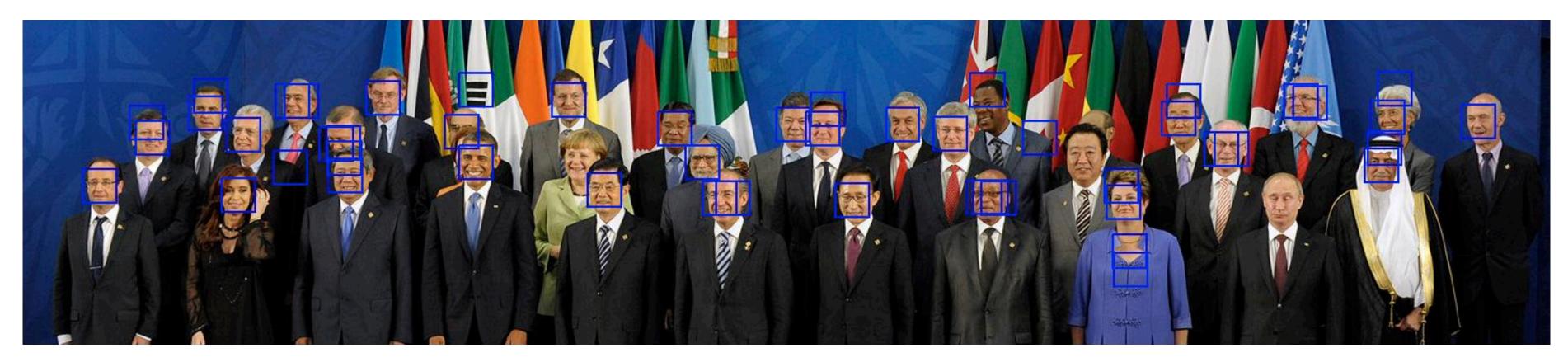




Correlate image with a template







### **Detection** Performance

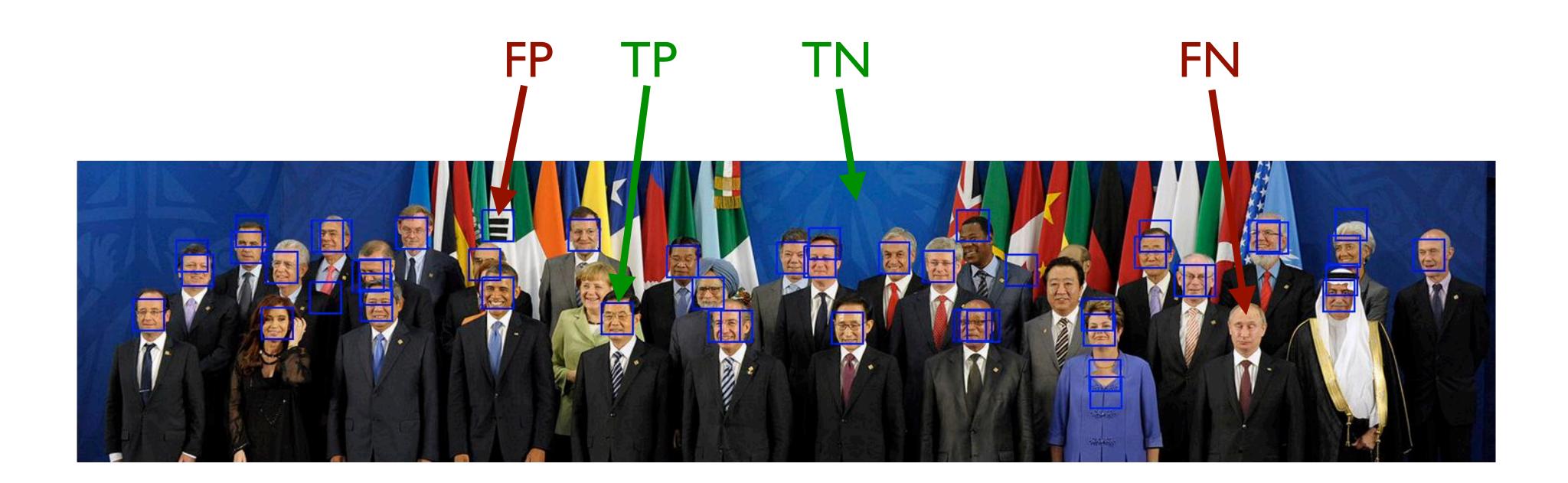
Types of errors in detection:

TP = True positive (true face and detected)

FP = False positive (not face and detected)

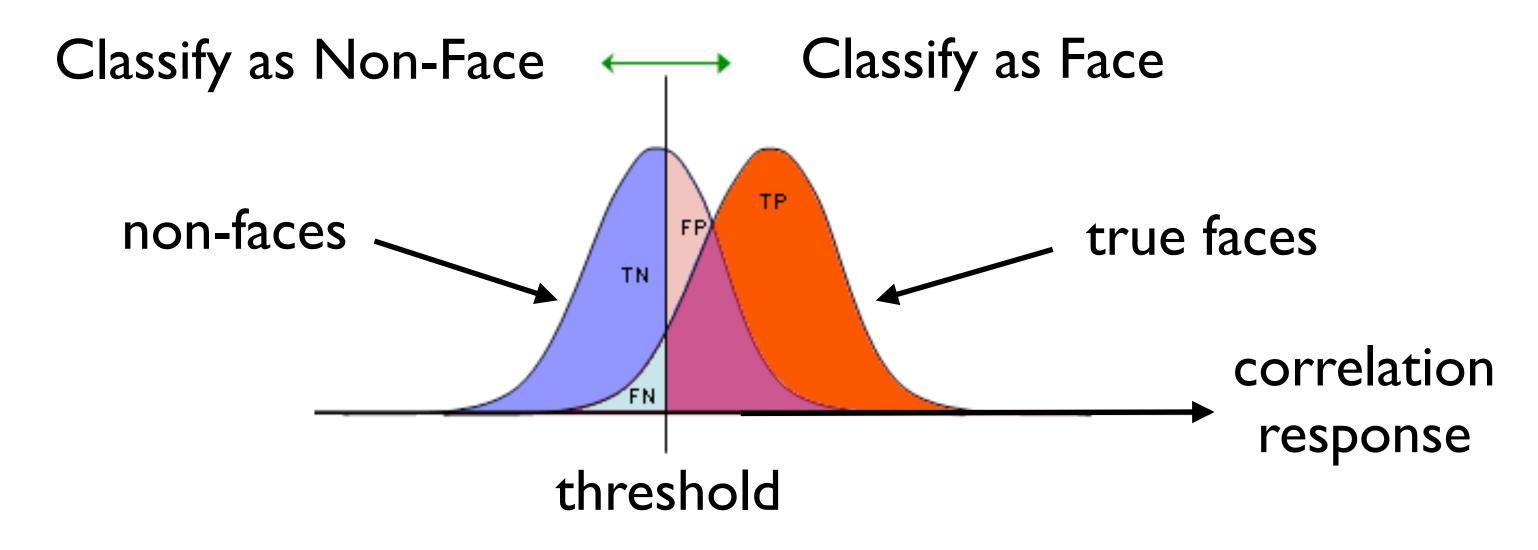
TN = True negative (not face and no detection)

FN = False negative (true face and not detected)



### **Detection** Performance

Depending on where we set the threshold, we can tradeoff between true positives and false positives:





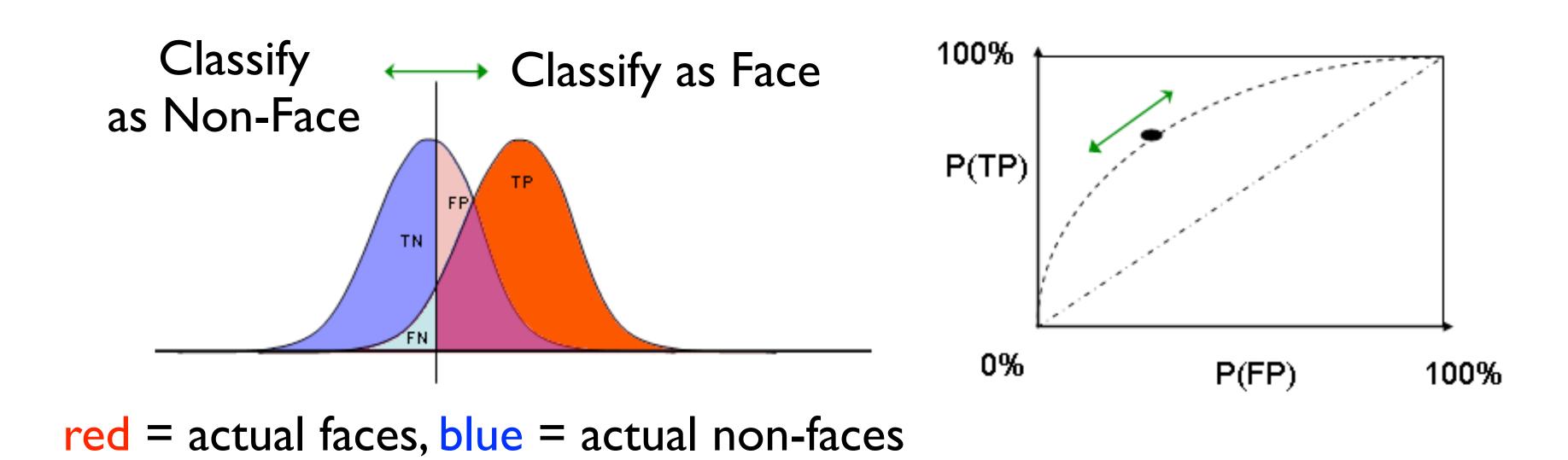
### ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get 100% false positives as well!)

It is a tradeoff between true positive rate (TP) and false positive rate (FP)

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold

This is a Receiver Operating Characteristic (ROC) curve



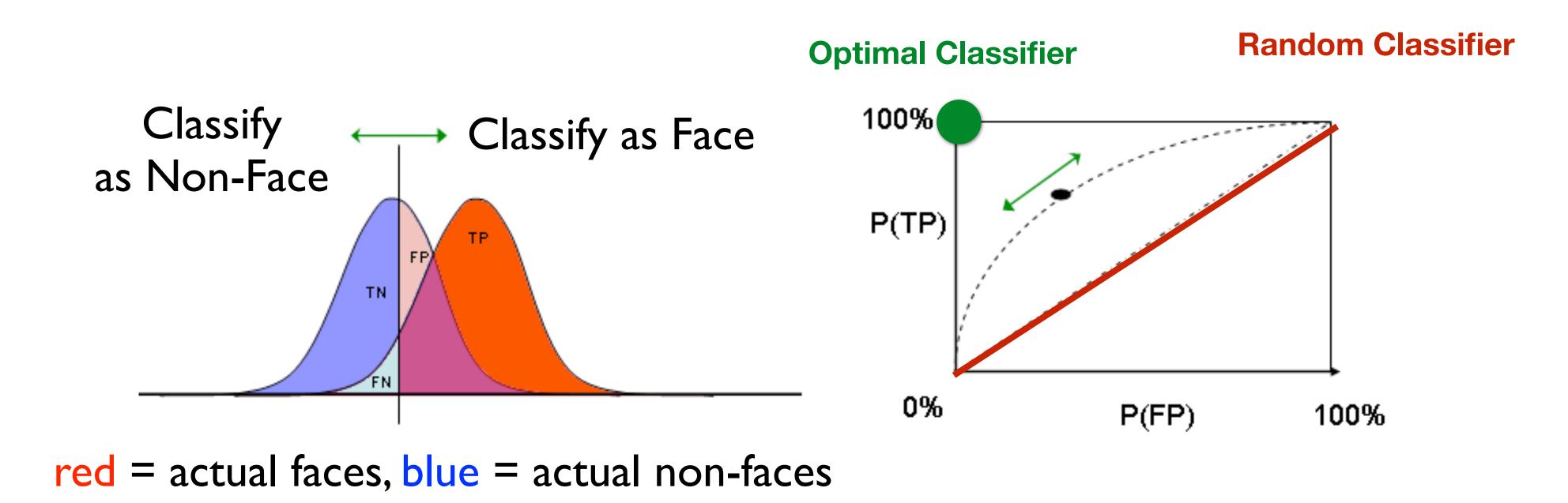
### ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get 100% false positives as well!)

It is a tradeoff between true positive rate (TP) and false positive rate (FP)

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold

This is a Receiver Operating Characteristic (ROC) curve



Correlation with a fixed-sized template only detects faces at specific scales

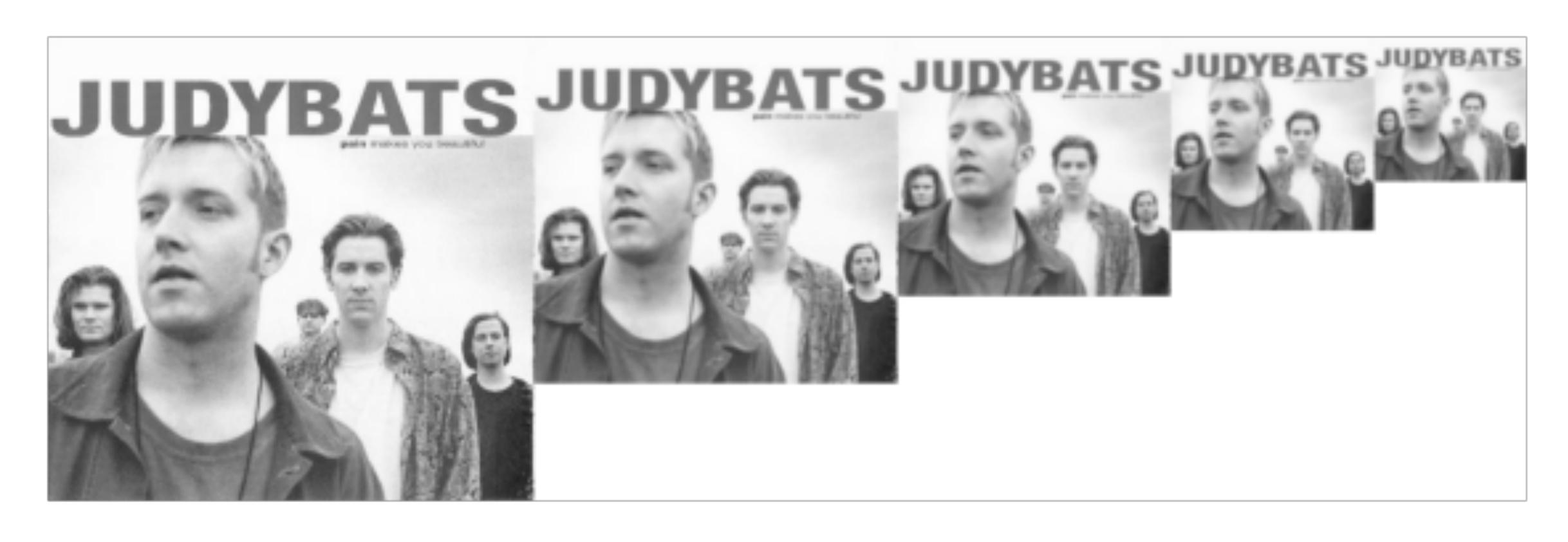


Correlation with a fixed-sized template only detects faces at specific scales



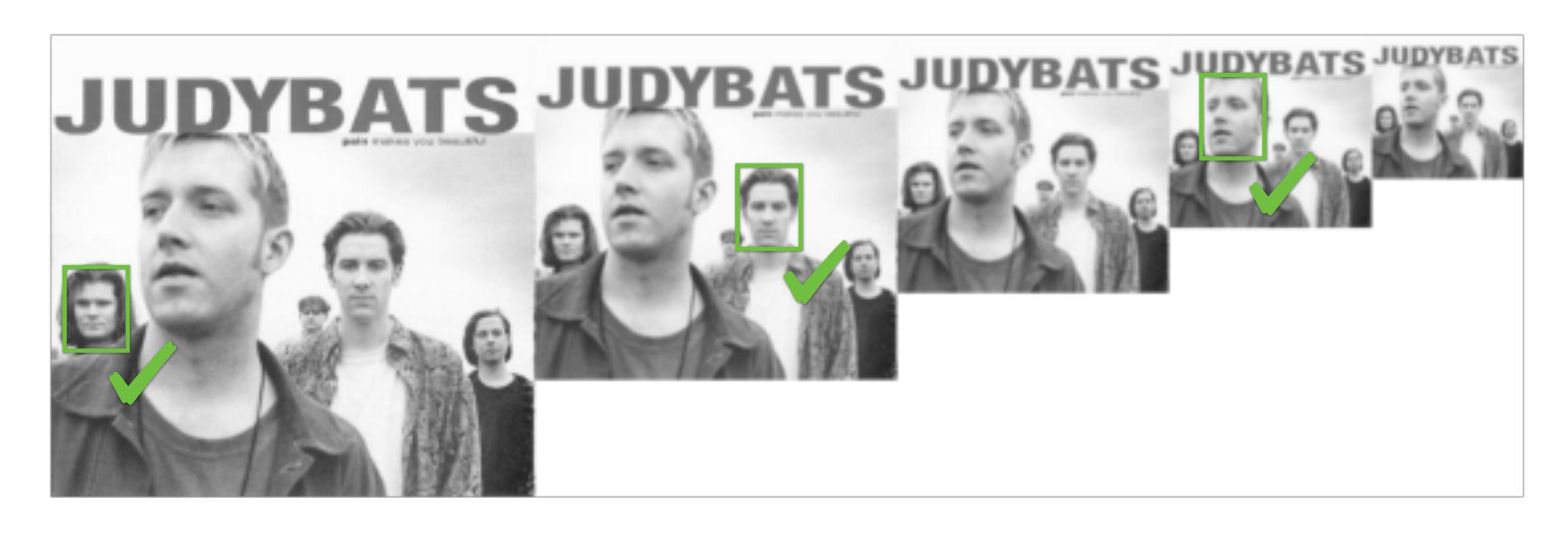
## Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale



## Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale



## Image Pyramid





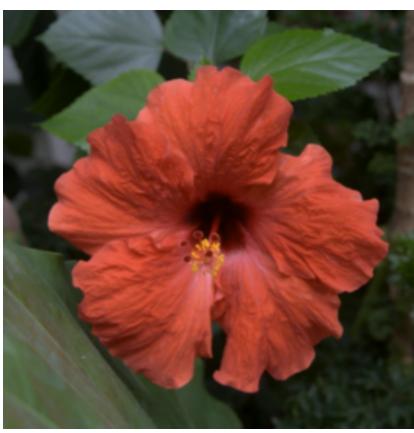




An image pyramid is an efficient way to represent an image at multiple scales

## Gaussian vs Laplacian Pyramid









Shown in opposite order for space

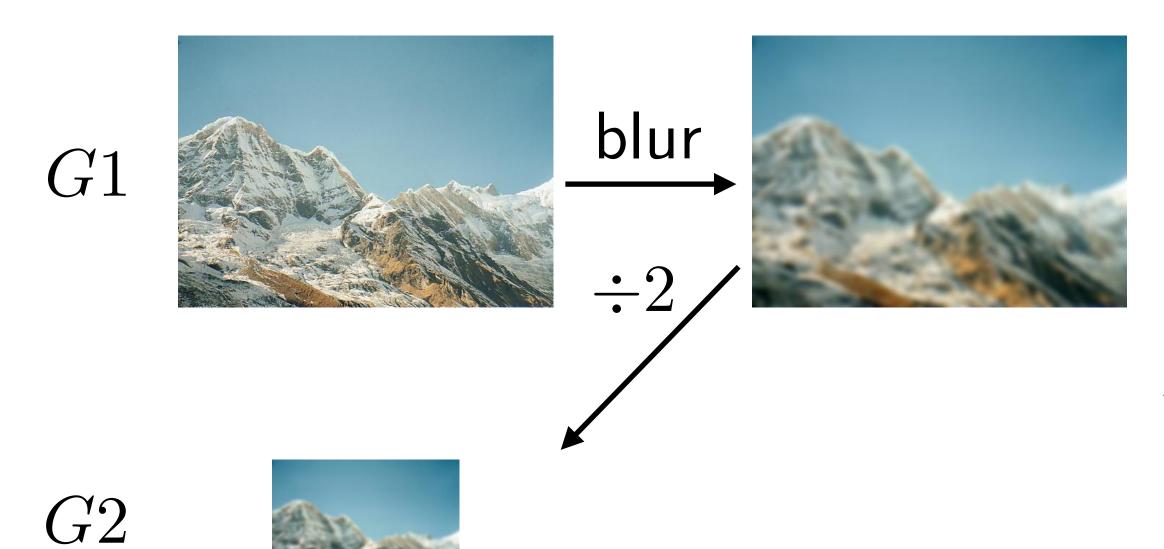
G1



$$I_s(x,y) = I(x,y) * g_{\sigma}(x,y)$$

G1 — blur

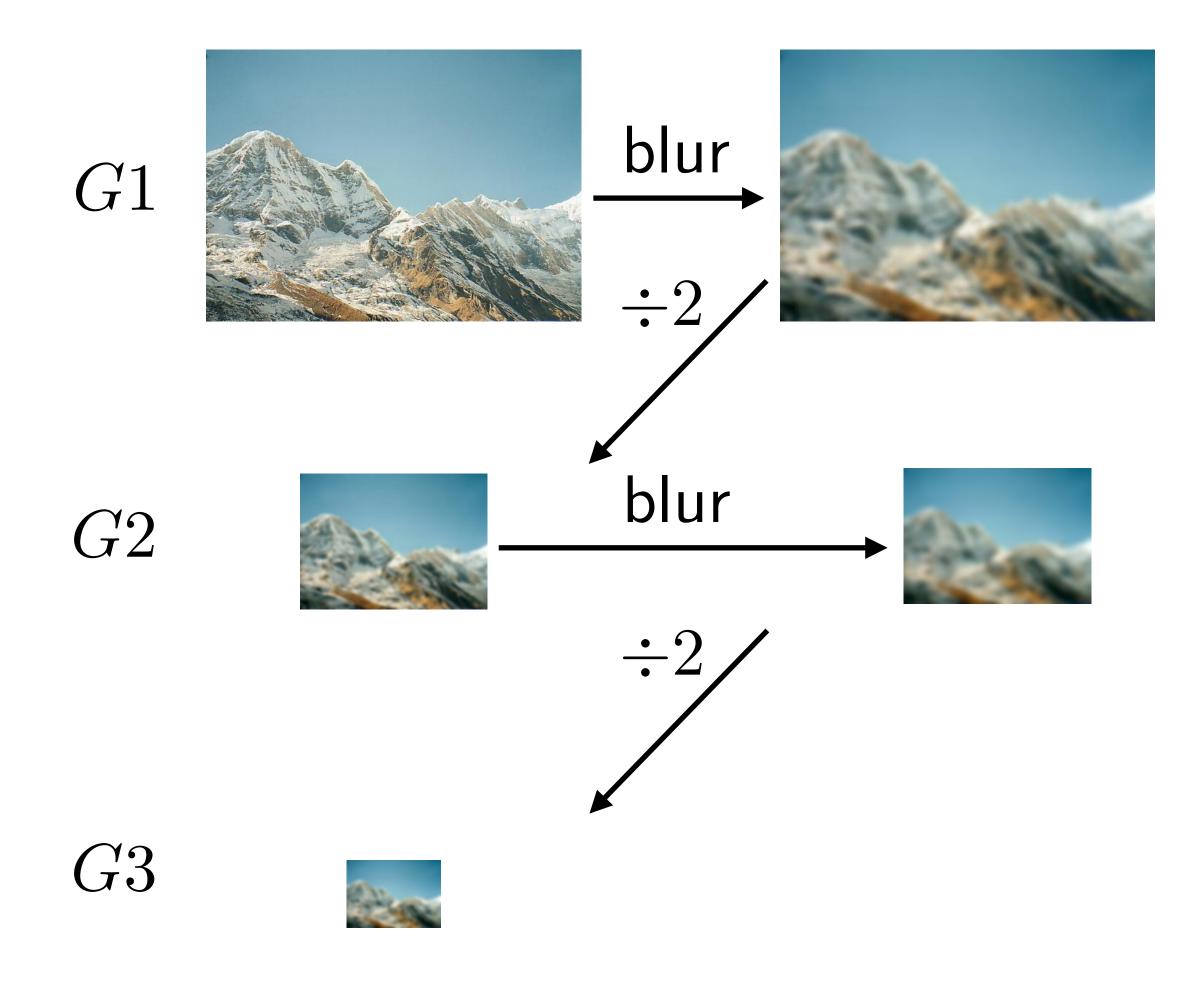
$$I_s(x,y) = I(x,y) * g_\sigma(x,y)$$



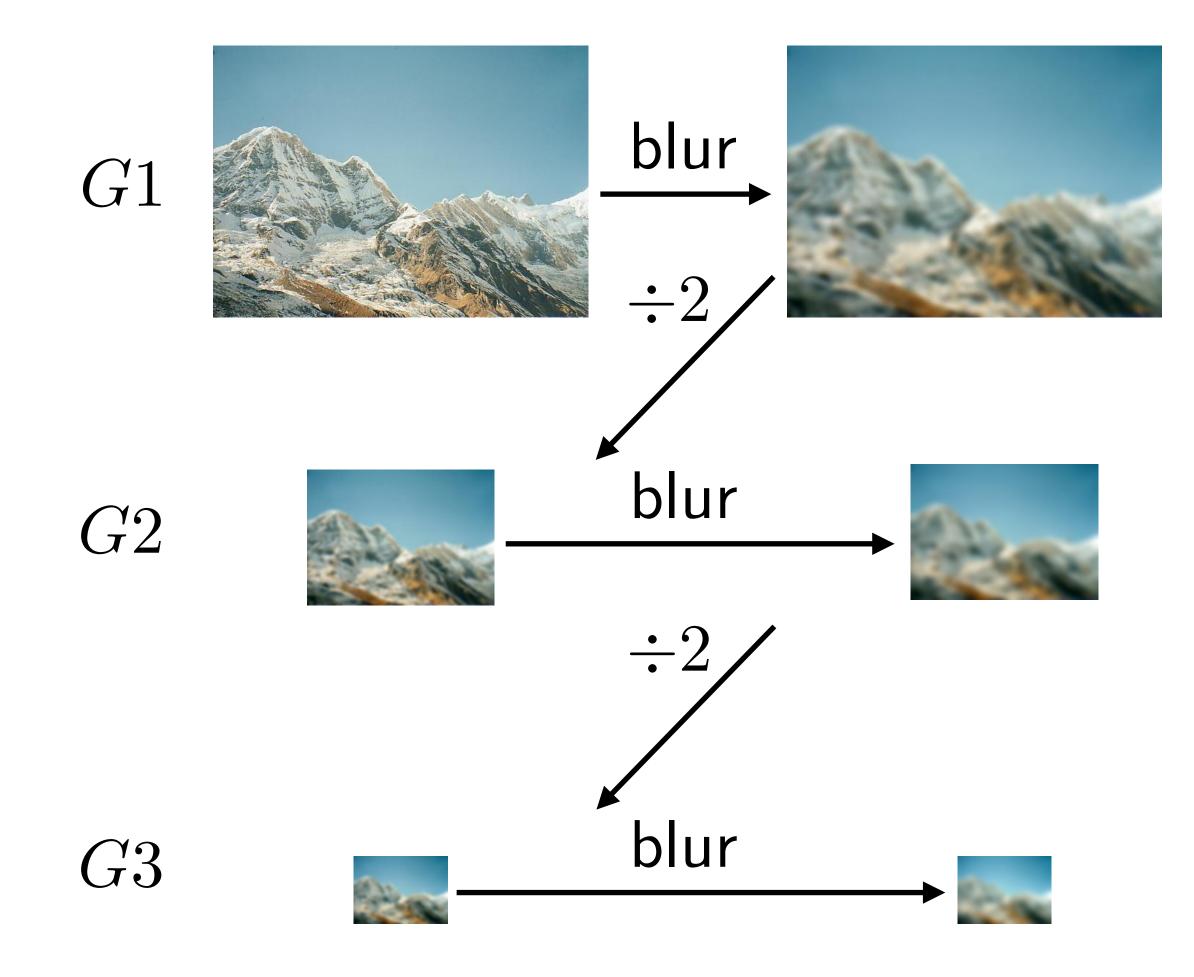
$$I_s(x,y) = I(x,y) * g_{\sigma}(x,y)$$



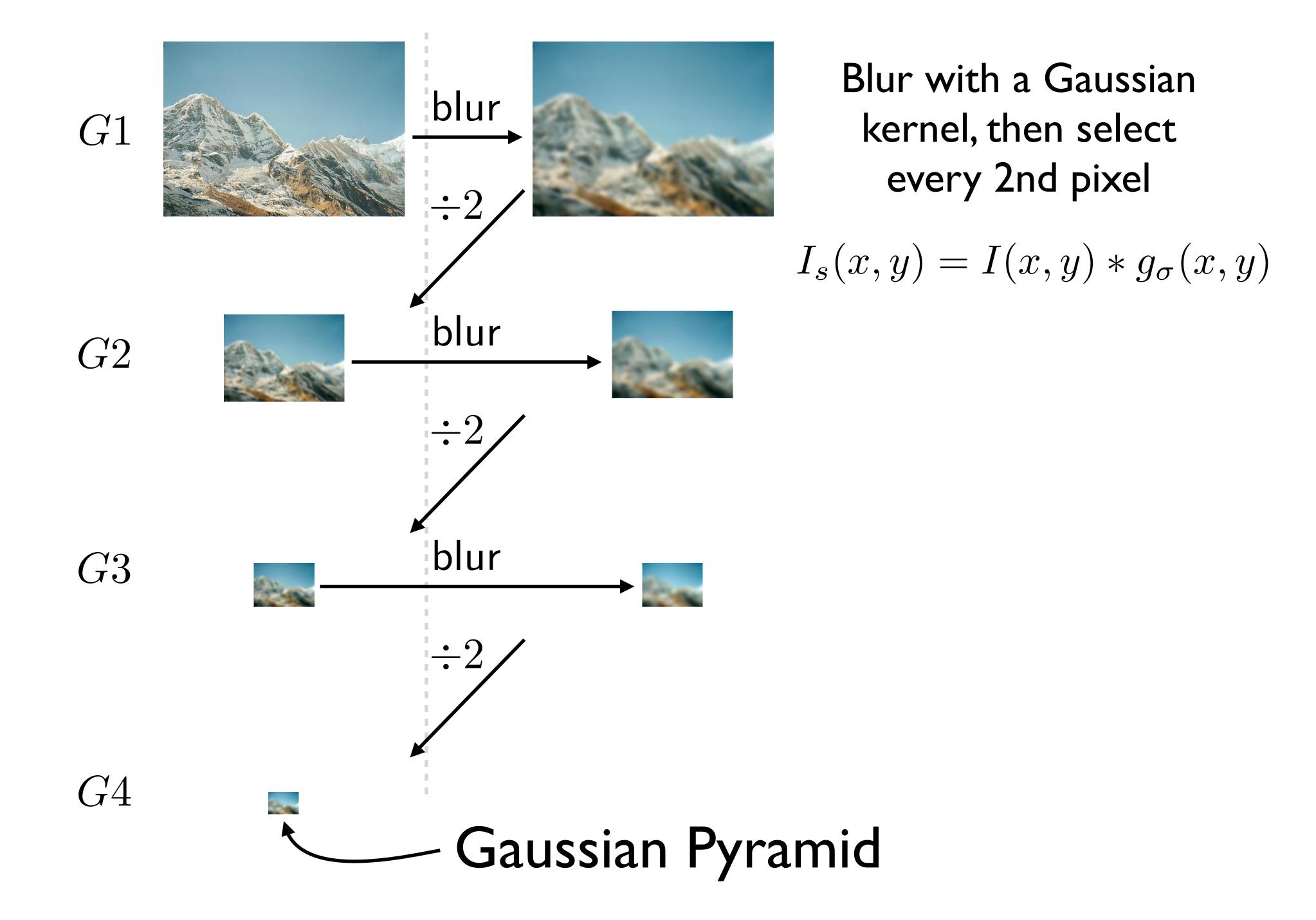
$$I_s(x,y) = I(x,y) * g_\sigma(x,y)$$



$$I_s(x,y) = I(x,y) * g_{\sigma}(x,y)$$



$$I_s(x,y) = I(x,y) * g_{\sigma}(x,y)$$



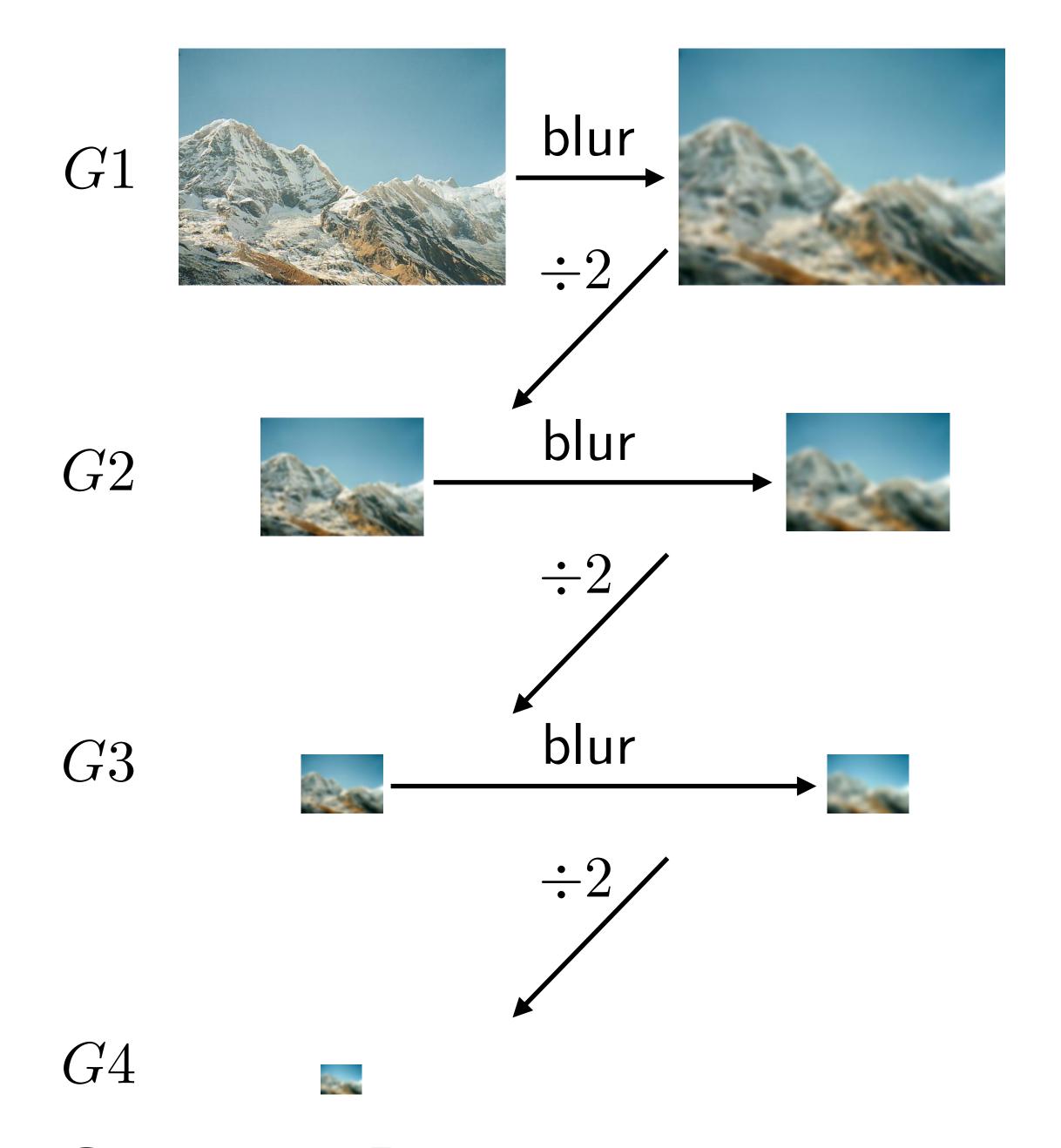






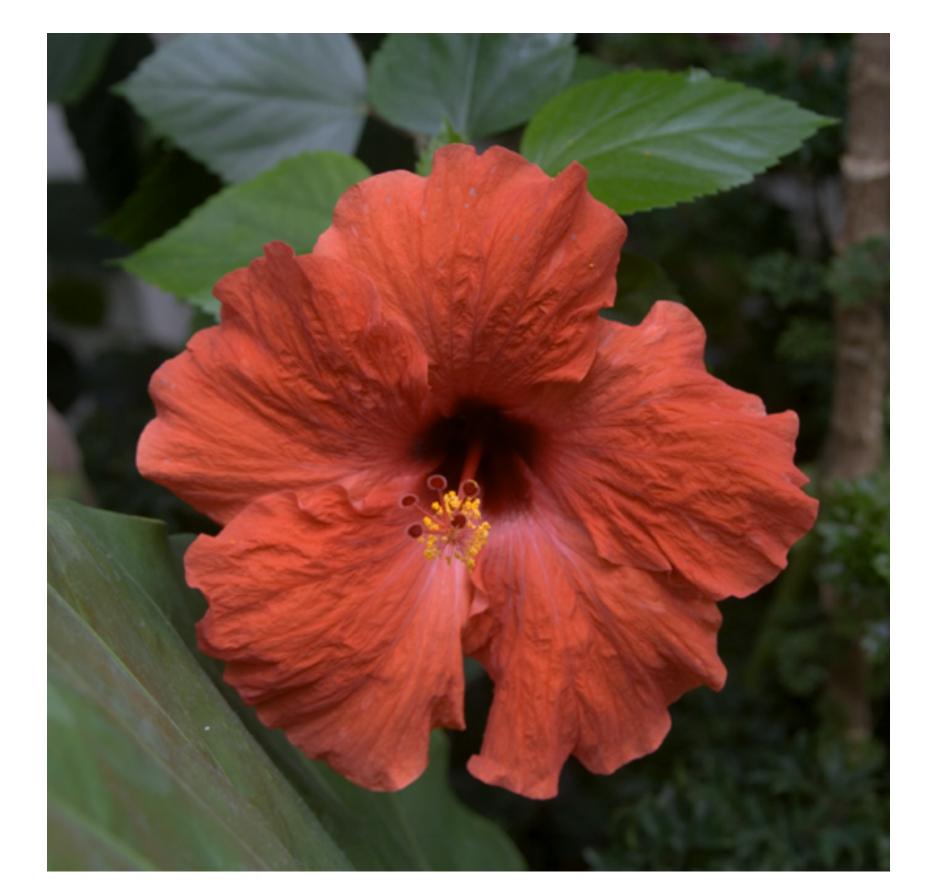
G4

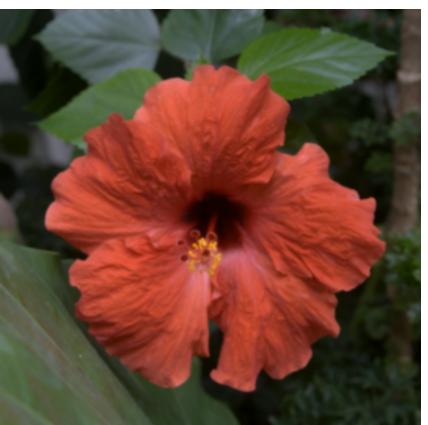
Gaussian Pyramid



Gaussian Pyramid

## Gaussian vs Laplacian Pyramid



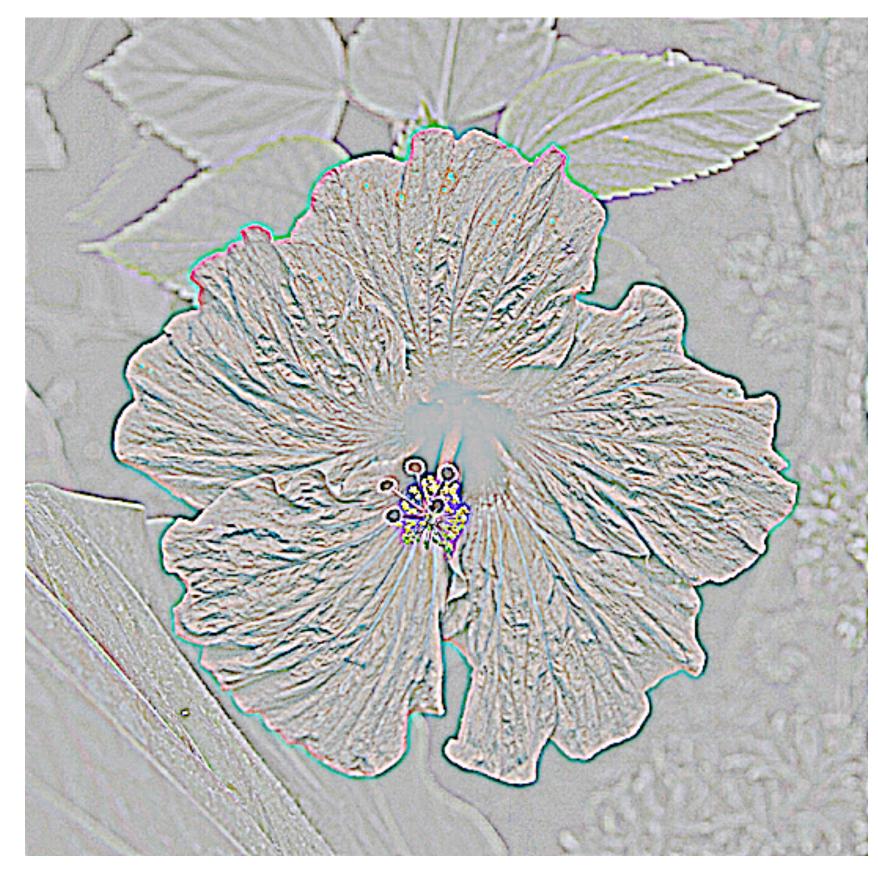






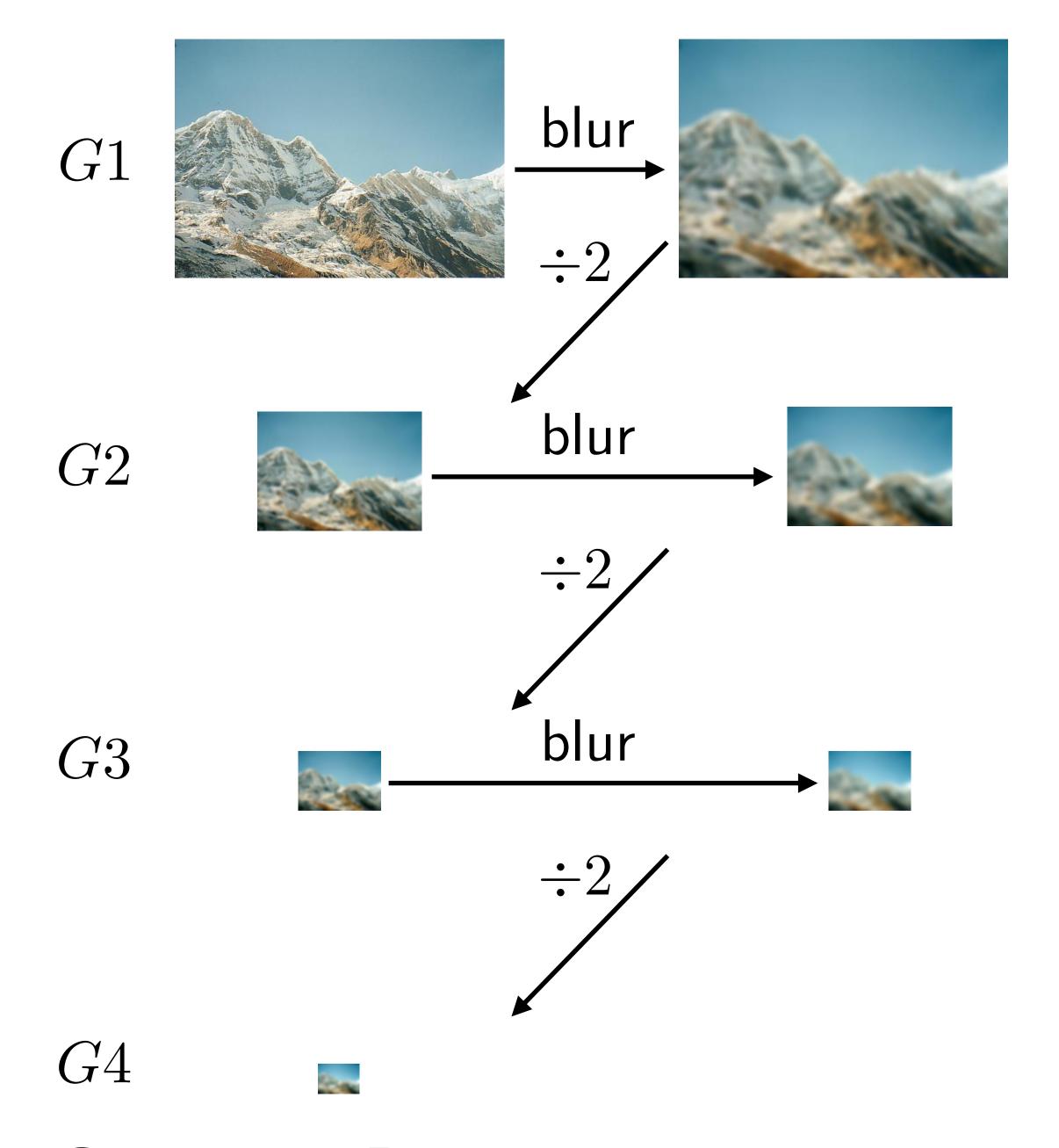
Shown in opposite order for space



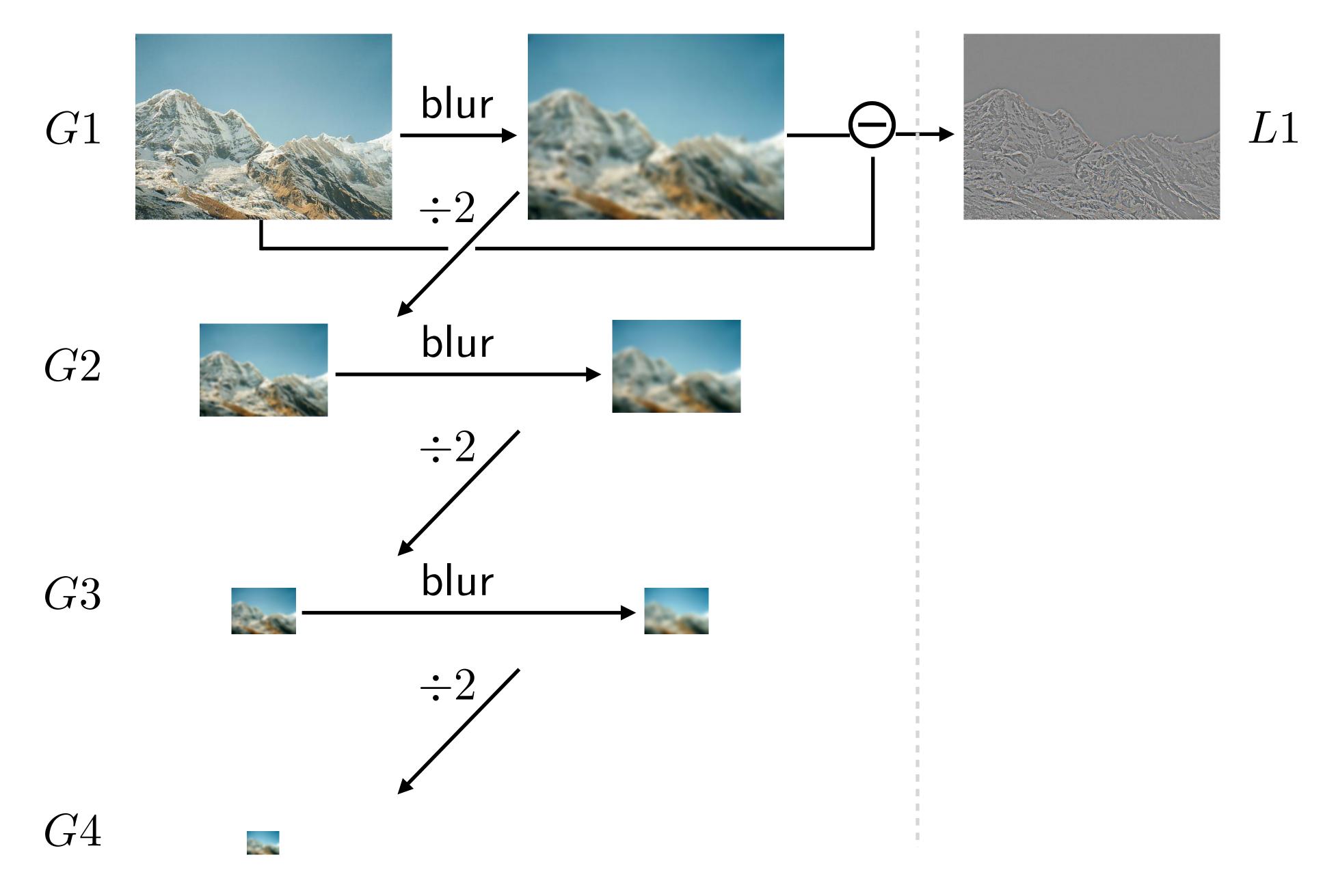




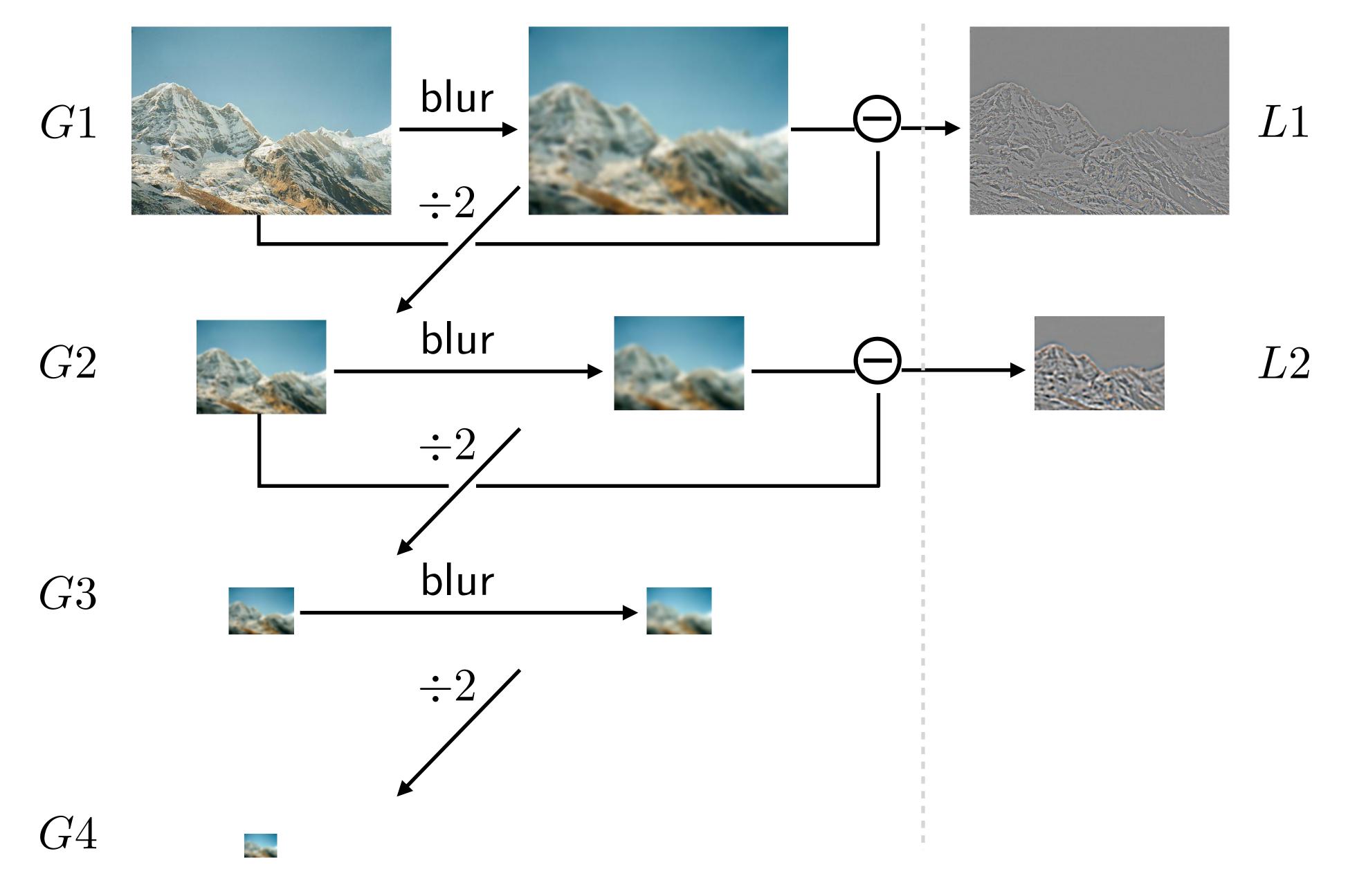




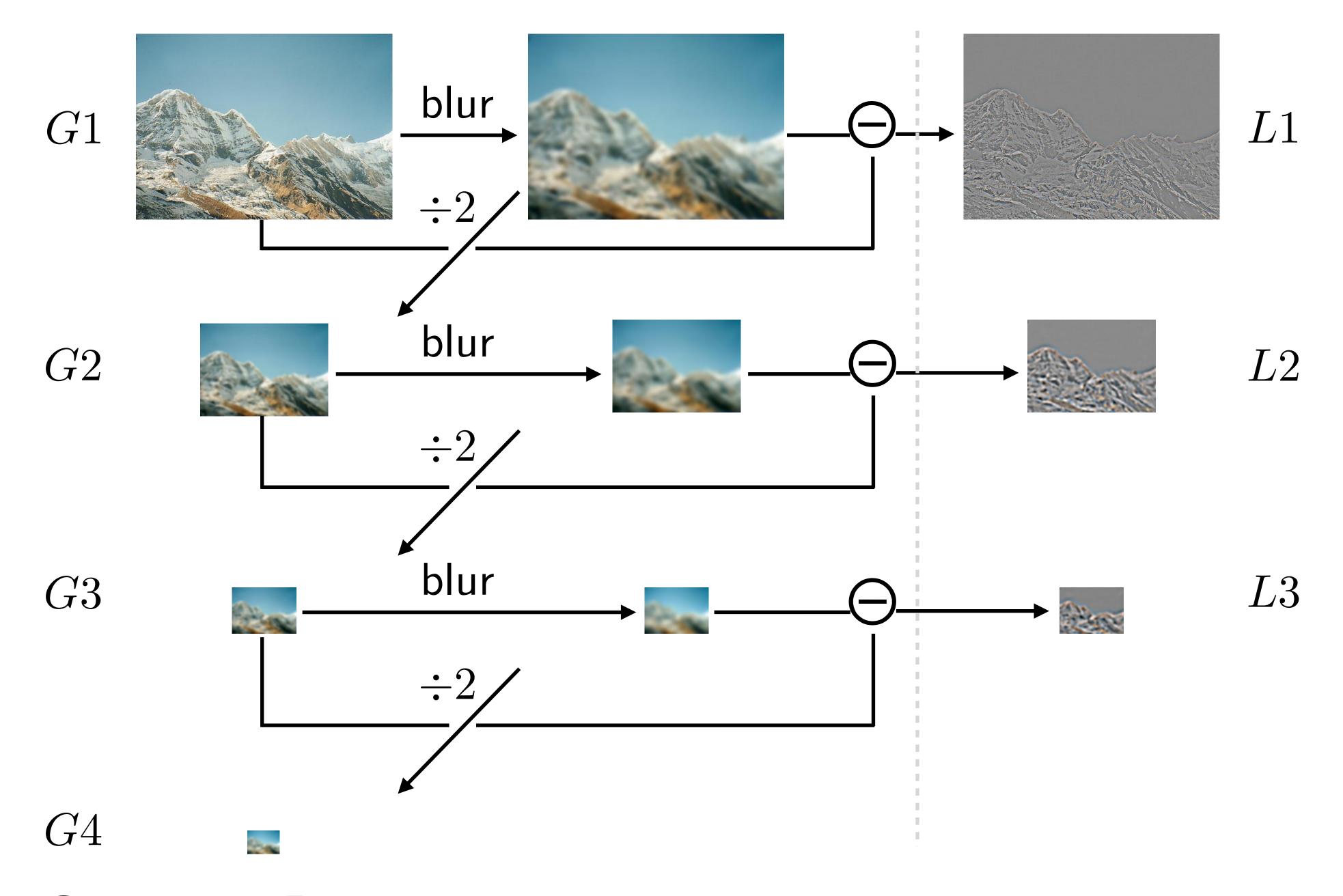
Gaussian Pyramid



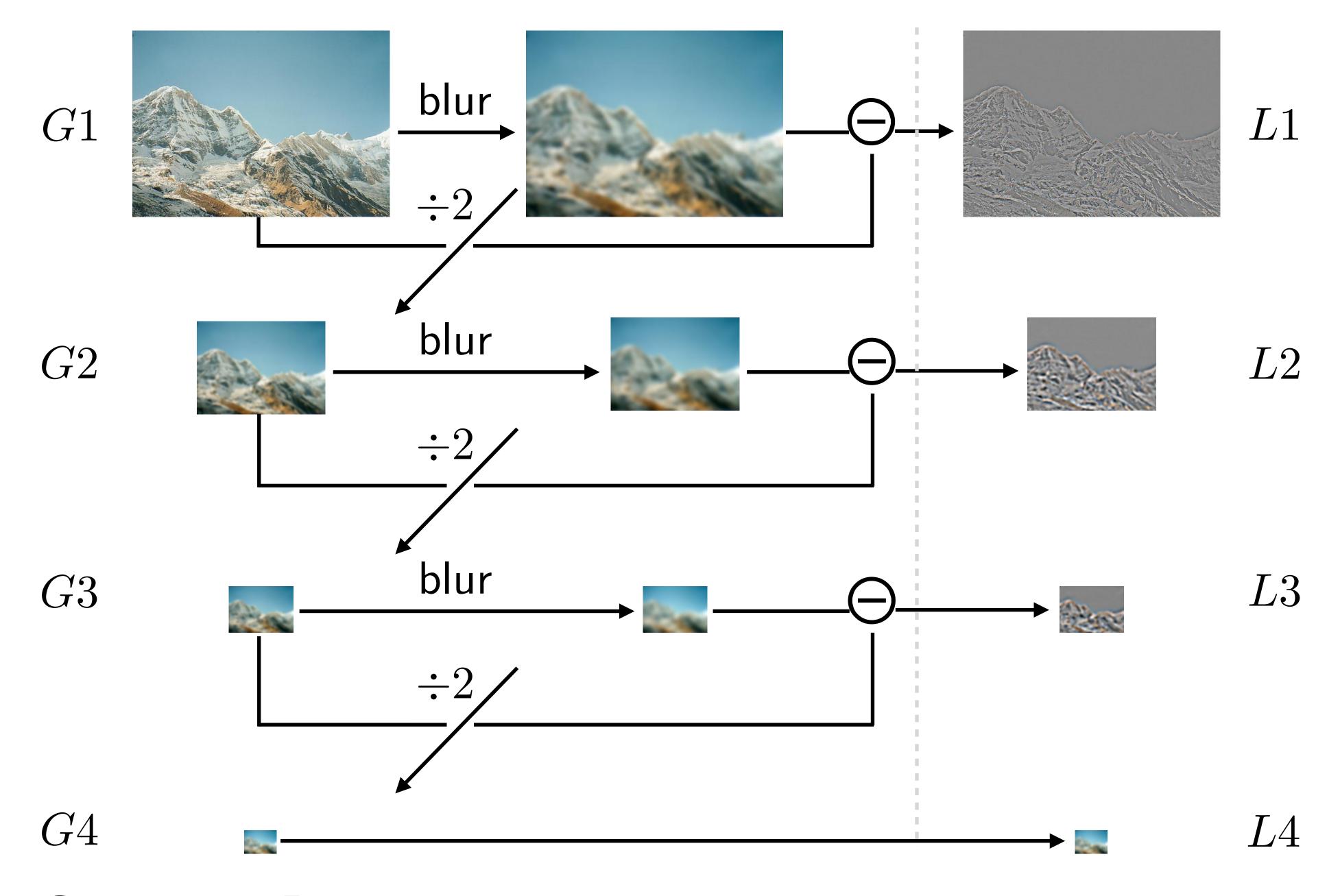
Gaussian Pyramid



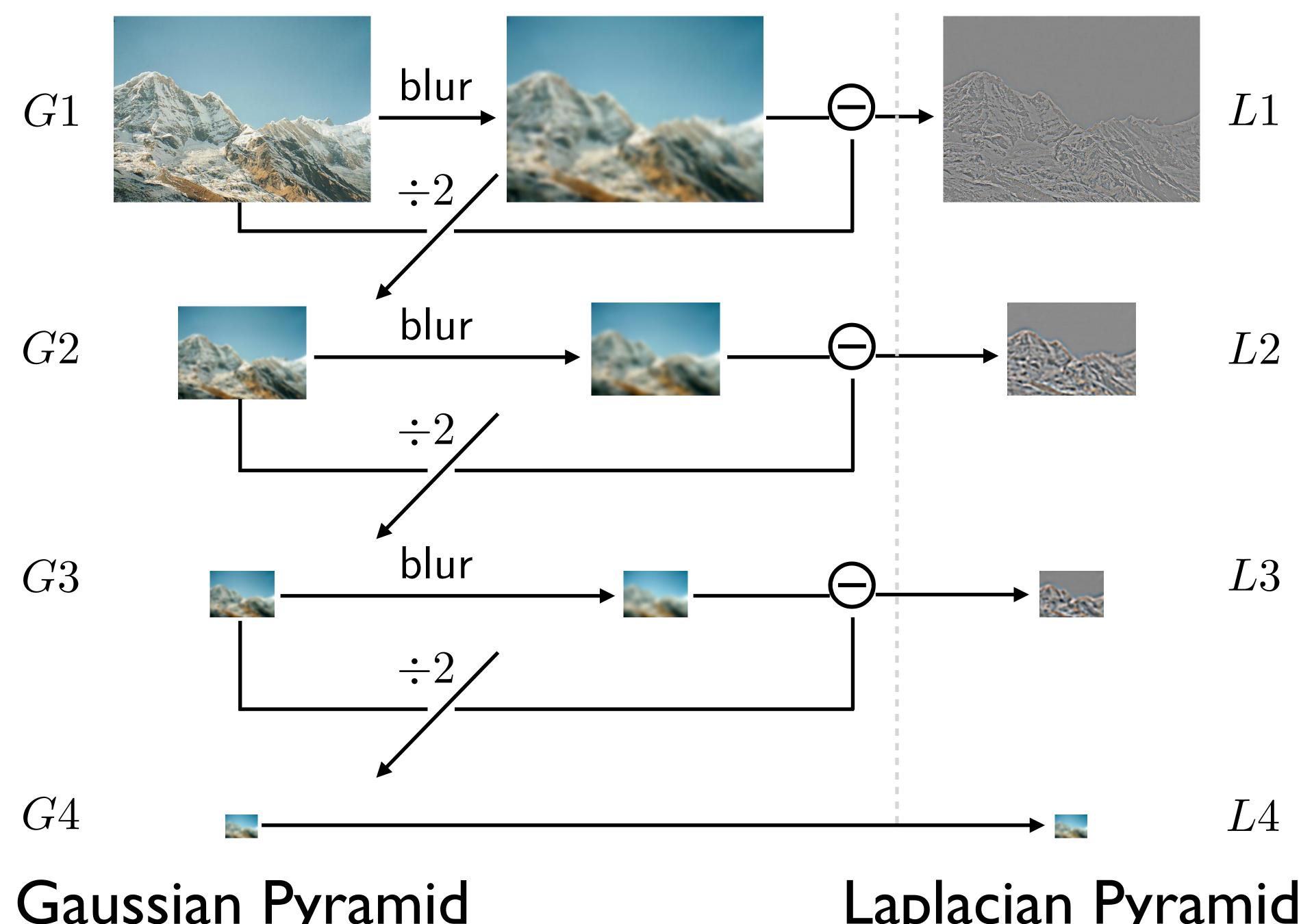
Gaussian Pyramid



Gaussian Pyramid

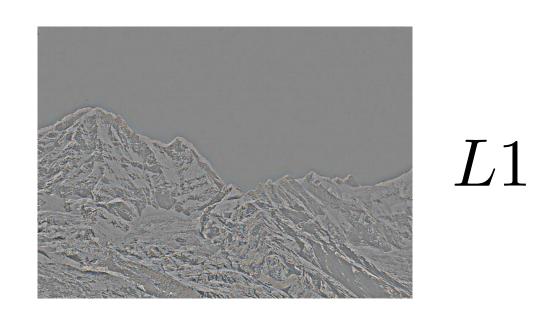


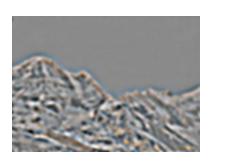
Gaussian Pyramid



Gaussian Pyramid

Laplacian Pyramid





L2



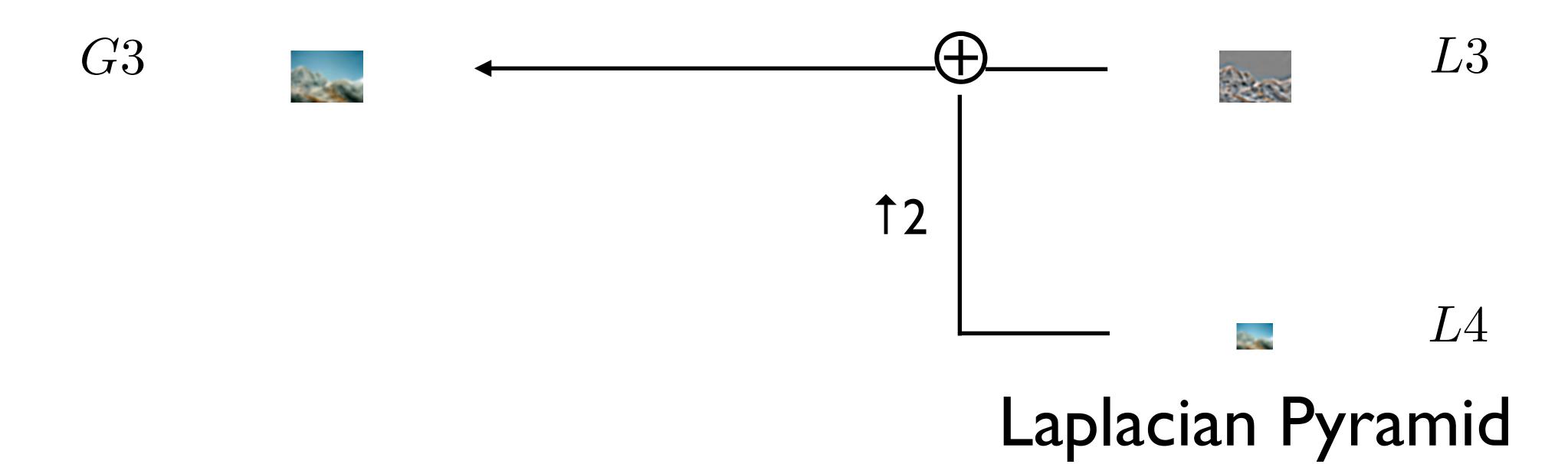
L3

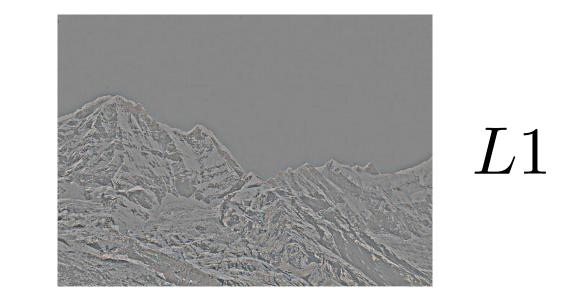
Que.

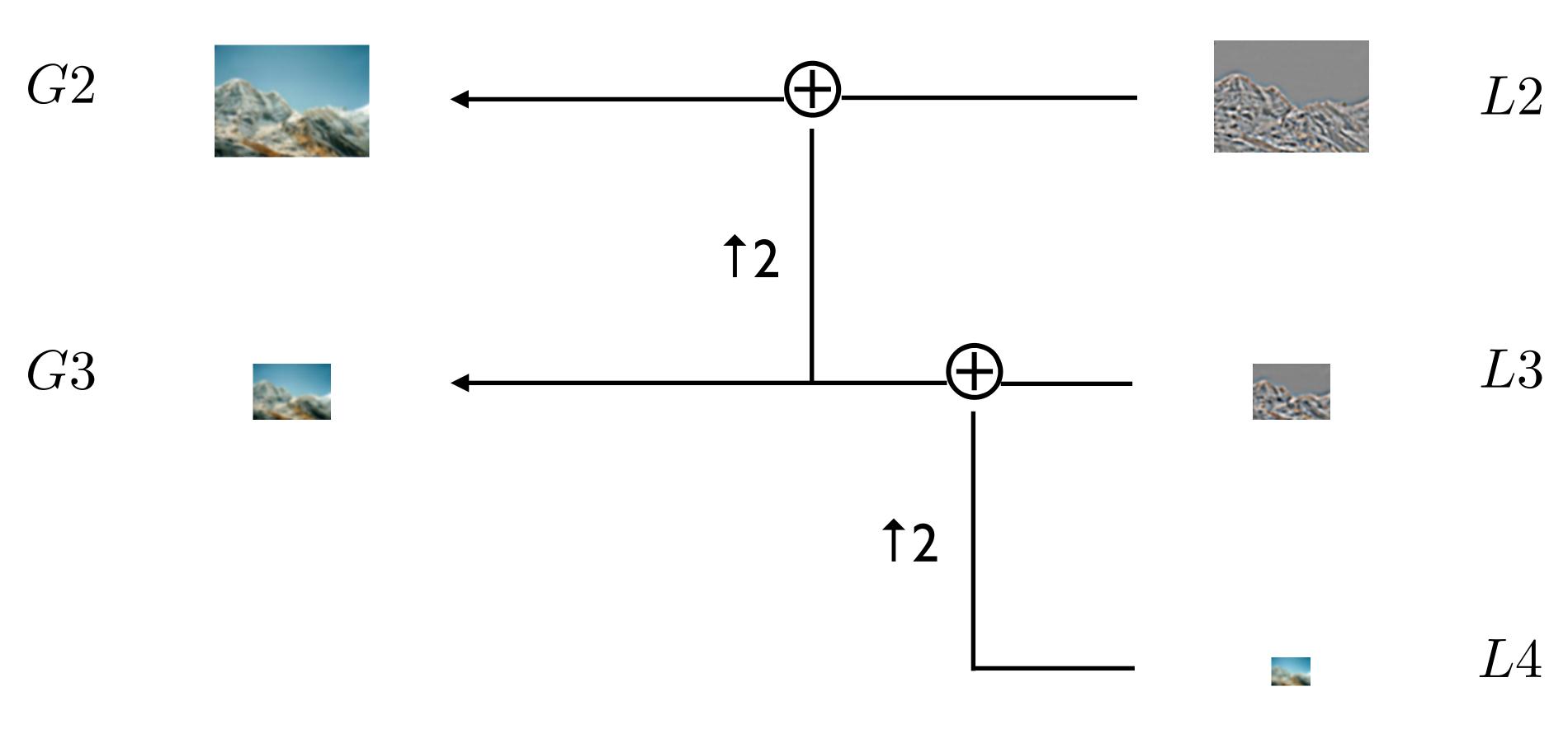
L4

Laplacian Pyramid

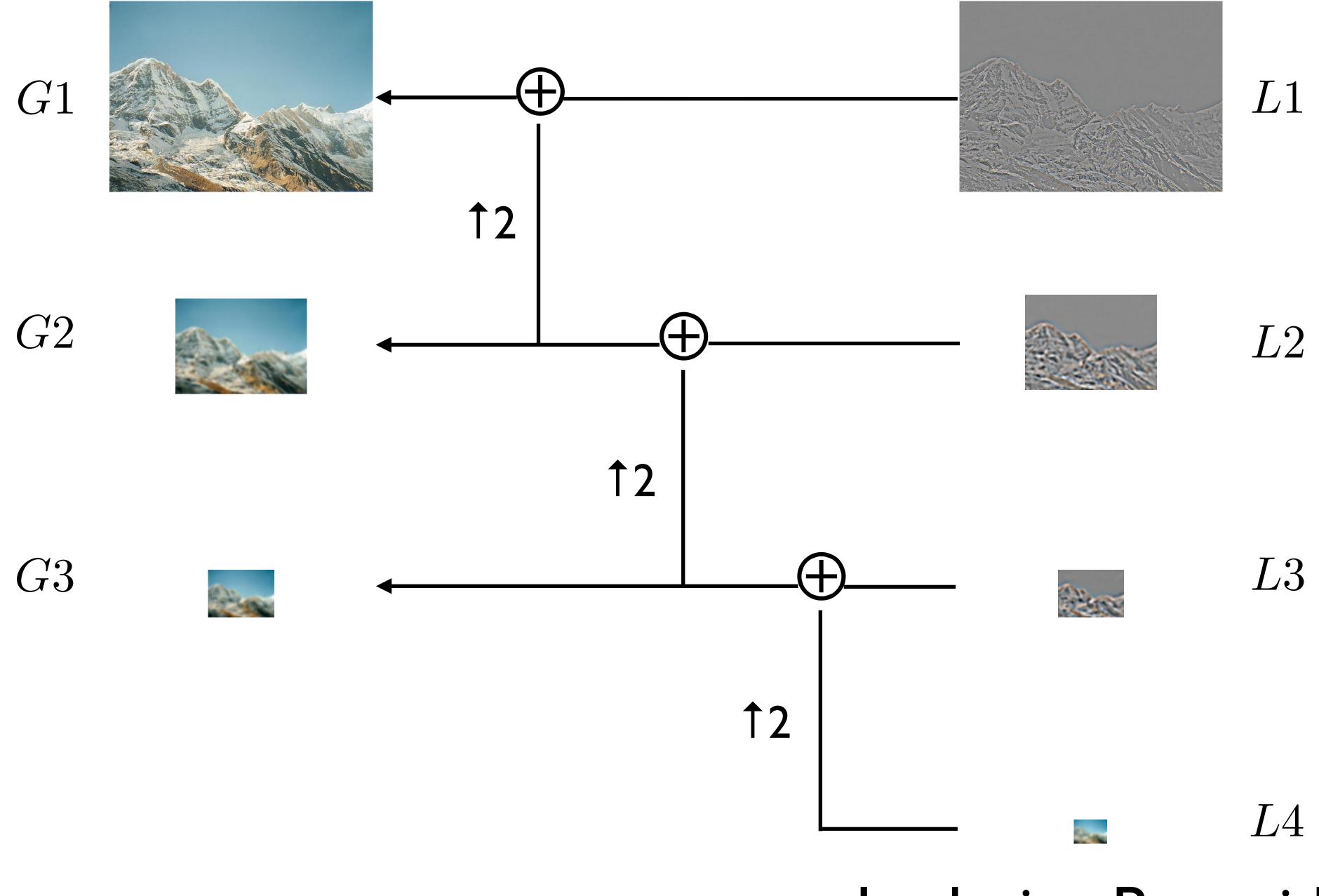




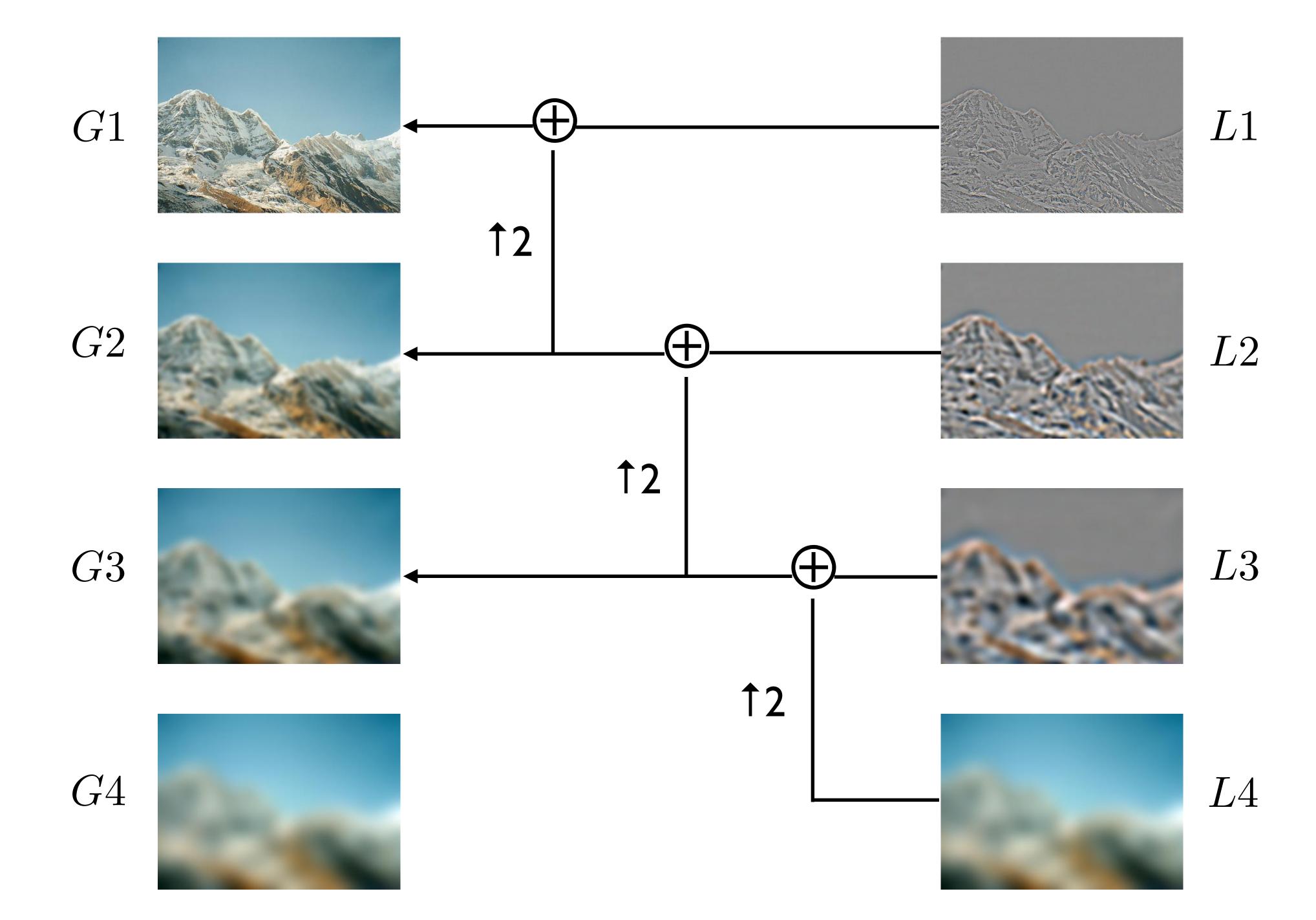


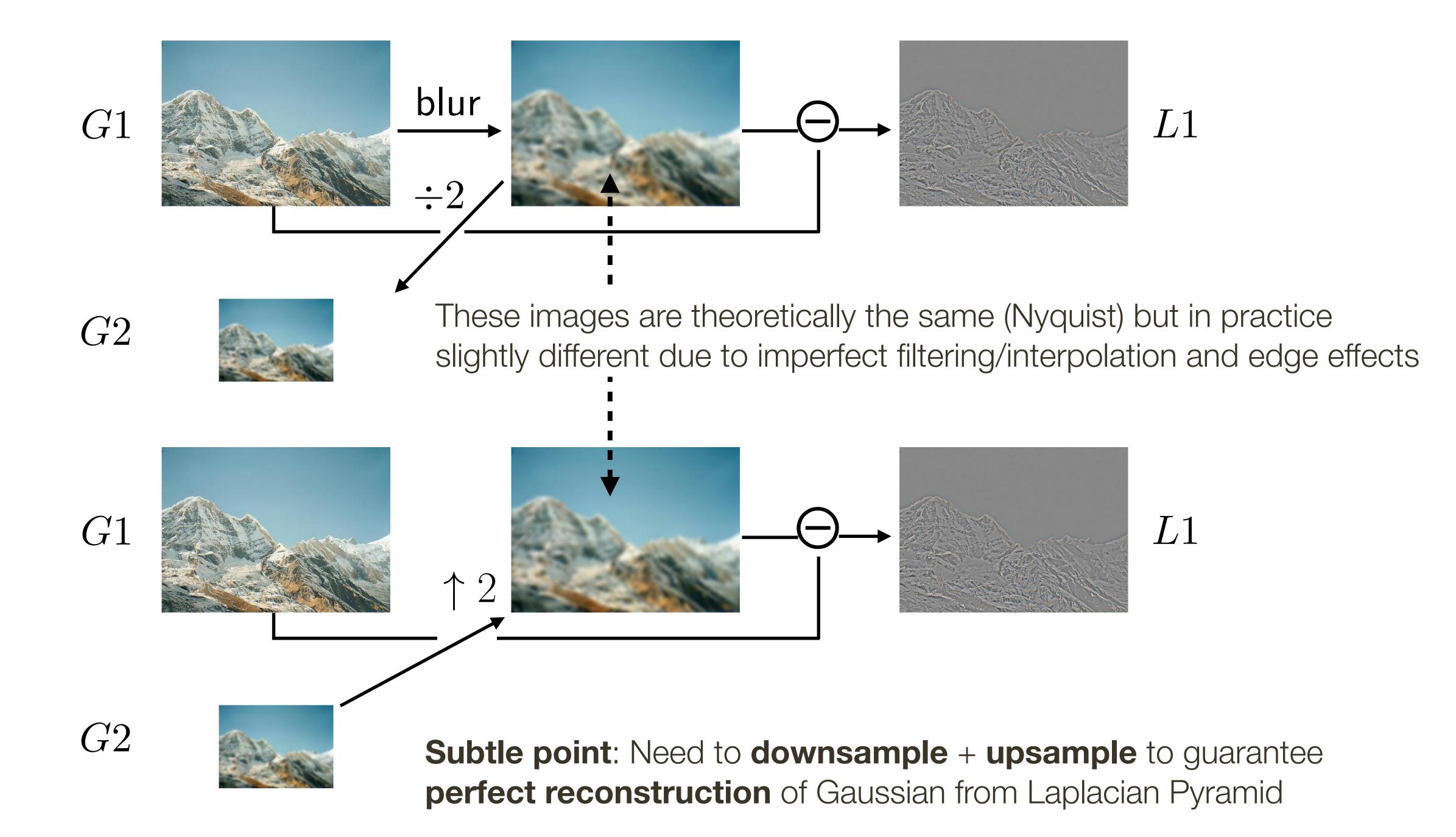


Laplacian Pyramid

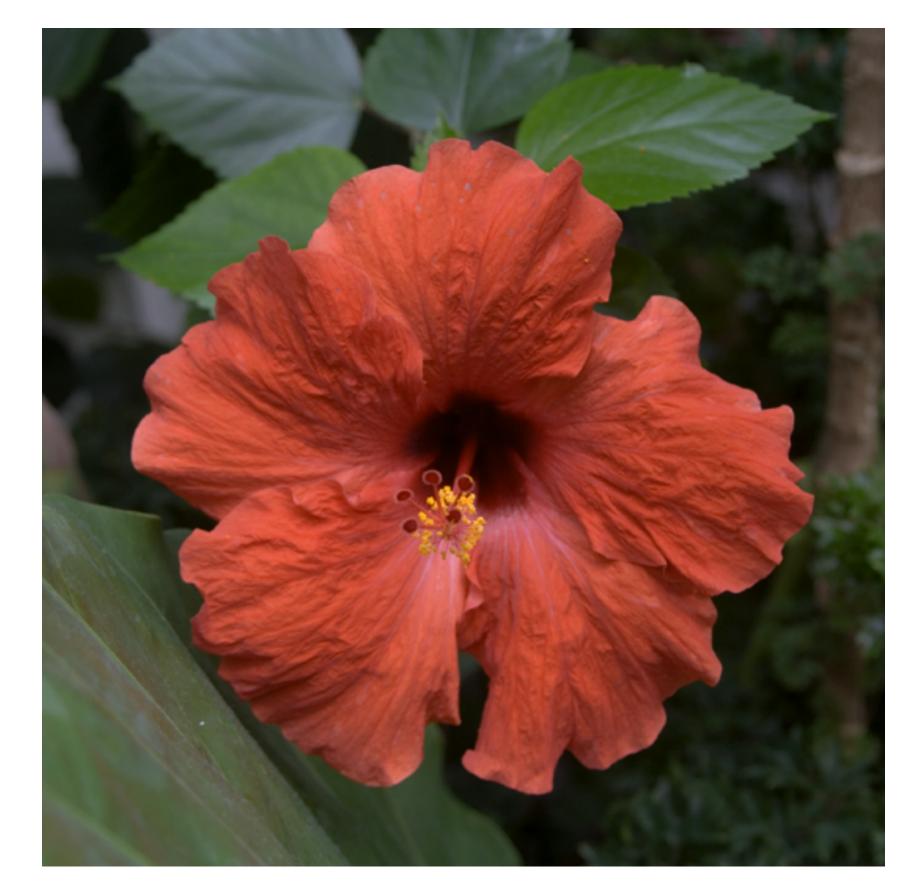


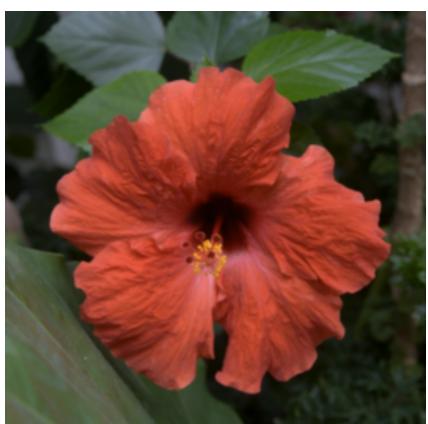
Laplacian Pyramid

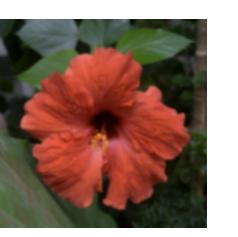




# Gaussian vs Laplacian Pyramid

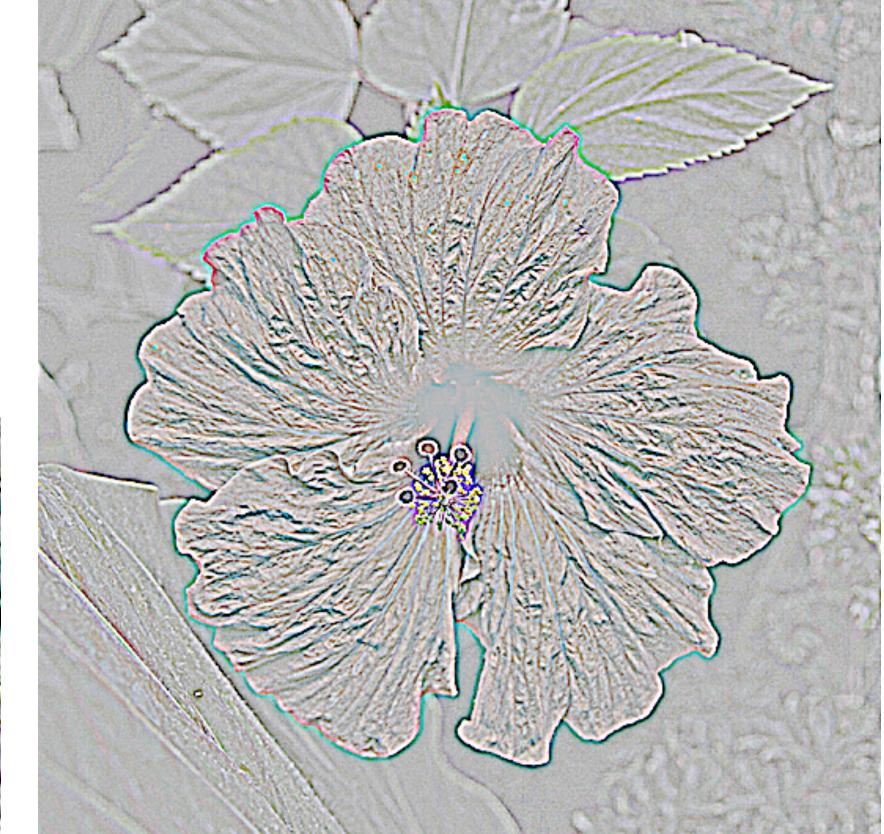






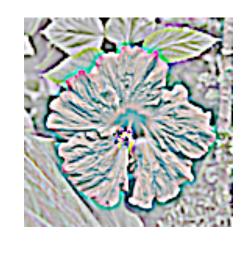


Shown in opposite order for space



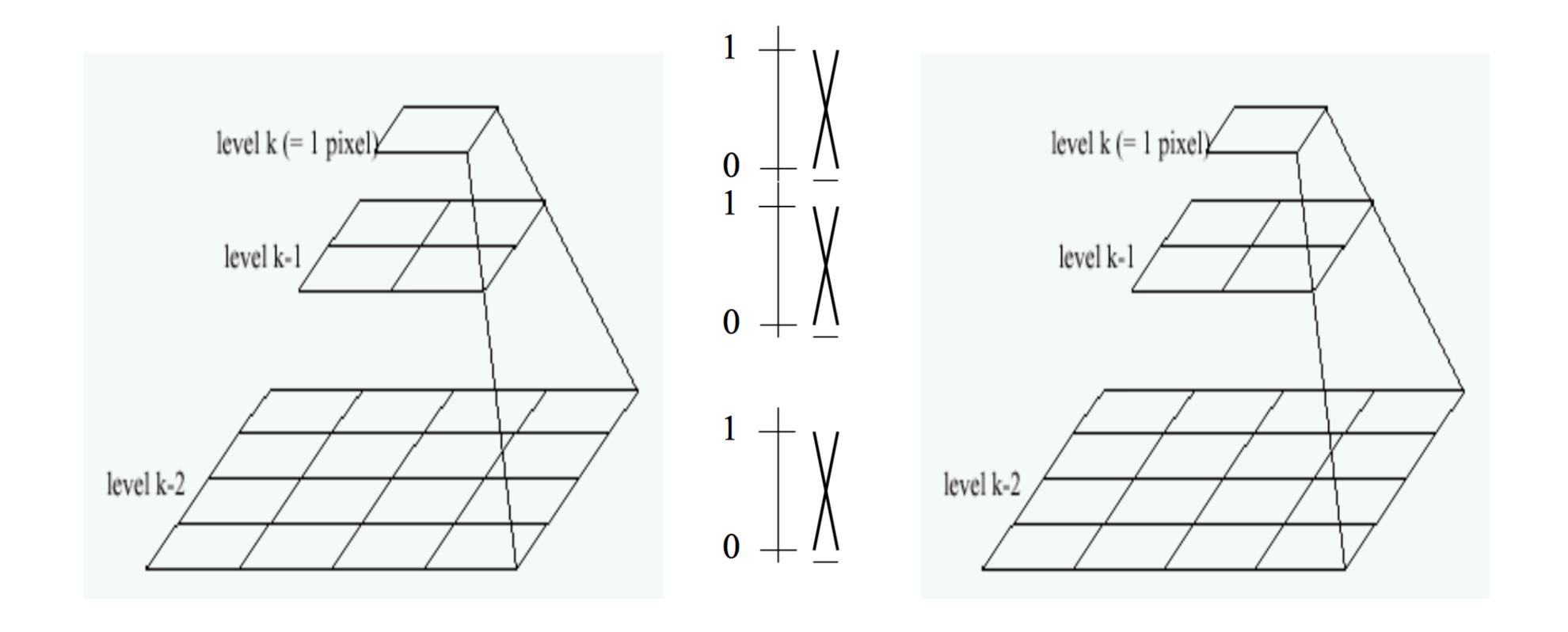
Which one takes more space to store?







### Application: Image Blending



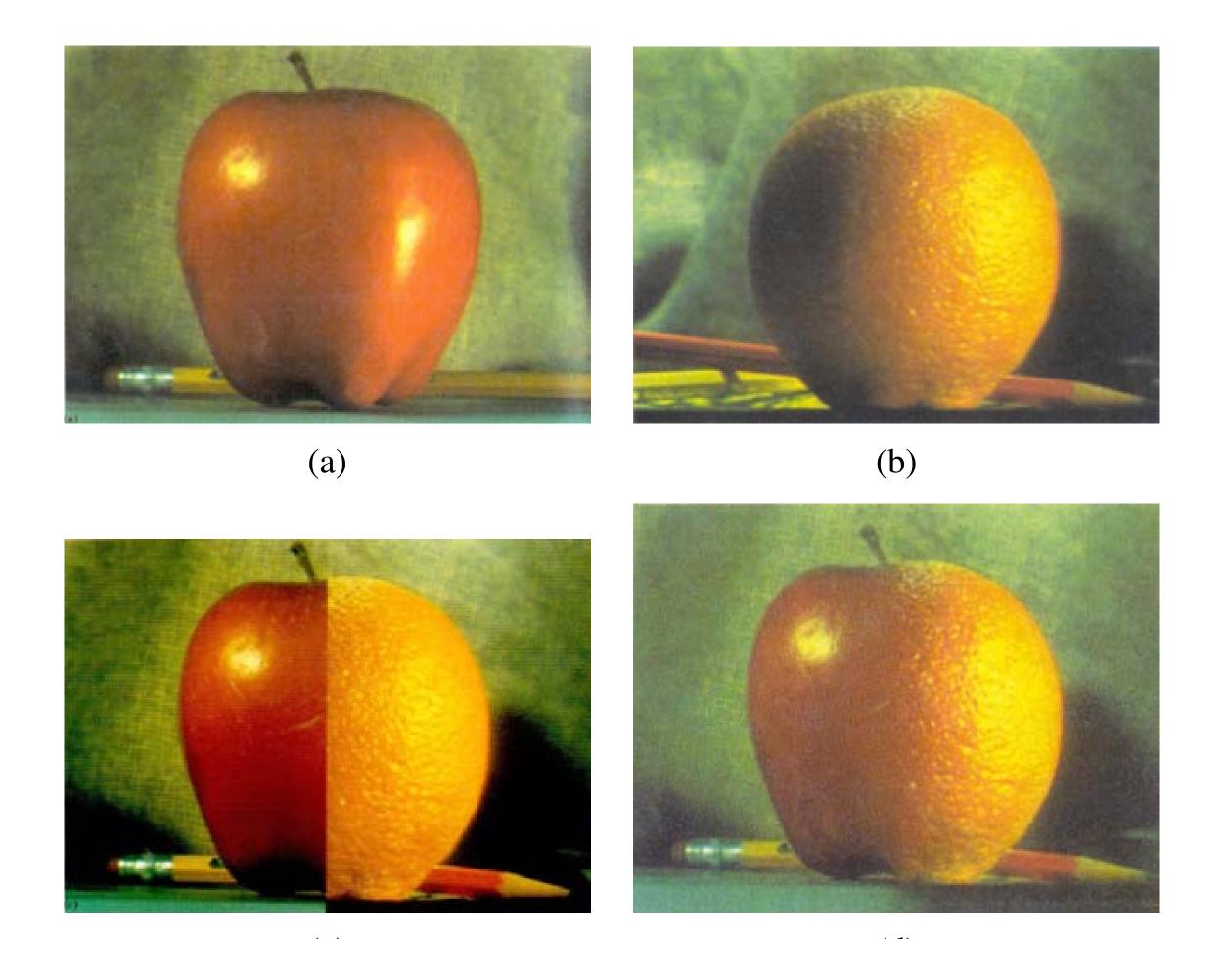
Left pyramid

blend

Right pyramid

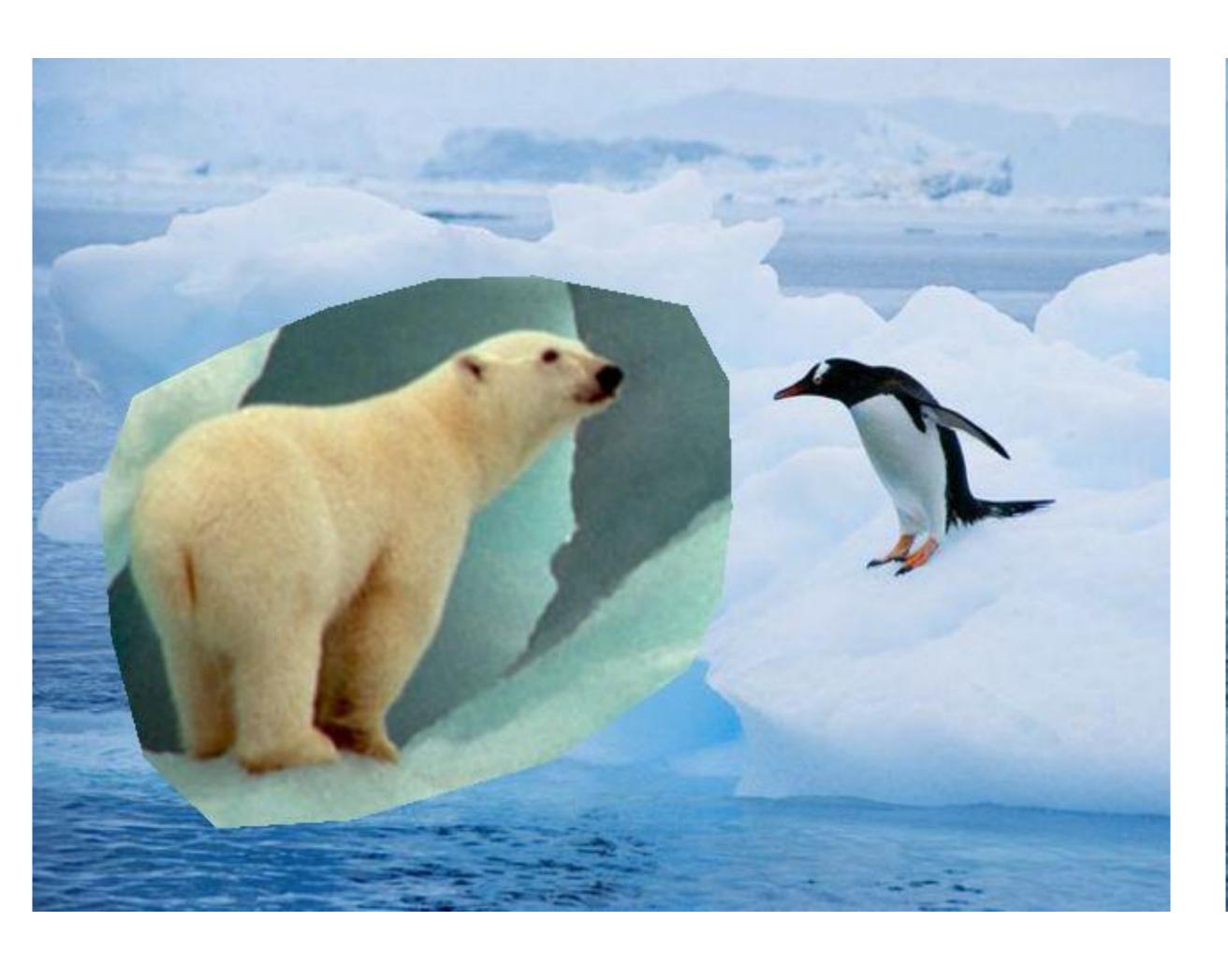
**Burt and Adelson**, "A multiresolution spline with application to image mosaics," ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

## Application: Image Pyramid Blending



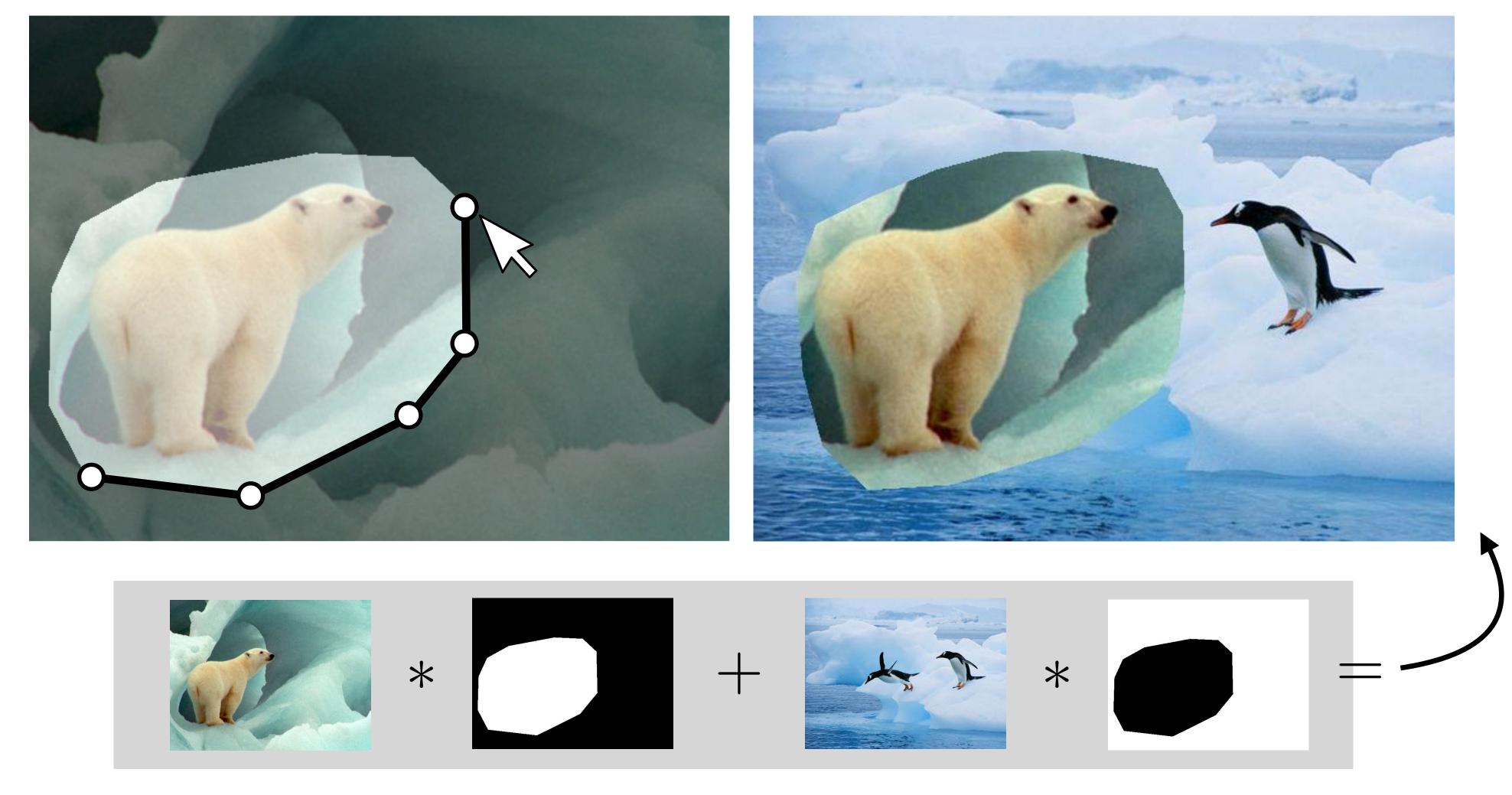
**Burt and Adelson**, "A multiresolution spline with application to image mosaics," ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

# Application: Image Pyramid Blending

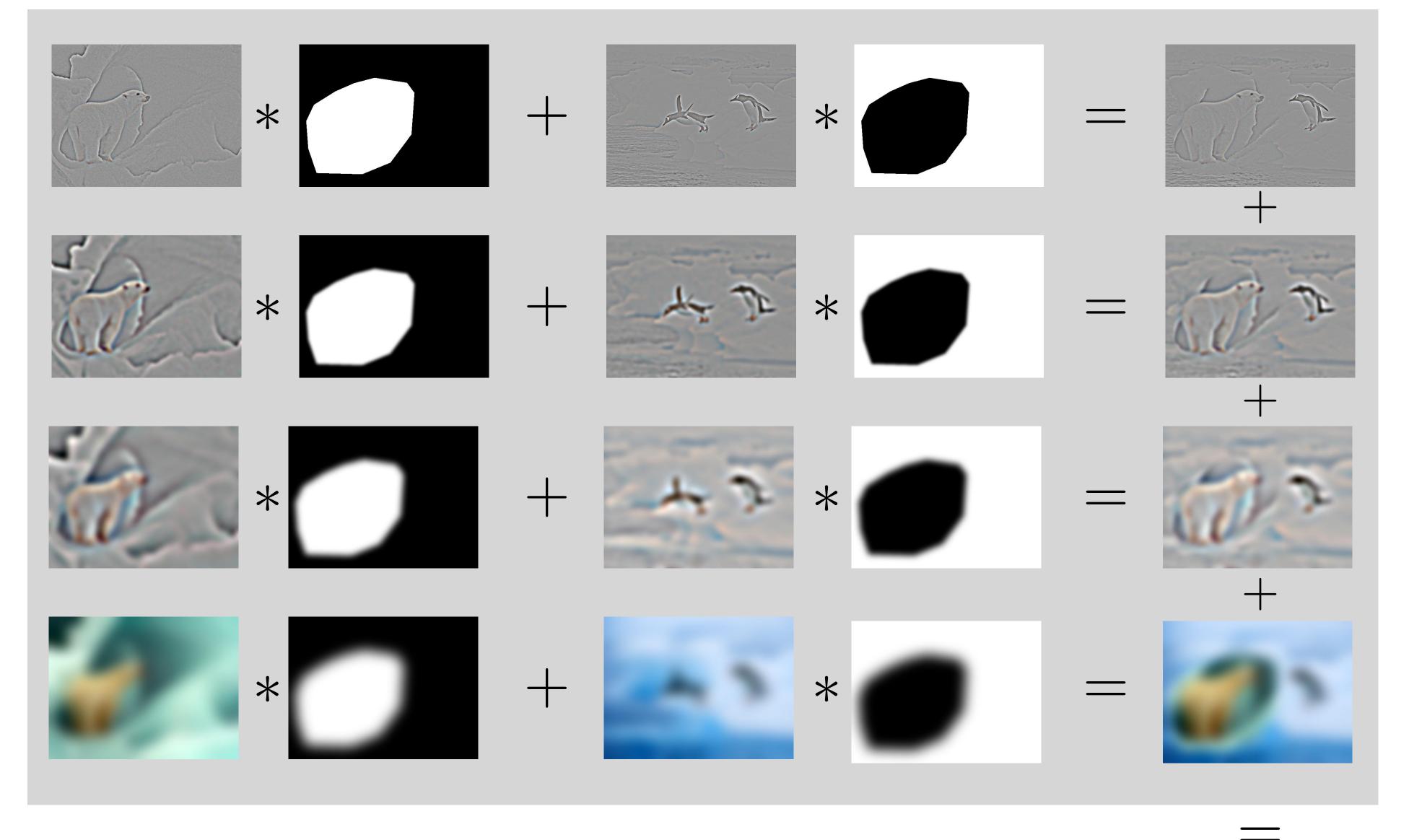




## Application: Image Pyramid Blending



Step I: Specify an Image Mask



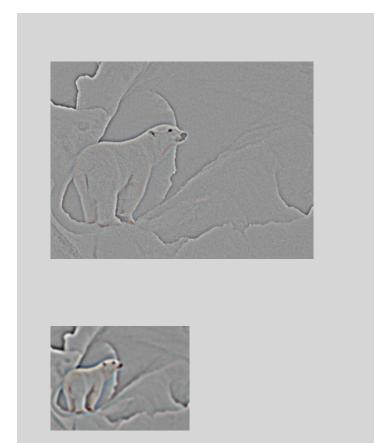
**Step 2:** blend lower frequency bands over larger spatial ranges, high frequency bands over small spatial ranges



### Application: Image Blending

#### Algorithm:

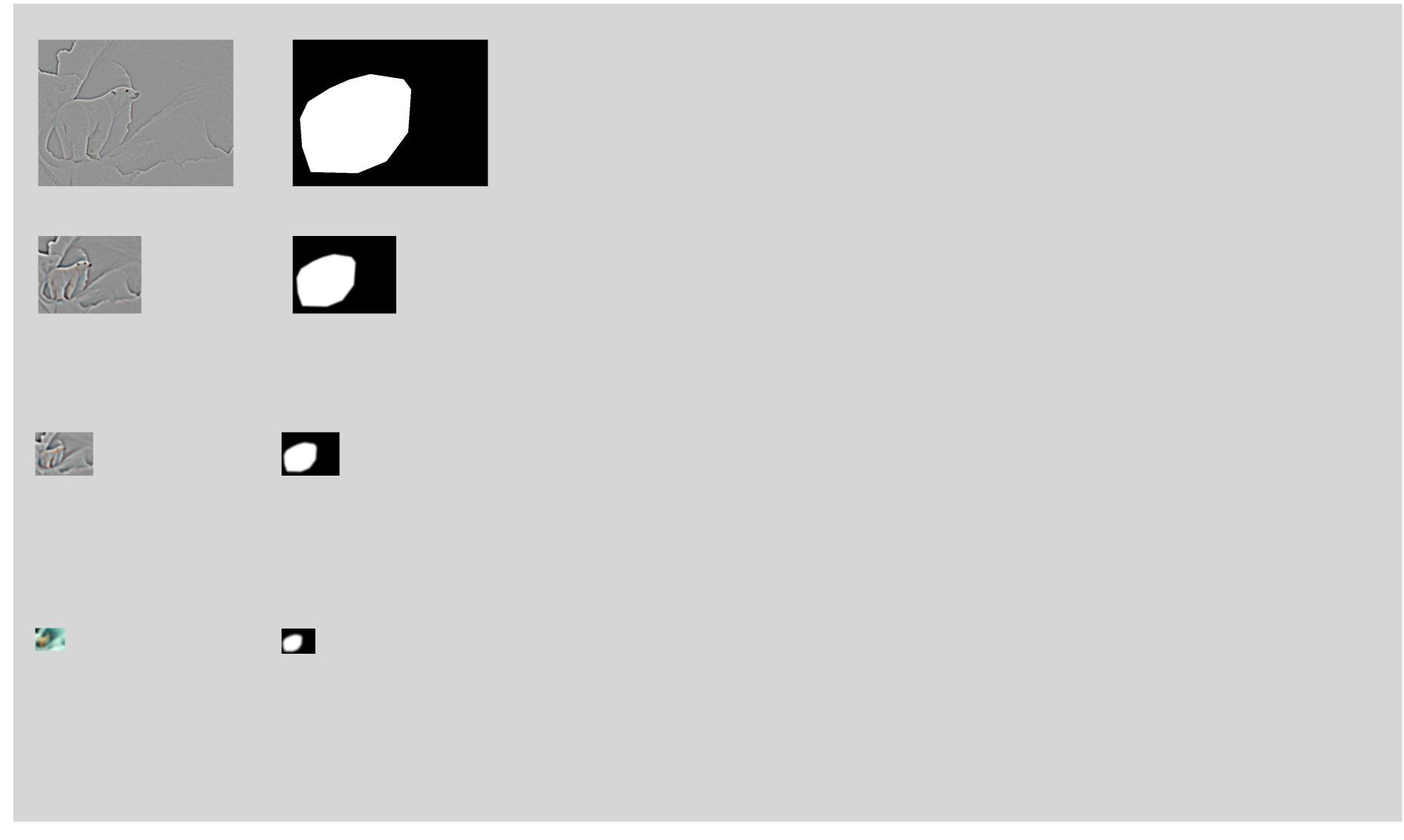
- 1. Build Laplacian pyramid LA and LB from images A and B
- 2. Build a Gaussian pyramid GR from mask image R (the mask defines which image pixels should be coming from A or B)
- 3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as weights: LS(i,j) = GR(i,j) \* LA(i,j) + (1-GR(i,j)) \* LB(i,j)
- 4. Reconstruct the final blended image from LS



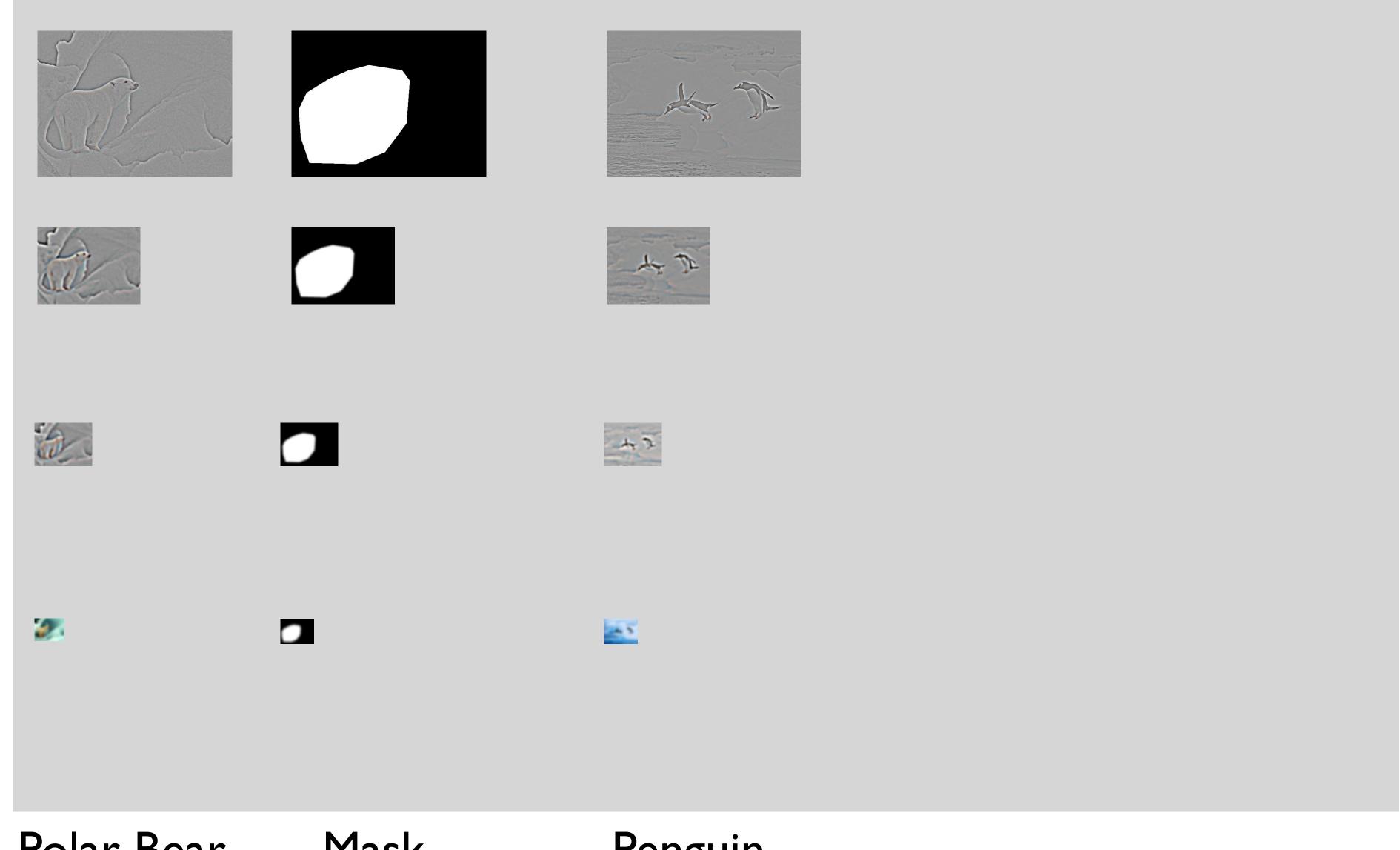




Polar Bear Laplacian Pyramid

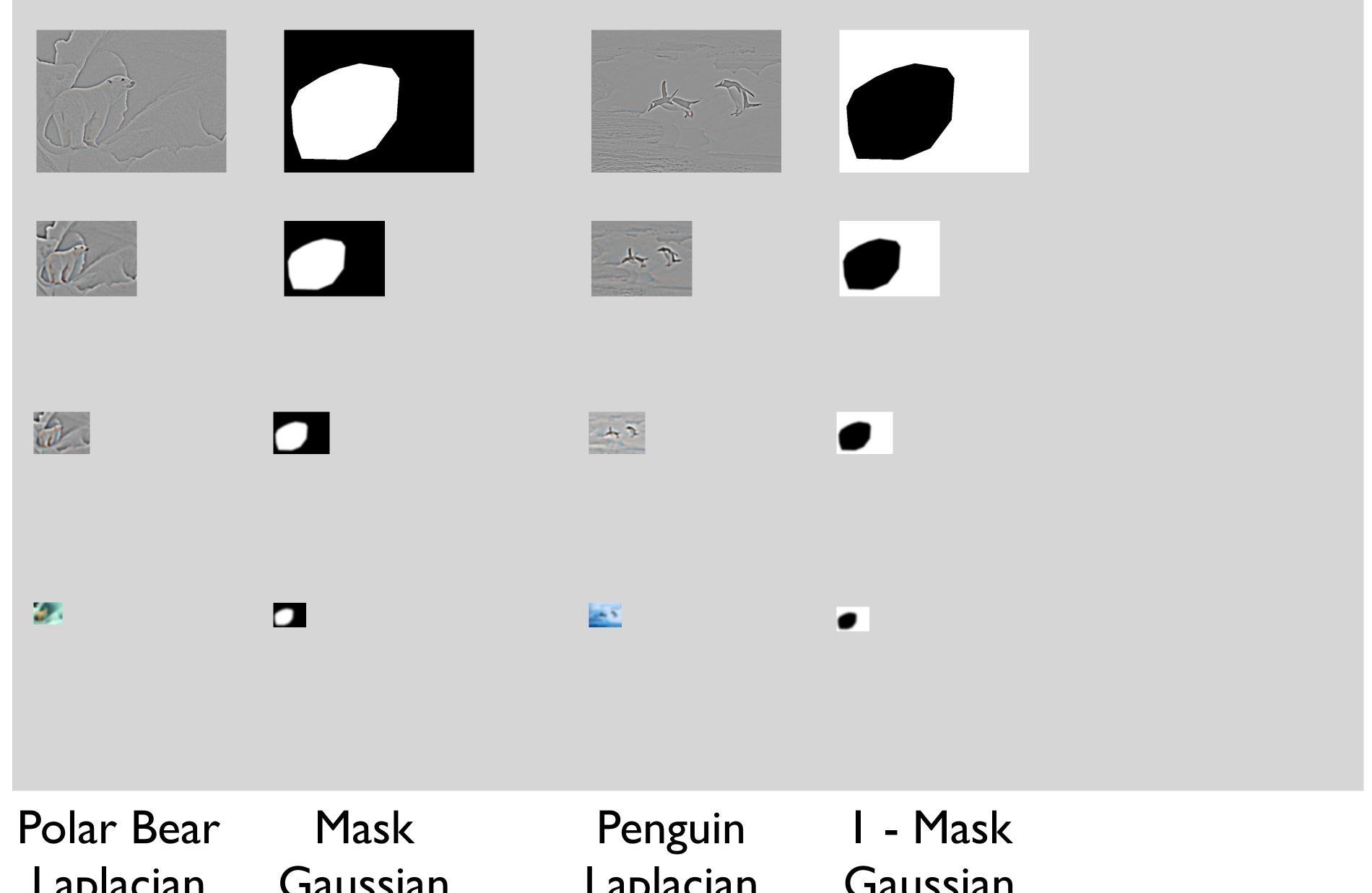


Polar Bear Mask
Laplacian Gaussian
Pyramid Pyramid



Polar Bear Mask
Laplacian Gaussian
Pyramid Pyramid

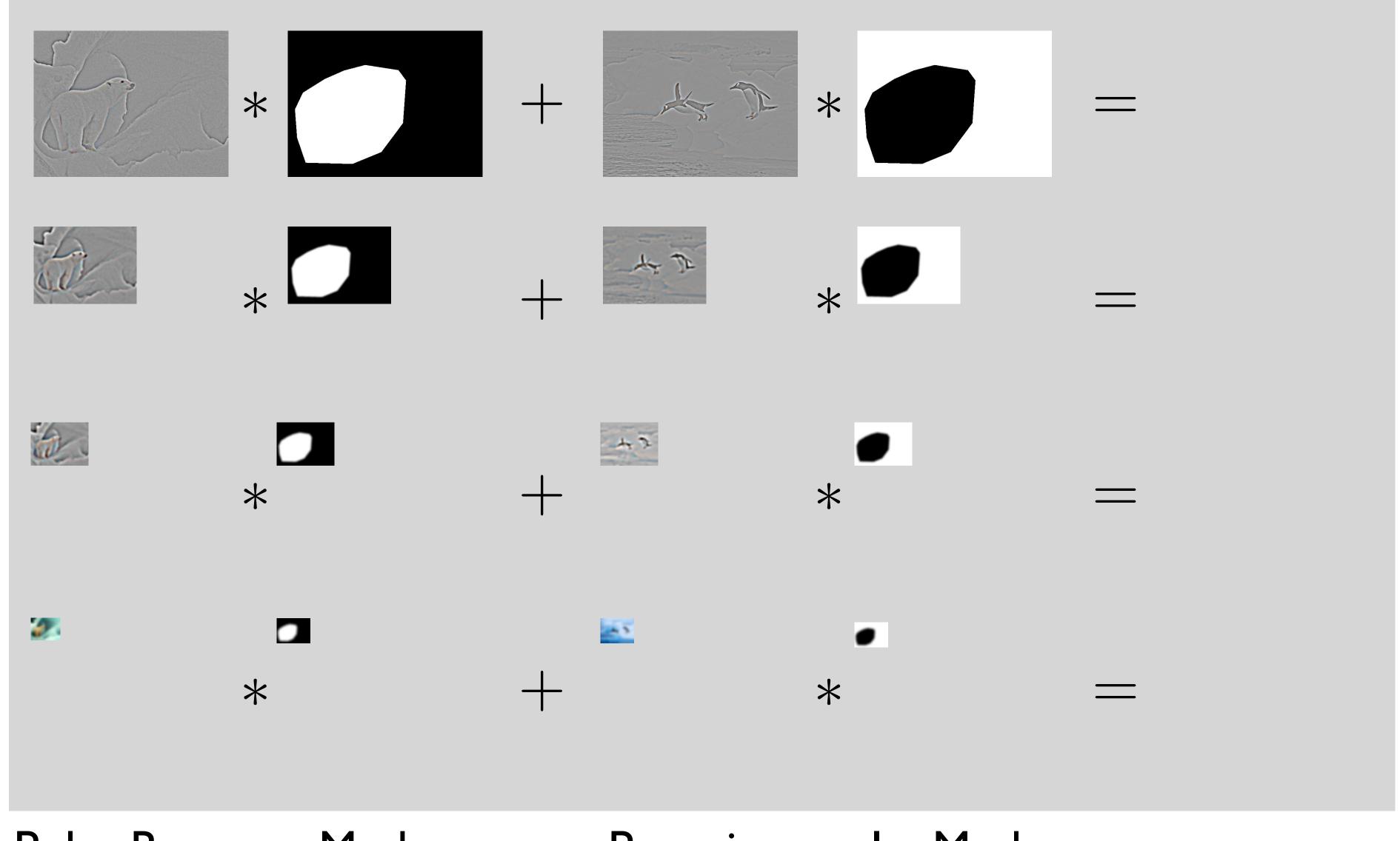
Penguin Laplacian Pyramid



Laplacian Gaussian Pyramid Pyramid

Laplacian Pyramid

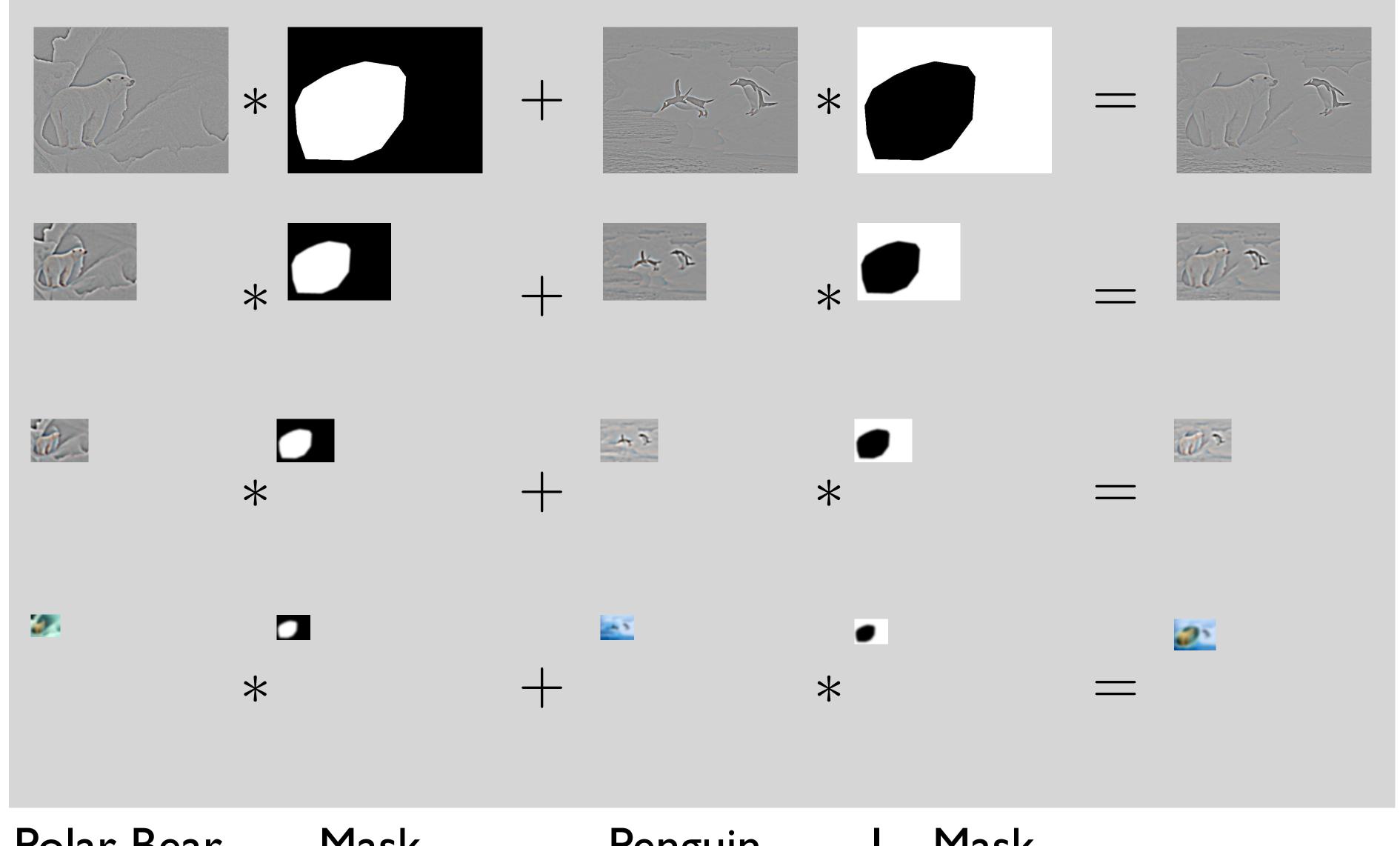
Gaussian Pyramid



Polar Bear Laplacian Pyramid

Mask Gaussian Pyramid Penguin Laplacian Pyramid

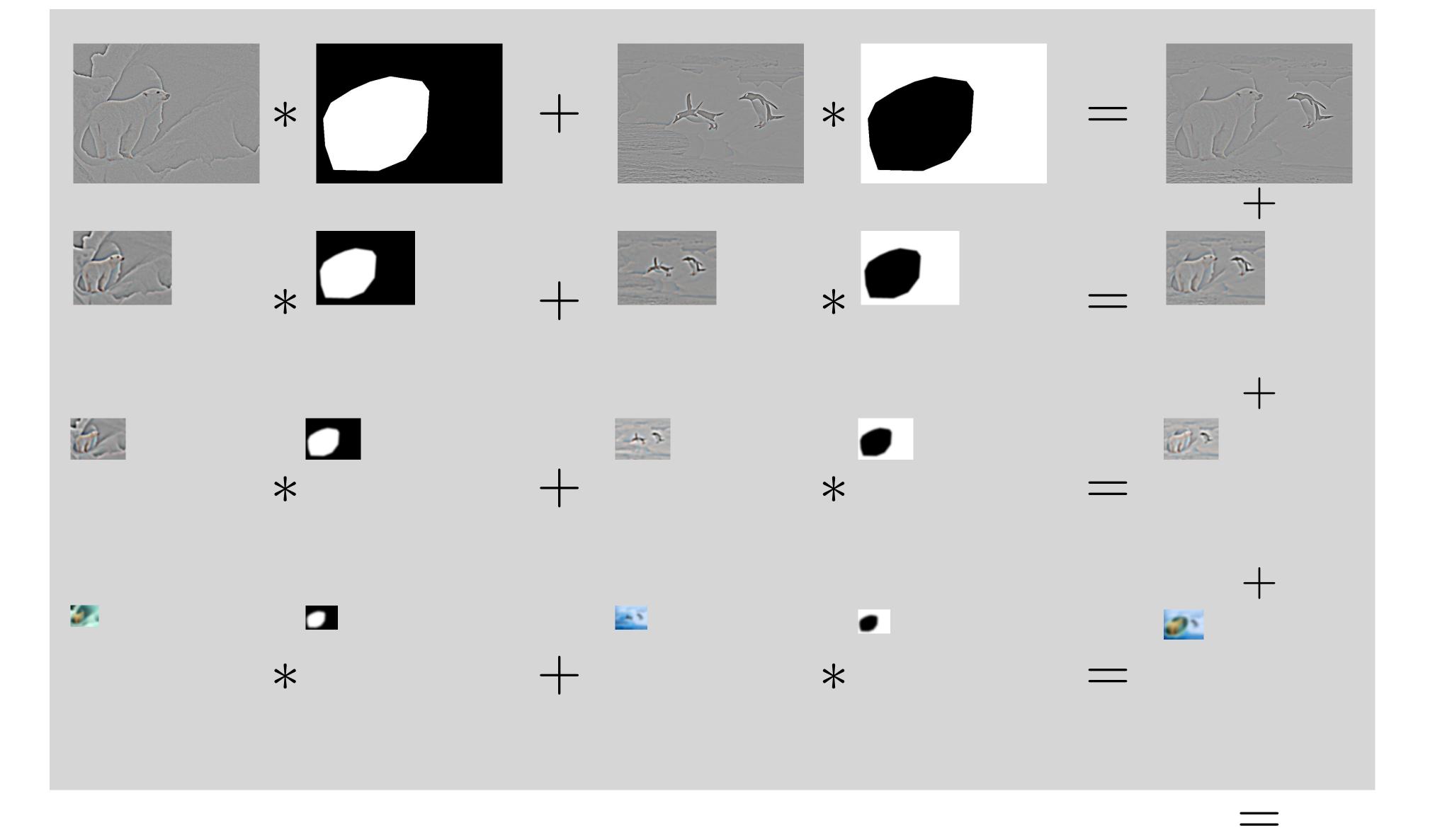
I - Mask Gaussian Pyramid



Polar Bear Laplacian Pyramid Mask Gaussian Pyramid Penguin Laplacian Pyramid

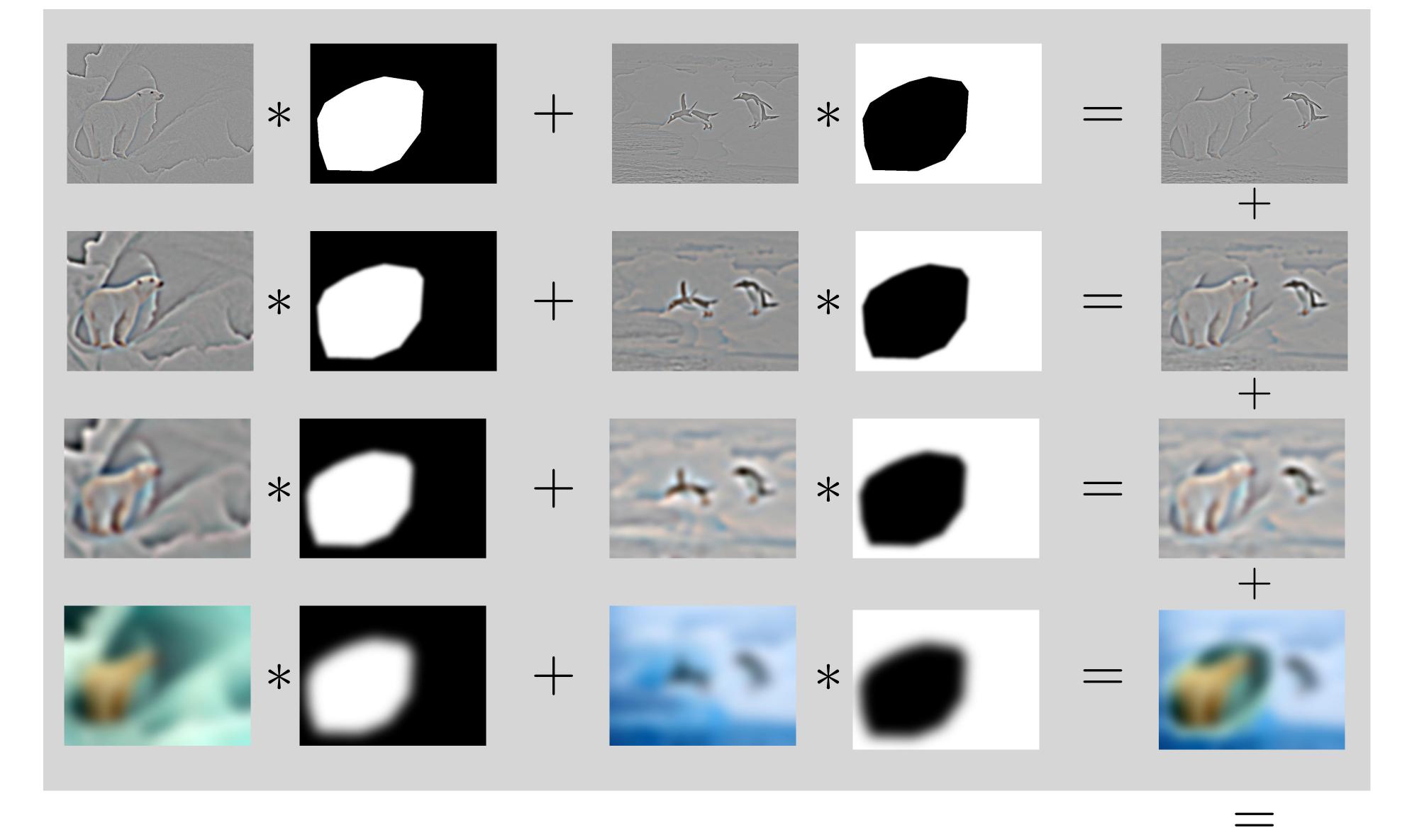
I - MaskGaussianPyramid

Result Pyramid





Reconstruct Result

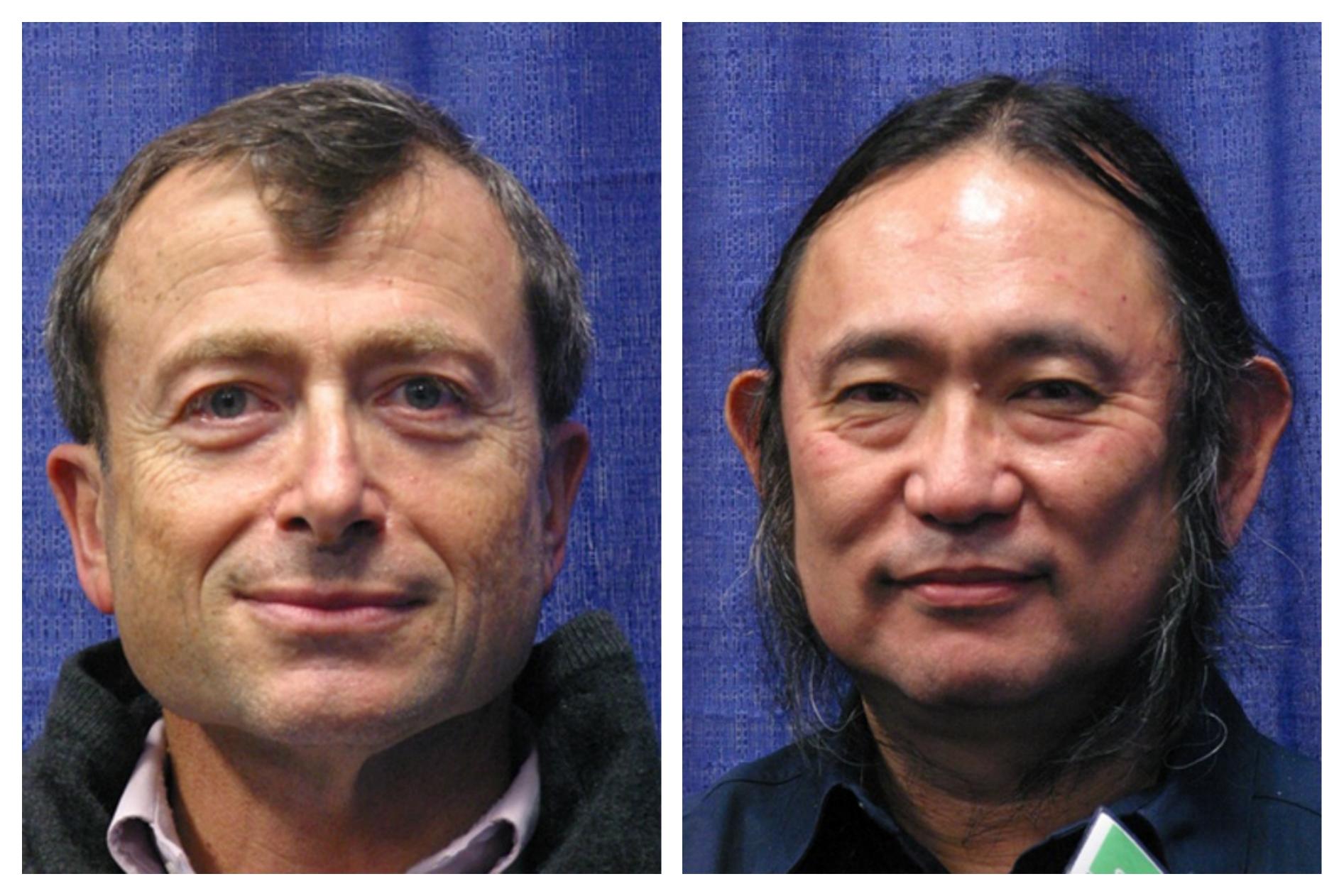




Reconstruct Result



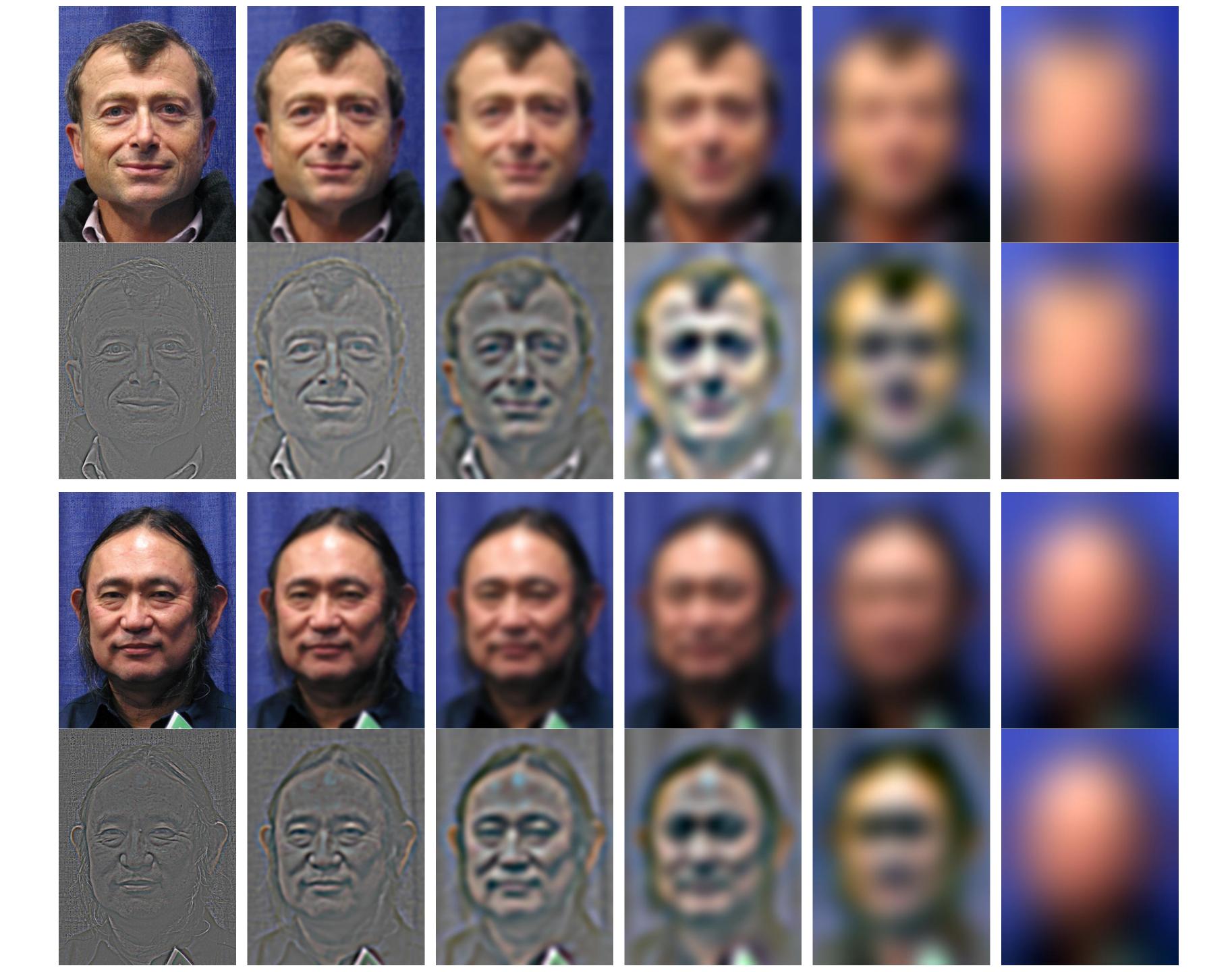




[ Jim Kajiya, Andries van Dam]



[ Jim Kajiya, Andries van Dam]





Alpha blend with sharp fall-off

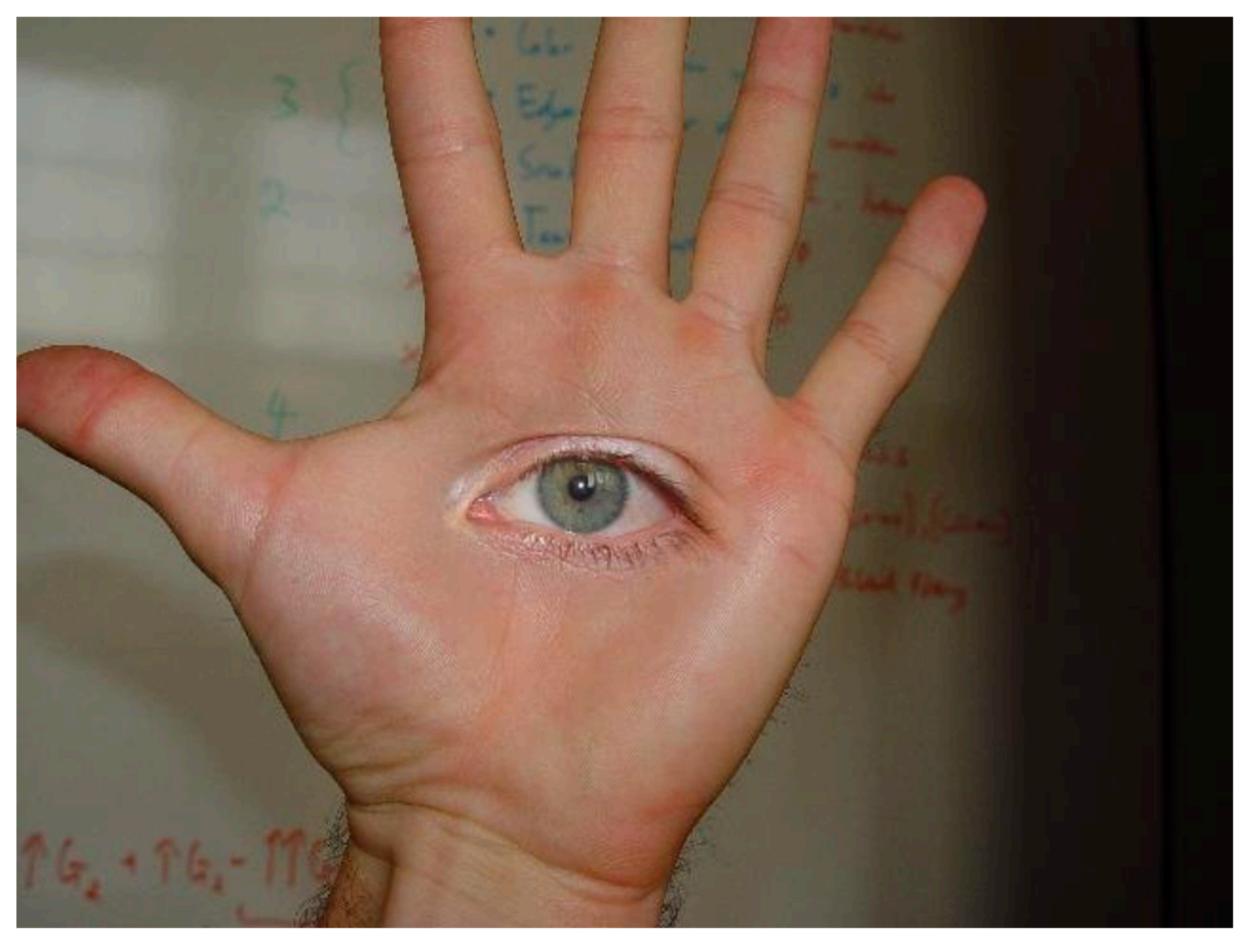


Alpha blend with gradual fall-off



Pyramid Blend

## More examples ...



© david dmartin (Boston College)

# More examples ...



© Chris Cameron

#### Summary: Scaled Representations

#### **Gaussian Pyramid**

- -Each level represents a low-pass filtered image at a different scale
- —Generated by successive Gaussian blurring and downsampling
- -Useful for image resizing, sampling

#### Laplacian Pyramid

- -Each level is a **band-pass** image at a different scale
- —Generated by differences between successive levels of a Gaussian Pyramid
- —Used for pyramid blending, feature extraction etc.

### Recap: Multi-Scale Template Matching

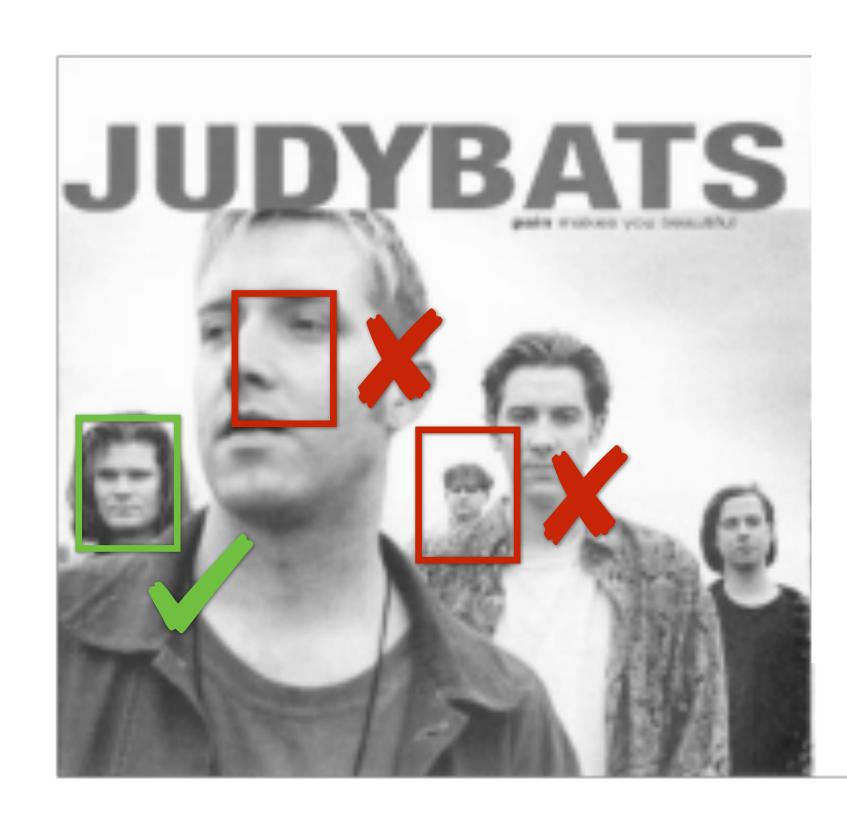
Correlation with a fixed-sized image only detects faces at specific scales





= Template

Correlation with a fixed-sized image only detects faces at specific scales



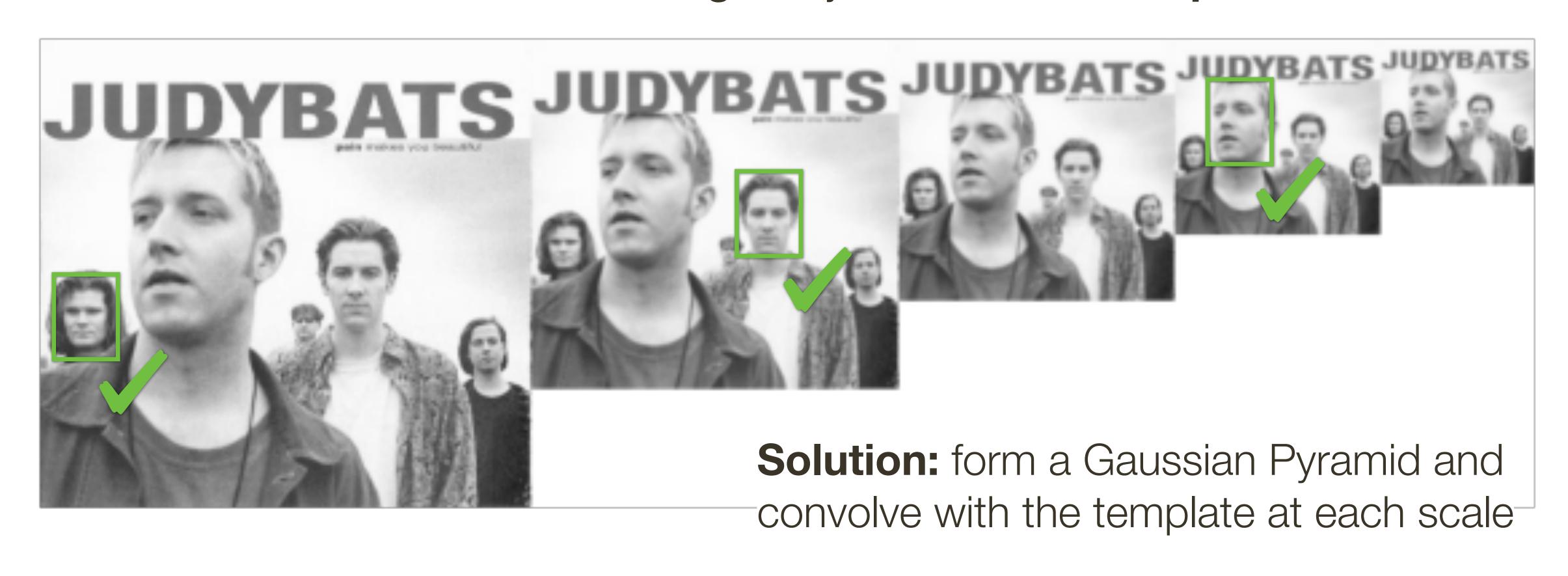


Correlation with a fixed-sized image only detects faces at specific scales



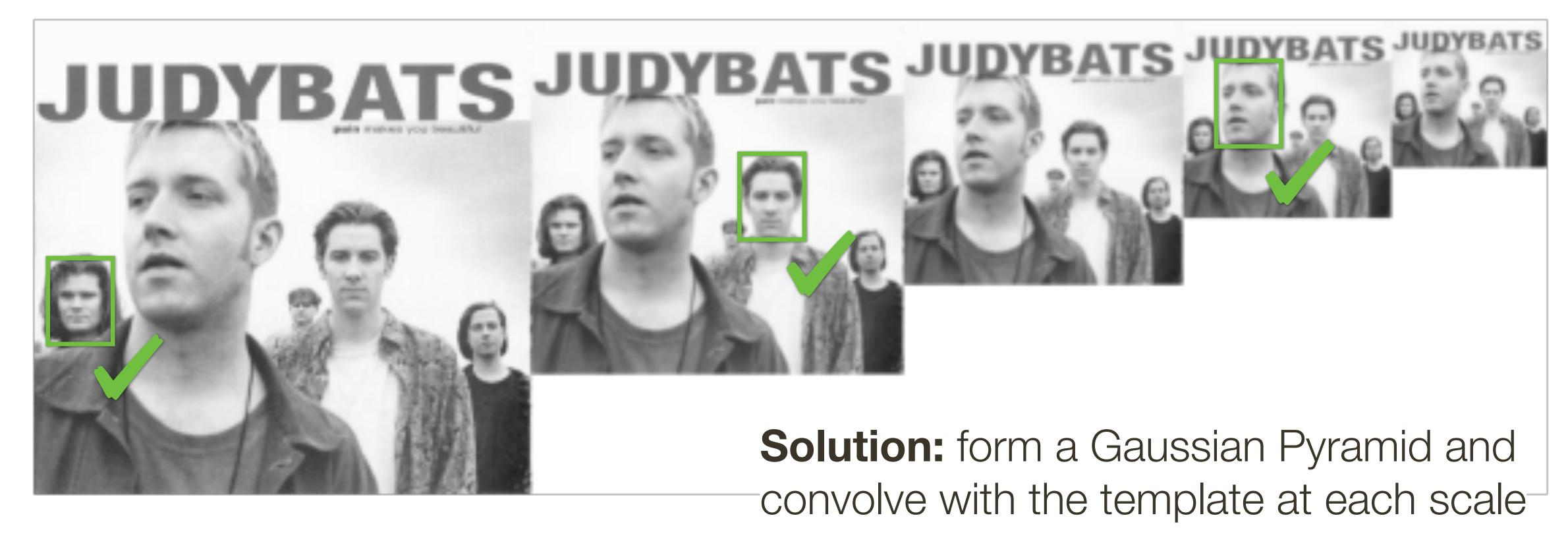


Correlation with a fixed-sized image only detects faces at specific scales





Correlation with a fixed-sized image only detects faces at specific scales





Q. Why scale the image and not the template?

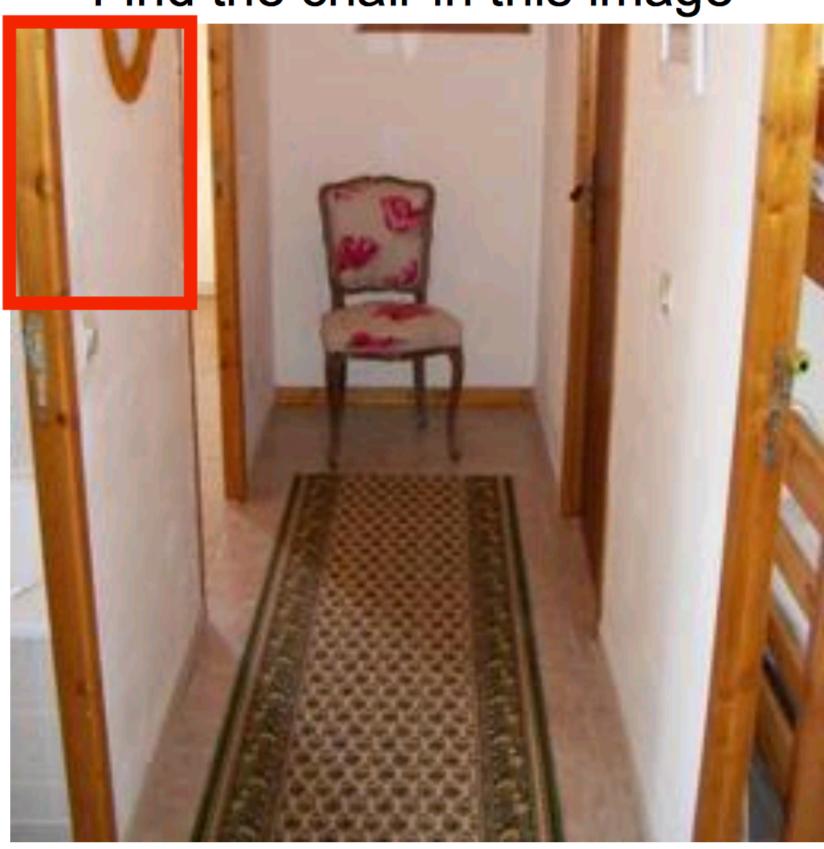


# Improving Template Matching

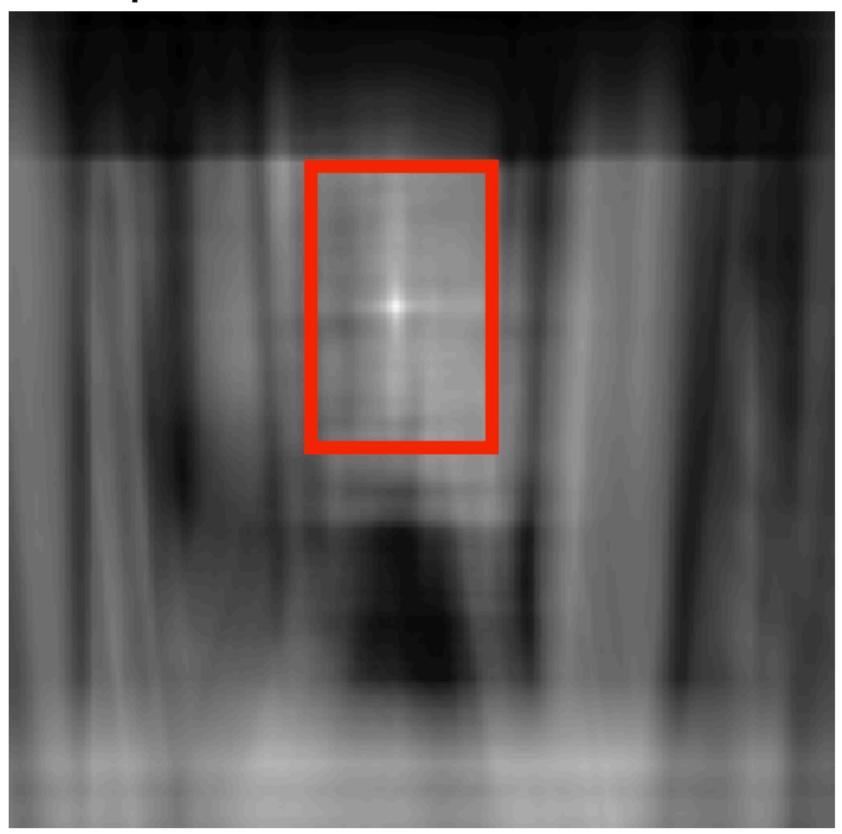
This is a chair



Find the chair in this image



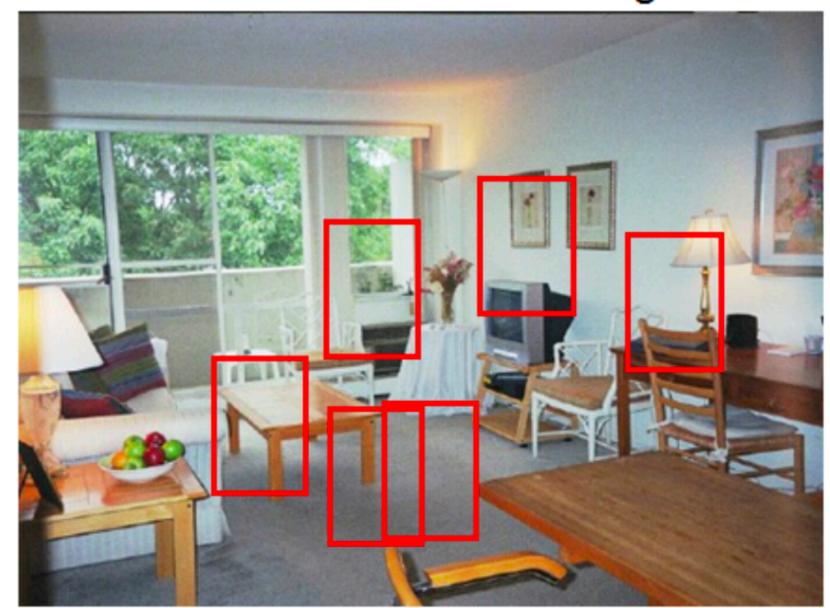
Output of normalized correlation

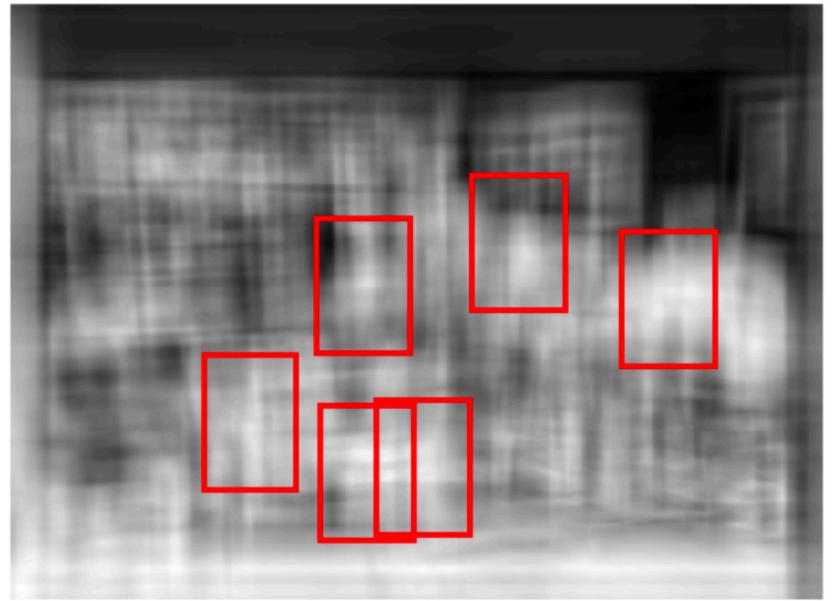


# Improving Template Matching



Find the chair in this image





Pretty much garbage
Simple template matching is not going to make it

# Improving Template Matching

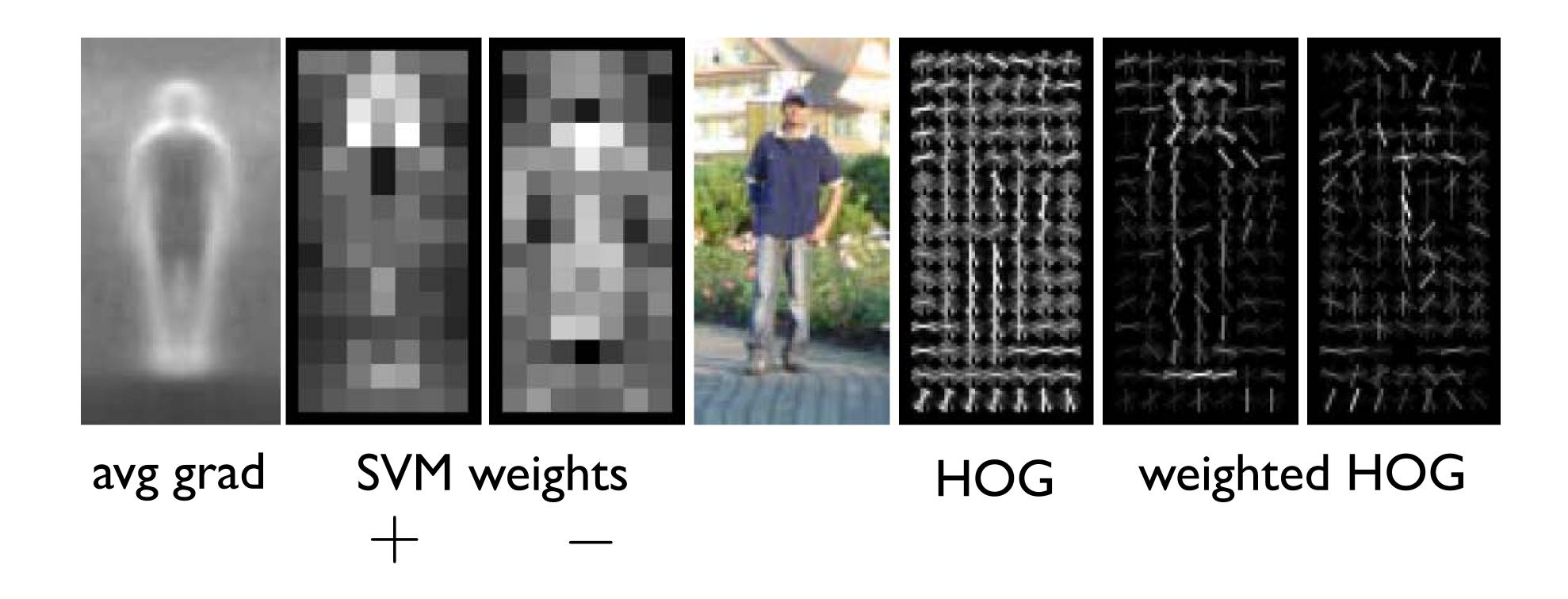
Improved detection algorithms make use of image features

These can be hand coded or learned

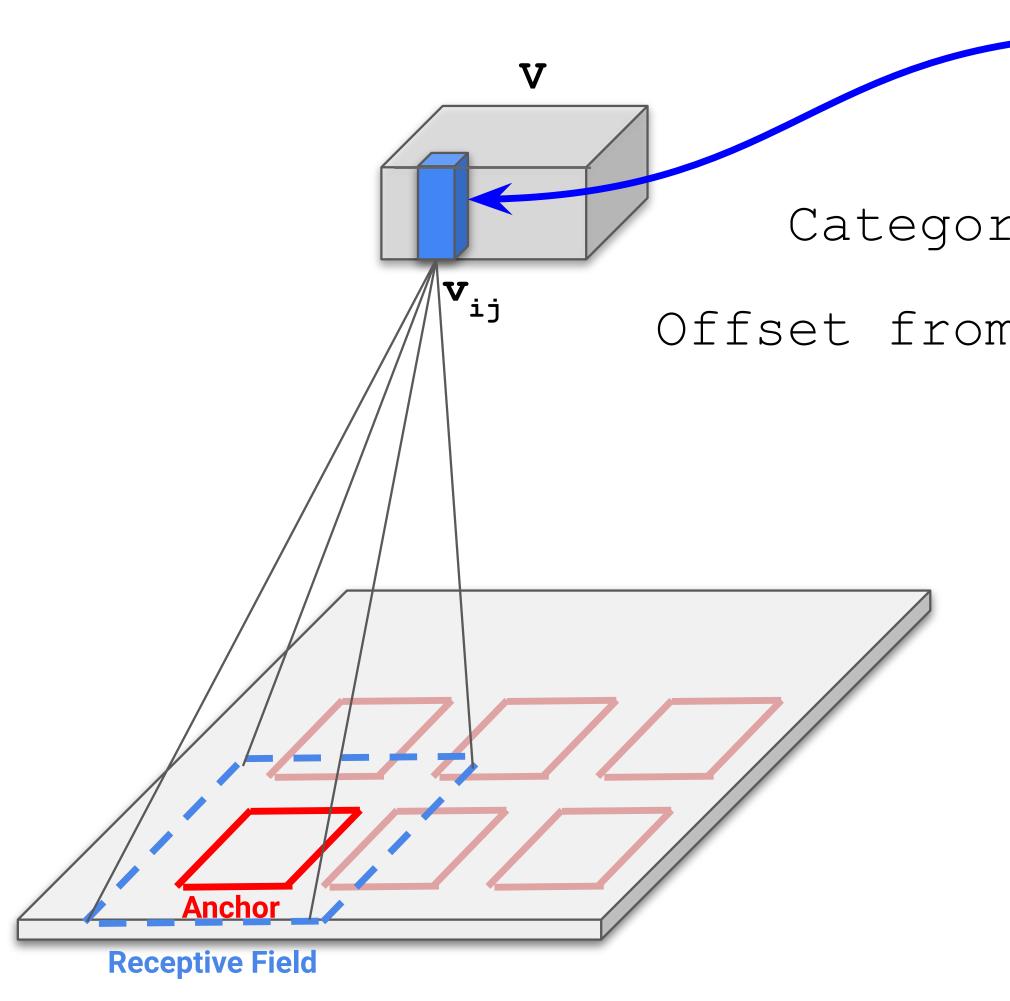
# Template Matching with HoG

Template matching can be improved by using better features, e.g., Histograms of Gradients (HOG) [Dalal Triggs 2005]

The authors use a Learning-based approach (Support Vector Machine) to find an optimally weighted template



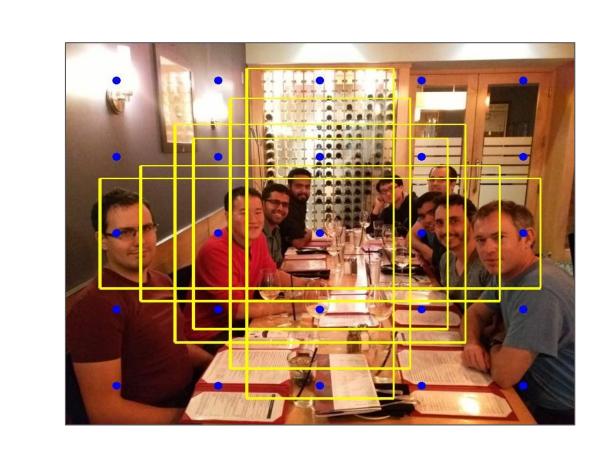
#### Convnet Object Detection



Think of each feature vector  $\mathbf{v}_{ij}$  as corresponding to a sliding window (anchor).

Category score = SoftMax( $W^{cls} \cdot \mathbf{v_{ij}}$ )

Offset from anchor =  $W^{loc} \cdot \mathbf{v}_{ij}$ 



- Convnet based object detectors resemble sliding window template matching in feature space
- Architectures typically involve multiple scales and aspect ratios, and regress to a 2D offset in addition to category scores

#### Summary

**Template matching** as (normalized) correlation. Template matching is not robust to changes in:

- 2D spatial scale and 2D orientation
- 3D pose and viewing direction
- illumination

#### Scaled representations facilitate

- template matching at multiple scales
- efficient search for image-to-image correspondences
- image analysis at multiple levels of detail

A **Gaussian pyramid** reduces artifacts introduced when sub-sampling to coarser scales

#### From Template Matching to Local Feature Detection

We'll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

#### From Template Matching to Local Feature Detection

We'll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

- from above (as in an aerial photograph or satellite image)
- head on
- sideways (i.e., in profile)
- rear on

What happens if parts of an elephant are obscured from view by trees, rocks, other elephants?

#### From Template Matching to Local Feature Detection

- Move from global template matching to local template matching
- Local template matching also called local feature detection
- Obvious local features to detect are edges and corners