
Lecture Notes, Week 5: Derivatives, Edges, Corners

1 Local Features

We will start talking about various local image representations that give rise to more robust image repre-
sentations then raw pixels. For example, one of such fundamental representations are edges (or contours).
Edges are largely invariant to lighting as they represent boundaries between regions. A brightness/lighting
change will generally change the grayscale values, but would not change the boundaries between the regions.

2 Image Derivatives

Remember that we can treat a continuous image incident on the camera sensor as a function i(x, y). This
also allows us to compute derivatives of the image. Given that the function is of two spatial variables, we
will get two partial derivatives that jointly form a gradient vector. Formally, with simple definition from
calculus we get:

∂i(x, y)

∂x
= lim

δx→0

i(x+ δx, y)− i(x, y)

δx
∂i(x, y)

∂y
= lim

δy→0

i(x, y + δy)− i(x, y)

δy
.

For the discretized image, that results after the camera sensor array, we can employ a discrete approxima-
tion, where δx = 1 and δy = 1 (because this is the smallest distance between pixels). This gives rise to the
following discrete numerical approximation to the derivatives above:

Ix(X,Y ) =
∂I(X,Y )

∂X
≈ I(X + 1, Y )− I(X,Y )

1
= I(X + 1, Y )− I(X,Y )

Iy(X,Y ) =
∂I(X,Y )

∂Y
≈ I(X,Y + 1)− I(X,Y )

1
= I(X,Y + 1)− I(X,Y ).

This approximation is linear and can be implemented using a simple correlation filter [−1, 1] for Ix and[
−1
1

]
for Iy. Some examples of computing derivatives using these filters are in slides. However, it is

worth mentioning that this is not the only numerical approximation of derivative and others exist:

Ix(X,Y ) ≈ I(X + 1, Y )− I(X,Y ) forward difference

Ix(X,Y ) ≈ I(X,Y )− I(X − 1, Y ) backward difference

Ix(X,Y ) ≈ I(X + 1, Y )− I(X − 1, Y )

2
central difference

the top two differ only by whether the [−1, 1] is applied from left or the right of the image; while the last
would correspond to the filter [−1, 0, 1]. Please note that any derivative filters will sum up to 0. The proof
for this is in slides. Further, any of these filters can also be implement using convolution by flipping them
180 degrees. By convention, unless otherwise stated, we will use [−1, 1] derivatives applied as correlation
and with respect to the coordinate system that is at the top left corner of the image.

Consider the following row of pixel values and corresponding derivatives as an example
0 0 50 100 200 50 0 0
0 50 50 100 −150 −50 0 ×
× 0 50 50 100 −150 −50 0
× 25 50 75 −25 −100 −25 ×

 ← forward difference
← backward difference
← central difference

1



Lecture Notes, Week 5: Derivatives, Edges, Corners

Image Gradient. It is convenient to think of the two derivatives as a tuple, a 2D vector, known as a
gradient = [Ix, Iy]. It is also convenient to decompose this gradient in terms of its magnitude and direction.

Image Gradient Magnitude. Image gradient magnitude is simply defined as:
√
I2x + I2y and can be

interpreted as the strength of the gradient or the edge (i.e., the edginess measure of the pixel).

Image Gradient Direction. Gradient direction is defined as: atan
(
Iy
Ix

)
. The gradient direction always

points toward greatest increase in brightness, i.e., from dark to light. Note that gradient direction is defined
with respect to the coordinate system in which the derivative is computed. Further note the relationship
between the gradient direction and the edge; the gradient direction will always be perpendicular to the
edge. This observation will become useful later when we discuss Canny edge detection.

Smoothing. Derivative filters are notoriously susceptible to noise. The noise in pixel values is amplified by
a derivative operator. A second derivative, which is a direct extension of the first derivative above, would
magnify the noise even more. Therefore smoothing is generally required before derivative operations. For
convinence it is often customary to pre-convolve derivative filters with Gaussian smoothing to obtain a
single filter to then apply to an image. For example, we typically apply x-derivative of a Gaussian and
y-derivative of a Gaussian to obtain the derivatives Ix and Iy directly.

3 Edge Detection

Equipped with ability to compute image derivatives, we will now discuss three edge detection algorithms.
In general, the properties we would like from edge detection are: robustness/detection – we want to reliably
detect edges, i.e., have low false positive and false negative rate for an edge; localization – we want to detect
edges precisely at the pixel locations where there exists a boundary; and single response – we want the
edges to be localized precisely to a pixel as opposed to having a number of responses near the edge.

Sobel. The simplest edge detection approach comes from realization that gradient magnitude in itself is
a good measure of “edginess of a pixel”. With this in mind a Sobel edge detector simply thresholds a
gradient magnitude image partition the pixels into edge and no edge groups. The only slight caveat is that
instead of smoothing by 2D Gaussian, Sobel only smooths in one dimension orthogonal to the gradient.
This improves localization. Overall Sobel is fairly accurate, but is not very robust because results will
generally change as a function of the threshold chosen. In addition, it tends to produce wide ridges around
the edge. The reason is that smooth gradient (increasing or decreasing greyscale values) that is above the
threshold will tend to produce a series of edge pixels (often referred to as the “ridge”) along the edge.

Marr/Hildreth. Marr/Hildreth edge detection, instead, tries to localize the edge better by finding the
extrema by considering the zero-crossings (transitions from positive to negative response or vice versa) of
the second derivative. This gives rise to a Laplacian of Gaussian (LoG) operator, where the Laplacian is
the second image derivative and the pre-convolved Gaussian is necessary to deal with noise. Note, that
values used for smoothing here would typically be larger than for Sobel, because of the fact that second
derivative is more susceptible to noise than the first. Similar to Sobel, LoG is a pre-convovled operator, so
no additional smoothing is needed. The benefit of Marr/Hildreth approach is that it requires no threshold,
making it easier and more robust to use. However, because the amount of smoothing tends to be more
excessive some of the edge information, particularly around corners could be lost.

Canny. Canny is the most robust and accurate edge detector. It similarly to Marr/Hildreth tries to find
local extrema, but does so by analyzing the first derivative, instead of resulting to dealing with the second.
The approach can be best understood as an algorithm with 4 steps.

2



Lecture Notes, Week 5: Derivatives, Edges, Corners

1. Computing derivatives. Compute directional x- and y- derivatives of a Gaussian for an image.

2. Compute gradient magnitude and direction. Compute gradient magnitude and gradient direction for
each pixel using equations in Section 2.

3. Non-maxima suppression. The goal here is thin out the “ridges” you would get (e.g., in Sobel) to
single pixels that are local maxima. This is done by comparing gradient magnitude of a pixel to
those of its neighbors. The two neighbors that are considered in this process are those that lie in
positive and negative gradient direction (i.e., neighbors across or orthogonal to the edge). In cases
where gradient direction does not directly point to the neighbors (e.g., not 45 or 90 degrees), the
values are interpolated for better accuracy. If a gradient magnitude of a pixel in question is higher
than both (interpolated) neighbors, it is kept as a potential edge pixel. If it is not, it is no longer
considered as a potential edge pixel. In effect, this step culls all non-local maxima pixel candidates.

4. Linking and thresholding. Once the edges are “thinned” we could just threshold the gradient magni-
tude values of remaining potential edge pixels to obtain edges. However, similar to Sobel, this may
be sensitive to specific threshold chosen. Instead, Canny defines two thresholds, klow and khigh. Any
remaining potential edge pixels are filtered (labeled as not an edge) if its gradient magnitude is lower
than klow. Similarly, any remaining potential edge pixel who’s gradient magnitude is above khigh is
labeled as an edge pixel and is considered strong edge pixel. Any pixels that end up between those
two thresholds are weak edge pixels and have to be resolved through linking, where it is assumed that
if any such pixels align with an edge, then they are likely to be edge pixels as well. In practice this
requires starting and labeling chains of edge pixels. We start a chain from each strong edge pixel and
then look in the direction orthogonal to the gradient direction (along the edge) to see if any weak
edge pixels can be encountered. If there are, those are included in the final edge output. Those weak
pixels that are not able to be linked are disregarded.

Note that Steps 1 and 2 for Canny are the same as those for Sobel (though Sobel has no use for gradient
direction). The “secret souse” of Canny is in Steps 3 and 4 that address limitations of Sobel. Step 3 ensures
that edges are one-pixel width in general; while Step 4, through the use of double threshold and linking
procedure, ensures that results are much less sensitive to exact values of those thresholds (to a limit).

4 Corner Detection

Edges are useful because they allow us to define features that are robust to lighting changes. However,
if we think about potentially localizing and matching local features across images, matching edges is
fundamentally difficult, because locally edges are not distinct. Corners and blobs are good features to
consider when one is interested in locally distinct features.

Autocorrelation. One way to measure local distinctiveness is by computing a sum of squared differences
(or correlating) a small image patch with its local neighborhood. Consider extracting a patch of size M×M
and then shifting it ±5 pixels to the right/left/top/bottom and correlating at each location. This will result
in an array of 11×11 correlation values. If the patch is locally distinct then these correlation values should
drop off sharply in all directions as you move away from a center pixel. For an edge you will generally
see a ridge in the autocorrelation 11 × 11 map. For a flat region, values in autocorrelation map will all
be close to 0 for SSD and 1 for correlation. Harris corner detection proposes an algorithm for identifying
pixels that are locally distinct, i.e., for which autocorrelation drops off sharply in each direction. This will
generally be true for features that look like corners in the image.

3



Lecture Notes, Week 5: Derivatives, Edges, Corners

Harris. The derivation of Harris from autocorrelation is beyond this class, but it is derived by doing a
Taylor expansion on autocorrelation function with SSD distance defined above. In practice, Harris can be
characterized as an algorithm with four distinct steps:

1. Compute derivatives. This is done similarly as in the edge detection case, resulting in Ix and Iy.

2. Compute covariance matrix. This is done by averaging products of the gradients in the small neigh-
borhood R (e.g., 11× 11 in the example above) around each pixel location (X,Y ). Formally this is
defined as follows:

CX,Y =


∑

(i,j)∈R
wi,jIx(X + i, Y + j)Ix(X + i,X + j)

∑
(i,j)∈R

wi,jIx(X + i, Y + j)Iy(X + i, Y + j)∑
(i,j)∈R

wi,jIx(X + i, Y + j)Iy(X + i,X + j)
∑

(i,j)∈R
wi,jIy(X + i, Y + j)Iy(X + i, Y + j)


For the examples in slides the weighting wi,j was assumes to be equal to 1. This was for convenience
of exposition. In practice, wi,j is defined by a Gaussian which allows pixels closer to the center pixel
to contribute more to the sums, emphasizing local structure. In practice, covariance matrix is is a fit
to autocorrelation function discussed above.

3. Characterizing cornerness. Once we have a covariance matrix we need to characterize extent to which
corner exists at this pixel. This can be done by analyzing the eigenvalues of this matrix. A locally
distinct corner-like structure would correspond to two eigenvalues that are large in magnitude. Ex-
istence of only one eigenvalue (the second being zero or close to zero) would characterize an edge.
Both eigenvalues being zero would characterize a flat patch. We can ascertain the cornerness of the
pixel by defining a function of eigenvalues (λ1, λ2) that would be high when both of these are high
and low otherwise. There are a number of choices for such functions, which lead to different corner
detection algorithms. Common choices include: min(λ1, λ2) and λ1λ2 − κ(λ1 + λ2)

2. The latter is
what Harris originally proposed. The benefit of this function is that it can be computed without
explicitly computing the eigenvalues, since λ1λ2 − κ(λ1 + λ2)

2 = det(C)− κtrace2(C).

4. Thresholding. This step is trivial and amounts to simply thresholding the values computed in the
previous step to obtain a set of locally distinct corners. For a κ = 0.04 (a typical parameter choice
for Harris) a threshold of 0 works well, i.e., corners will produce a positive value, while non-corner
pixels will typically produce a negative value.

Properties. Corner detection has some nice properties. Mainly, it is rotationally invariant. While
rotation of an image will cause a change in eigenvectors of the covariance matrix, it will not change the
eigenvectors. Meaning that cornerness measure and detected corners will remain exactly the same. Harris
is also invariant to shifts in brightness due to, for example, certain changes in illumination. The reason
is that shift in brightness will not change the gradients and hence eigenvalues, cornerness and detected
corners. Changes in contrast (i.e., multiplicative changes in brightness) will scale the gradients and will
similarly scale the eigenvalues. As a result Harris will have some susceptibility to such changes.

5 Blob Detection

Blob detection stems from similar motivations to corner detection, but focuses on slightly different structure
in images. Instead of detecting corners, blob detection focuses on detecting circular flat regions in the image.
Such regions will also be locally distinct, however, can be characterized much more easily by simply looking
at, and thresholding, a response of a Laplacian filter.

4



Lecture Notes, Week 5: Derivatives, Edges, Corners

6 Characteristic Scale

Both corner and blob detection are not image scale independent. A pixel may look like a corner at a certain
image scale and as an edge at another scale. Same is true for blobs. Hence it is often useful to figure out at
which scale does the locally distinct feature actually exists. This can be done easily by running Harris or
blob detection across multiple scales (each level of a Gaussian pyramid) and picking a response as one that
is a maxima both spatially and across scales. This has similar motivation to non-maxima suppression in
Canny edge detection. In practice, for each location and level in the Gaussian pyramid for which cornerness
or Laplacian response is computed, we would compare it to it’s 8 neighbors on the same level, as well as
9 neighbors on the higher and lower levels. In other words, we would compare it to 26 neighbors in total.
We keep the response as a corner/blob detection only if it is higher than all the 26 neighbors in question
and is above the specified threshold.

5


	Local Features
	Image Derivatives
	Edge Detection
	Corner Detection
	Blob Detection
	Characteristic Scale

