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Lecture 7: Template Matching, Scaled Representations

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Menu for [ogay (September 26, 2024)

Topics:
— Digital Imaging Pipeline — Jemplate Matching
— Scaled Representations — Normalised Correlation

— Today’s Lecture: Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due today
— Assignhment 2. Scaled Representations, Face Detection and Image Blending

— Quiz 1 is out and due today, 11:59pm (will be out today)



Assignment 2: Preview — Part 1: Face Detection

JUQ BATS

ukes vou Deautiful




Assignment 2: Preview — Part 2: Image Blending

In focus Out of focus Out of focus In focus All in Focus



Assignment 2: Preview — Part 2: Image Blending

In focus Out of focus Out of focus In focus All in Focus

(imaging plane closer 1o f) (imaging further than f)



Today’s “fun” Example: NCIS
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Joday’s “fun” Example: LavaRAND
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Lecture 6: Re-cap

INn the continuous case, Images are functions of two spatial variables, x and .

The discrete case is obtained from the continuous case via sampling (i.e.
spatial tessellation, grayscale quantization).

f a signal is bandlimited then it is possible to design a sampling strategy such
that the sampled signal captures the underlying continuous signal exactly.

It we know what we imaging (position and texture of objects, etc.) and how (distance of those
object to the camera, lens parameters of the camera, etc.) then we can calculate what
resolution sensor we may need to “trust” our imaging




Lecture 6: Re-cap

“Color” is not an objective physical property of light (electromagnetic radiation).
Instead, light is characterized by its wavelength.

Color Filter Arrays (CFASs) allow capturing of mosaiced color information; the
layout of the mosaic Is called Bayer pattern.

Demosaicing is the process of taking the RAW image and interpolating
MIssiNg color pixels per channel




1. See how image filtering can be used in practice

2. Understand the concepts behind template matching



Template Matching

How can we find a part of one image that matches another”?

Of,

How can we find instances of a pattern in an image”



Template Matching

How can we find a part of one image that matches another”?

Of,

How can we find instances of a pattern in an image”

Key ldea: Use the pattern as a template



Template Matching
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Template Matching
We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.
— (Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.



Template Matching
We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.
— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.

Vector
Template 0
0
0101]0 0
0(1]0]| =————— 0
0|11 .
L
0
1




Template Matching

We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching
We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.
— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching
We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.
— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.

01010 Template o 019/0

image 0l11]0 e\‘x\@\ﬂ 0/1(0] =3

The dot product may be large simply because the image region Is bright.

We need to normalize the result in some way.
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Template Matching

Similarity measures between a filter J local image region [

Correlation, CORR= T.J =1!]
1]

Normalised Correlation, NCORR = WK — cos ¢

Normalized correlation varies between —1 and 1, attains the value 1 when the
filter and image region are identical (up to a scale factor)

Because images are positive, the range would actually be O to 1
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Correlation, CORR= T.J =1!]

Normalised Correlation, NCORR = = cos @

Normalized correlation varies between —1 and 1, attains the value 1 when the
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Template Matching

Similarity measures between a filter J local image region [
Correlation, CORR= T.J =1!]

Normalised Correlation, NCORR = 100 = cos @

Normalized correlation varies between —1 and 1, attains the value 1 when the
filter and image region are identical (up to a scale factor)

Because images are positive, the range would actually be O to 1



Template Matching

Similarity measures between a filter J local image region [

Correlation, CORR= T.J =1!]
. . 1]
Normalised Correlation, NCORR = WK — cos ¢

Sum Squared Difference, SSD = [I — J |2

Normalized correlation varies between —1 and 1, attains the value 1 when the
filter and image region are identical (up to a scale factor)

Minimising SSD and maximizing Normalized Correlation
are equivalent if |I| = |J| =1



Template Matching

Assuming template is all positive, what does this tell us about correlation map”?

Detected template Correlation map

Slide Credit: Kristen Grauman
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Assuming template is all positive, what does this tell us about correlation map”?
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Template Matching

Detection can be done by comparing correlation map score to a threshold
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What happens if the threshold is relatively low?
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Detection can be done by comparing correlation map score to a threshold

T
4 73

Detected template Correlation map

What happens if the threshold is very high (e.g., 0.99)7
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Template Matching

Detection can be done by comparing correlation map score to a threshold

Detected template Correlation map
What happens if the threshold is very high (e.g., 0.99)7

Slide Credit: Kristen Grauman



Template Matching

Linear filtering the entire image computes the entire set of dot products, one
for each possible alignment of filter and image

Important Insight:
— filters look like the pattern they are intended to find

— filters find patterns they look like

Linear filtering Is sometimes referred to as template matching



Template Matching

L et a and b be vectors. Let 8 be the angle between them. We know
a-b a- b - a b
allb|  \/(a-a)(b-b) la| |b]

where - is dot product and | | is vector magnitude

cos ) =
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Let @ and b be vectors. Let 8 be the angle between them. We know
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where - is dot product and | | is vector magnitude

1. Normalize the template / filter (b) in the beginning
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Let @ and b be vectors. Let 8 be the angle between them. We know

a-b a-b a Template (b)
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know

a-b a-b a b

cos ) = — —
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where - is dot product and | | is vector magnitude
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know

a-b a-b a b

cos ) = — —

allb ~ la-a)(b-b) (@)l

where - is dot product and | | is vector magnitude
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know

9 a-b a-b a b Template (b)
COS U — — —

al|b \/(a-a)(b-b) \b\ 5 |7 |98
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where - is dot product and | | is vector magnitude R PN e

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of
equal size to the the template and square-rooting the response
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Template Matching

L et a and b be vectors. Let 8 be the angle between them. We know

cos f = a-b — a - b L ﬂ i Template (b)
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Template Matching

L et a and b be vectors. Let 8 be the angle between them. We know

a-b a-b

cos ) = —

allb ~ la-a)(b-b) (@)l

where - is dot product and | | is vector magnitude

a b

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of
equal size to the the template and square-rooting the response
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know

a-b a-b ﬂi

allb ~ la-a)(b-b) (@)l

where - is dot product and | | is vector magnitude

cos ) =

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of

Template (b)
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know

a-b a-b a b

cos ) = — —

allb ~ la-a)(b-b) (@)l

where - is dot product and | | is vector magnitude

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know
a-b a- b - a b
allb|  \/(a-a)(b-b) la| |b]

cos ) =

where - is dot product and | | is vector magnitude

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of
equal size to the the template and square-rooting the response

3. We can compute the dot product by correlation of image (a) with normalized
filter (b)

4. We can finally compute the normalized correlation by dividing element-wise
result in Step 3 by result In Step 2




Example 1:

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
|[EEE Computer Graphics and Applications, 1998
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Example 1.

Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
|[EEE Computer Graphics and Applications, 1998




Example 1.

Template (left), image (middle),
normalized correlation (right)

Note peak value at the true
position of the hand

Credit: V. Freeman et al., “Computer Vision for Interactive Computer Graphics,”
IEEE Computer Graphics and Applications, 1998
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Template Matching

When might template matching fail”

— Different scales w

— Different orientation &

— Partial Occlusions w (
J

— Different Perspective
— Lighting conditions .

_ Left vs. Right hand w w

— Motion / blur




Template Matching Summary

Good News:
— works well In presence of noise
— relatively easy to compute

Bad News:
— sensitive to (spatial) scale change
— sensitive to 2D rotation

More Bad News:
When imaging 3D worlds:
— sensitive to viewing direction and pose
— sensitive to conditions of illumination



Template Matching

When might template matching fail”

— Different scales u
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Scaled Representations
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Scaled Representations




Scaled Representations

Why puild a scaled representation of
the Image instead of scaled
representation of the template”/



Scaled Representations
= = Template
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Scaled Representations
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Scaled Representations: Goals

to find template matches at all scales
— template size constant, image scale varies
— finding hands or faces when we don’'t know what size they are in the image
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efficient search for image—to—-image correspondences
— look first at coarse scales, refine at finer scales
— much less cost (but may miss best match)
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Scaled Representations: Goals

to find template matches at all scales
— template size constant, image scale varies
— finding hands or faces when we don’'t know what size they are in the image

efficient search for image—to—-image correspondences
— look first at coarse scales, refine at finer scales
— much less cost (but may miss best match)

to examine all levels of detall
— find edges with different amounts of blur
— find textures with different spatial frequencies (i.e., different levels of detall)




Shrinking the Image

We can’t shrink an image simply by taking every second pixel



Shrinking the Image

We can’t shrink an image simply by taking every second pixel

Why*?
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Nyquist Sampling

To avoid aliasing a signal must be sampled at twice the maximum frequency:

For Images: We need to sample the underlying continuous signal at least once
per pixel to avoid aliasing (assuming a correctly sampled image)

undersampling = aliasing



Template Matching: Sub-sample with Gaussian Pre-filtering

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows
delete even
columns

Gaussian filter
delete even rows
delete even
columns

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with Gaussian Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with NO Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing”?



Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing”?

Answer: Smoothing should be sufficient to ensure that the resulting image
IS band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by o =1



Image Pyramid

An image pyramid is an efficient way to represent an image at multiple scales
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An image pyramid is an efficient way to represent an image at multiple scales

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer, taking advantage of the fact that

01 :I; ® GO'Q CE' — \/O’% 2 :I;



Image Pyramid

A \'| -

VA v

. S s ;‘ic
STt ) s Y o 4
IR - Y ARy
e "Q—n > 4 4 é;
IS .

AL

An image pyramid is an efficient way to represent an image at multiple scales

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer, taking advantage of the fact that
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Example 2: Gaussian Pyramio
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Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramio
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Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramio

@ @\\ /A /%\ @ ? f What happens to the details?
— They get smoothed out as we move

512 128 to higher levels

What is preserved at the higher levels”
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Example 2: Gaussian Pyramio

@@wmﬁﬁr
— They get smoothed out as we move

512 128 5 to higher levels

What happens to the details”

What is preserved at the higher levels”

— Mostly large uniform regions in the
original image

How would you reconstruct the original
image from the image at the upper
level”?
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Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 2: Gaussian Pyramio

@@wmﬁﬁr
— They get smoothed out as we move

512 128 5 to higher levels

What happens to the details”

What is preserved at the higher levels”

— Mostly large uniform regions in the
original image

How would you reconstruct the original
image from the image at the upper
level”?

\//§\\

m.
e

.
f

— [hat’'s not possible
Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Gaussian vs Laplacian Pyrami

order for space
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Blur with a Gaussian
ernel, then select
every 2nd pixel

s\L,Y) = 1{(X,Y) * o\,
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Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(z,y) = I(2,y) * go (2, y)
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Laplacian Pyramid

Building a Laplacian pyramid:
— Create a Gaussian pyramid
— Take the difference between one Gaussian pyramid level and the next

Properties

— Computes a Laplacian / Difference-of-Gaussian (DoG) function of the image
at multiple scales

— |t Is a band pass filter — each level represents a different band of spatial
frequencies



Laplacian Pyramid

At each level, retain the residuals
iNnstead of the blurred iImages
themselves.

Why is it called Laplacian Pyramid®?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Why Laplacian Pyramid®

unit Gaussian Laplacian

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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unit Gaussian Laplacian

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Laplacian Pyramid

At each level, retain the residuals
iNnstead of the blurred iImages
themselves.

Why is it called Laplacian Pyramid®?

Can we reconstruct the original image
using the pyramid?
— Yes we can!
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Laplacian Pyramid

At each level, retain the residuals
iNnstead of the blurred iImages
themselves.

Why is it called Laplacian Pyramid®?

Can we reconstruct the original image
using the pyramid?
— Yes we can!

What do we need to store to be able
to reconstruct the original image?
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L et’s start by just looking at one level

level O level 1 (upsampled) residual

Does this mean we need to store both residuals and the blurred copies of the
original”?
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Constructing a Laplacian Pyramid

Algorithm

repeat:
filter

compute residual
subsample

until min resolution reached
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Constructing a Laplacian Pyramid
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Constructing a Laplaman Pyramid

What is this part”

Algorithm

repeat:
filter

compute residual
subsample

until min resolution reached
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Constructing a Laplaman Pyramid

It’s a Gaussian
Pyramid

Algorithm

repeat:
filter

compute residual
subsample

until min resolution reached
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Constructing a Laplaman Pyramid

It’s a Gaussian

Pyramid
Algorithm
repeat: -
filter %

t dua This Is a Laplacian
compute residua Pyramid
subsample

until min resolution reached
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Reconstructing the Original Image

UPSAMP
& BLUR

UPSAMP
& BLUR

Algorithm

repeat:

upsample

sum with residual

until orig resolution reached
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Laplacian is a Bandpass Filter

lower sigma
complex
element-wise
multiplication
- o -
————
FFT (Mag) Low pass filtered image
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FFT (Mag) Low pass filtered image



Laplacian is a Bandpass Filter

lower sigma

complex
element-wise
multiplication

———

FFT (Mag) Low pass filtered image

larger sigma

complex
element-wise
multiplication

——

FFT (Mag) Low pass filtered image



Laplacian is a Bandpass Filter

lower sigma
complex
element-wise
multiplication
- P -
FFT (Mag) Low pass
larger sigma
complex
element-wise
multiplication -

FFT (Mag) Low pass



