
Lecture Notes, Week 3: FFT and Sampling

1 Fourier Transform (FFT)

An important mathematical construct to understanding image processing is to realize that images (and
any signals really) can be represented in a frequency domain. Mainly, Fourier has proved that any periodic
function can always be written as a sum of sinusoidal waves. Specifically, any 1D periodic signal can be
written in terms of the sum of the following periodic bases:

Asin(ωx+ φ) (1)

where A is the amplitude, φ is the phase and ω is the angular frequency. It is customary to look at
the amplitude which tells us frequencies that exist in a given signal. This theory can be relatively easily
extended to 2D images that would result in 2D Fourier representations when FFT is applied. The reason
this is possible is two fold: (1) images often exhibit periodic structure over the rows and columns (e.g.,
texture tends to be periodic); and (2) one can always think of an image as a 2D periodic signal with
“period” equal to the resolution of the image (think of just, possibly infinitely, tiling an image in space).

While we not going to formally study Fourier space and all the involved mathematics in this class, it
is useful to know about it and build certain intuitions. Specifically, an amplitude “image” in the Fourier
space corresponds to a 2D image where center corresponds to ω = 0 and frequencies increase as one goes
away from the center. For example, stepping away from the center along the x axis in Fourier space
would correspond to vertical periodic structure in the image (further away to the right/left the higher
the frequency and hence the finer the structure detail); stepping away from the center along the y axis
in Fourier space would correspond to horizontal periodic structure with increasing frequency. Similarly,
stepping in any off-axis directions will correspond to non-axis oriented periodic structures.

The Fourier transform of a constant image is a single value at the origin of the FFT amplitude space. A
constant image does not change over space, and hence, does not contain any sinusoidal bases with non-zero
frequency. An image will typically have a spectrum of frequencies. Constant patches in the image will
correspond to low frequency content. The larger such patches are, the lower the frequency of the content.
Rapid changes in greyscale values over the image (e.g., sharp discontinuities/edges) will correspond to high
frequencies – representation of a sharp edge, in principle, requires infinite bases with increasing frequency.

Filters applied as convolution can be characterized by how they change the frequency spectra of the
image they are applied on. A smoothing filter will generally reduce the sharp edge structure and hence
reduce the frequency spectra of the original image. A low-pass filter is defined as a filter that would
attenuate, or reduce, high frequencies while leaving the low frequencies intact. In contrast, a high-pass
filter is defined as a filter that attenuates low frequencies and, effectively, enhances sharp changes in
the original image (e.g., edges). A perfect low-pass filter only leaves frequencies below a certain cutoff
(ω < ωcutoff); and a perfect high-pass filter leaves frequencies above a certain cutoff (ω > ωcutoff). A
band-pass filter leaves only frequencies in a certain range, ωlow-cutoff < ω < ωhigh-cutoff. Finally, an image
(or signal) is bandlimited if it has no frequency content above some defined maximum – this will become
useful in sampling.

It also turns out that the Fourier transform of a Gaussian is equal to a Gaussian, however, the sigma
is not preserved; i.e., Gaussian with low sigma value will correspond to Gaussian with large sigma in the
Fourier space and vice versa. Hence, a Gaussian serves as a reasonably good approximation to a perfect
low-pass filter. Box and pillbox filters not so much as they have sharper defined edges (especially for
smaller filters where the number of edge pixels is significant with respect to non-edge pixels) which will
result in certain higher frequency content remaining in the image after filtering.
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2 Sampling

In the beginning of the course we talked about image formation, which described how light travels in the
world, reflects off objects and ultimately enters the camera and becomes incident on the imaging plane.
Note that at this stage the image is continuous and can be thought of as a function, i(x, y, λ), of two spatial
continuous variables (x, y) and a wavelength λ. The value of this function can also be considered continuous
and represents the number of photons of given wavelength at particular position. We then proceeded to
talk about image filtering, which processes a discrete array of values I(X,Y ) that is read out from the
camera sensor. We didn’t really talk about the process, and implications, of going from continuous image
to a discrete one with a discrete pixel grid, discretized grayscale values and three discrete color channels
(red, green, and blue). Doing so requires us to talk about theory of sampling.

It worth mentioning that sampling is also necessary when creating one digital image from another. For
example, resizing an image to half the resolution, requires sampling the original (higher resolution) image
at locations that correspond to centers of the pixels in the low-resolution counterpart being created. A
naive sampling procedure would amount to simply letting Ihalf-res(X,Y ) = I(2X, 2Y ), amounting to taking
every 2-nd row and column of the original. This is going to be problematic as we will see.

Let’s consider a CCD camera. A CCD camera records image values by turning photons that are incident
on the CCD element to electrons (more on this later). A CCD sensor consists of an array of tightly packed
element, each such element produces a single value proportional to the number of photons incident on
it. This is equivalent to sampling a continuous image over a small region of the CCD photoreceptor cell
element. While ideally each element is effectively measuring all light incident on its surface (i.e., effectively
computing an integral) which is called area sampling, in practice this is not the case. In fact, it is easier to
think about sampling as happening at the center of each of the CCD’s photoreceptor cell elements. This is
referred to as point sampling, which in the case of CCD can be thought of as happening on a regular grid.

Sampling the Range. Discretizing the range of i(x, y, λ) could be done relatively easily by simply
defining a maximum number of photons (or energy) that can be measured at a cell element, lets call it M ,
then breaking this range into N equal bins which we will call grayscales. Representing this range using
8-bits results in 255 greyscales. For example, first greyscale level will correspond to [0,M/255] and so on.
If larger number than M photons is registered at a given cell then it will “overflow” and greyscale value of
255 will be assigned.

Sampling the Domain. Discretizing the range amounts to sampling i(x, y, λ) at a regular grid defined
by the resolution of the sensor. Note that i(x, y, λ) will have some frequency spectra which will depend
both on the frequency of structure in the physical world and the distance of the camera to this structure.
For example, low frequency structure imaged from far away may manifest itself as high frequency structure
on the continuous projected image plane i(x, y, λ). Vice versa can also be true. An important aspect to
consider is how can we reason about the fact whether sampled discrete image is a good representation of
the continuous counterpart. One way to formalize this question is to ask when can we reconstruct the
original continuous image from the sampled discrete one.

Nyquist sampling theorem states that a signal is exactly recoverable from its samples if it is sampled at
the Nyquist rate (or higher), where Nyquist rate is defined as twice the highest frequency of the bandlimited
signal being sampled. Note the signal must be bandlimited to contain a well defined highest frequency. In
other words, the sampling rate fs must be greater or equal to 2 × fmax:

fs ≥ 2 × fmax,

otherwise artifacts (named aliasing) can exhibit themselves in the sampled signal. Aliasing can take many
forms but typically correspond to certain content of the original signal being lost or distorted. For example,
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a black and while checkerboard continuous image sampled below Nyquist rate may appear as a discrete
image that is purely white, purely black, or one that does not exhibit a regular pattern of a checkerboard.

Artifacts discussed above also present themselves when resizing an image. For example, re-sizing the
image to a lower resolution by simply resampling it, may result in aliasing artifacts as shown in class. To
ensure this does not happen one must ensure that original image being resized does not contain frequencies
above fmax as dictated by the desired resize factor (sapling rate). This can be achieved by filtering an
image with low-pass filter with appropriate cut-off. In our case, we will use a Gaussian filter with σ related
to the subsampling factor. Mainly, the rule of thumb we will use is that σ = 1

2s , where s is a scaling factor,
e.g., 0.5 for half resolution.

Another alternative for alleviating aliasing is oversampling. In oversampling, the goal is to sample the
multiple times for each required sample and to average those results. This is an approximation to area
sampling discussed above. For example, when looking for a value of pixel at position (X,Y ) one can sample
multiple locations and average the values. Consider producing a half-resolution image. Instead of naive
sampling: Ihalf-res(X,Y ) = I(2X, 2Y ), we can do the following:

Ihalf-res(X,Y ) =
I(2X, 2Y ) + I(2X − 0.25, 2Y ) + I(2X + 0.25, 2Y ) + I(2X, 2Y − 0.25) + I(2X, 2Y + 0.25)
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to produce an estimate for a pixel. Note that there is a close relationship between oversampling and
smoothing solutions introduced. In oversampling, one samples than averages. In smoothing, one first
averages (after all Gaussian is a particular averaging filter) and then sample.

3 Design of the color camera

One thing we have not discussed is how color is processed and discretized in cameras. CCD photoreceptor
cell element consists of a photodiode, where the photons, through interaction with silicon atoms, are
converted to electrons. These electrons are then stored in the potential well before being read off. The
percentage of photons that are actually detected is known as the Quantum Efficiency (QE). For example,
the human eye only has a QE of about 20%, photographic film has a QE of around 10%, and the best CCDs
can achieve a QE of over 80%. Quantum efficiency will vary with wavelength, but as a whole, photoreceptor
cell elements by themselves can’t distinguish wavelengths of photons incident on them. Hence a mechanism
that allows to somehow capture and quantize wavelengths (i.e., color) of light is needed. This is achieved
by introducing a Color Filter Array (CFA) on top of the CCD’s photoreceptor cell elements.

A different color filter is placed on top of each photoreceptor. This filter only allows a certain distribution
of wavelengths through. This allows the corresponding photoreceptor to only count photons within a range
of wavelengths allowed by the corresponding filter. Typically there are three types of color filters used
and arranged in certain pattern across photoreceptor elements in CCD. Typically one must make two
important design choices: (1) what spectral sensitivity function to encode in each filter, and (2) how to
spatially arrange these different color filters – this is called a mosaic pattern. These design choices differ
from camera to camera. However, the final result is a Bayer image where at each location only one of the
R,G,B channels is observed. The missing values for each channel are obtained through interpolation.

Additional steps in camera processing pipeline include white balancing and tone mapping. White
balancing accounts for various lighting sources in the world. The purpose of this step is to ensure that
“white” or “grey” looks correct irrespective of the source of light in the scene (be it daylight, sunlight,
florescent or any other). Typically this is done automatically by finding the brightest pixels in the image
along the three channels and then normalizing the other channels to make sure they have equal value.
Tone mapping on the other hand is a process of mapping camera observed color pallet to match the color
pallet in the world. This often requires calibration with known colors.
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