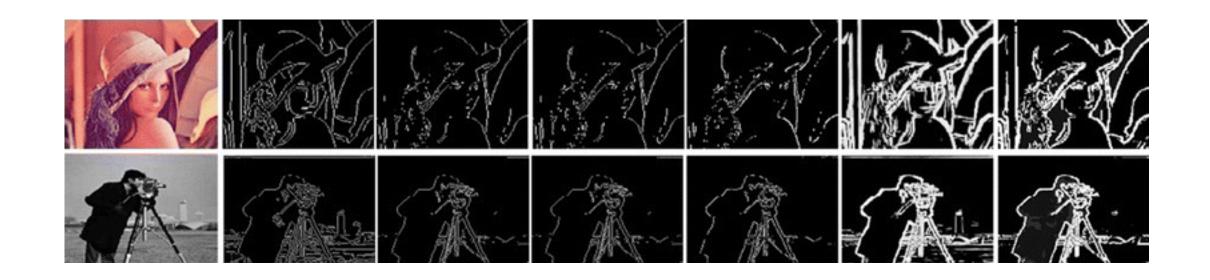


CPSC 425: Computer Vision



Lecture 8: Edge Detection

Menu for Today

Topics:

- Edge Detection
- Canny Edge Detector

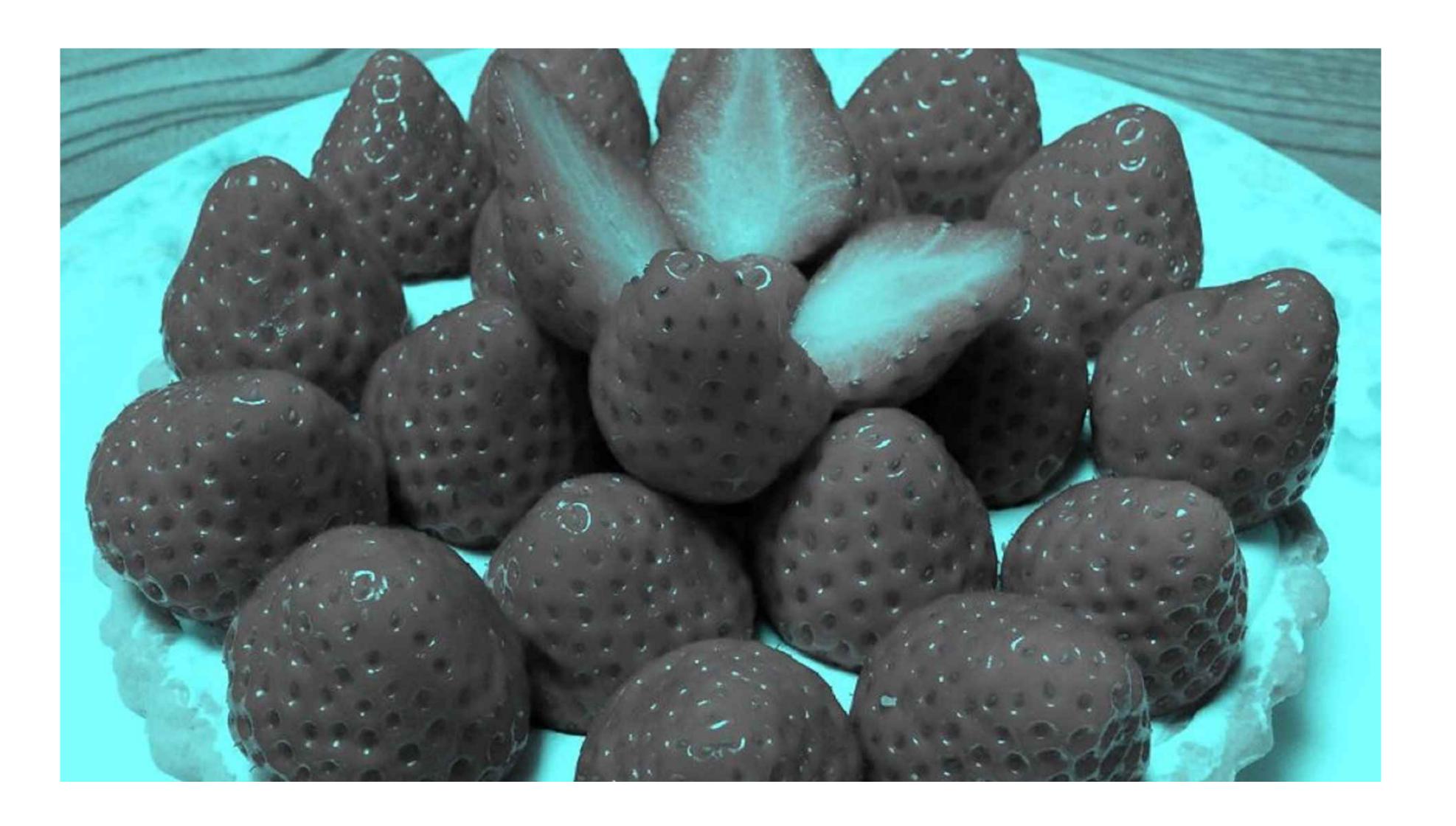
Image Boundaries

Readings:

— Today's Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2

Reminders:

- Assignment 2: Scaled Representations, Face Detection and Image Blending (due Monday Feb 13 23:59)
- -Midterm: February 27th 3:30pm in class



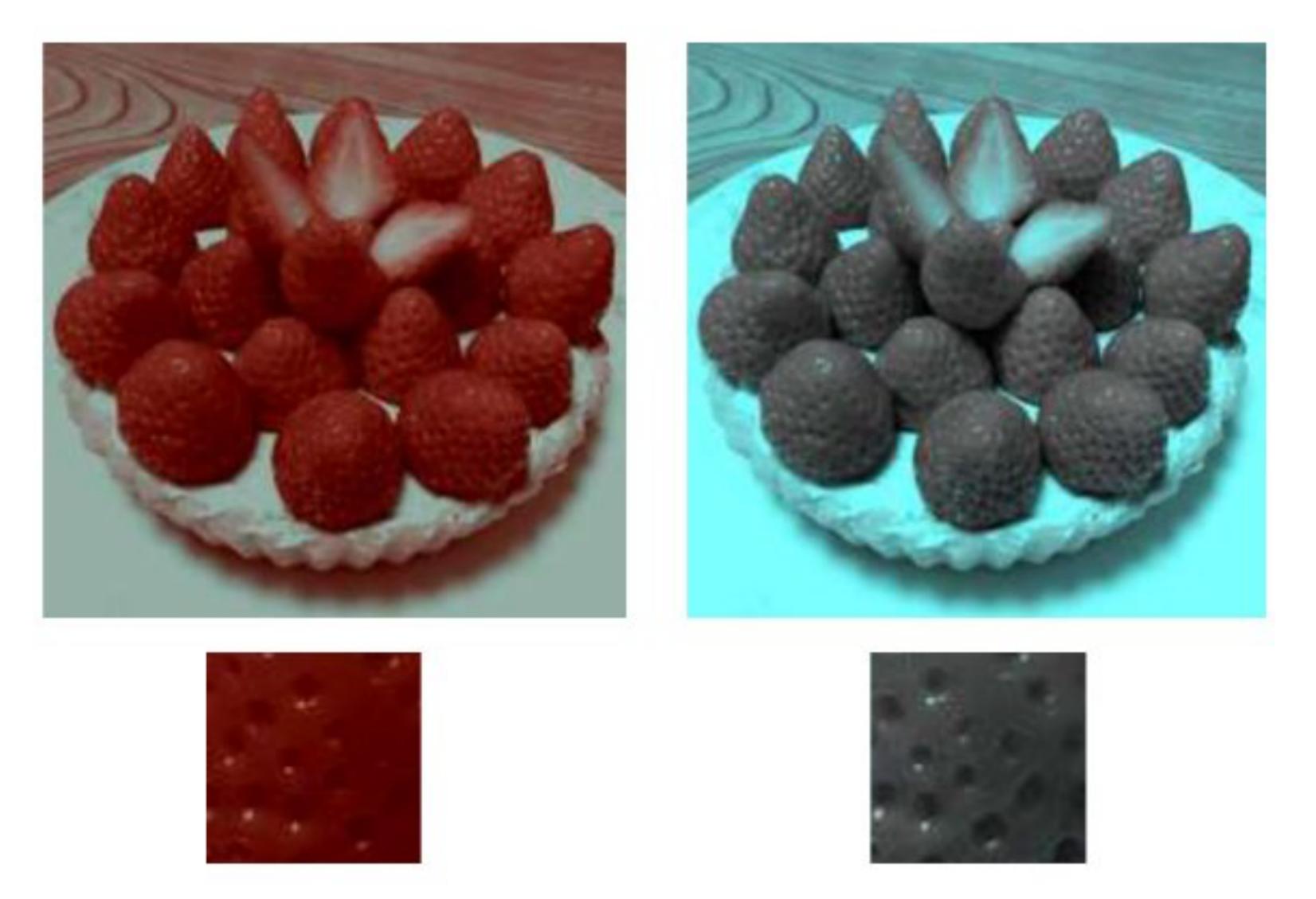
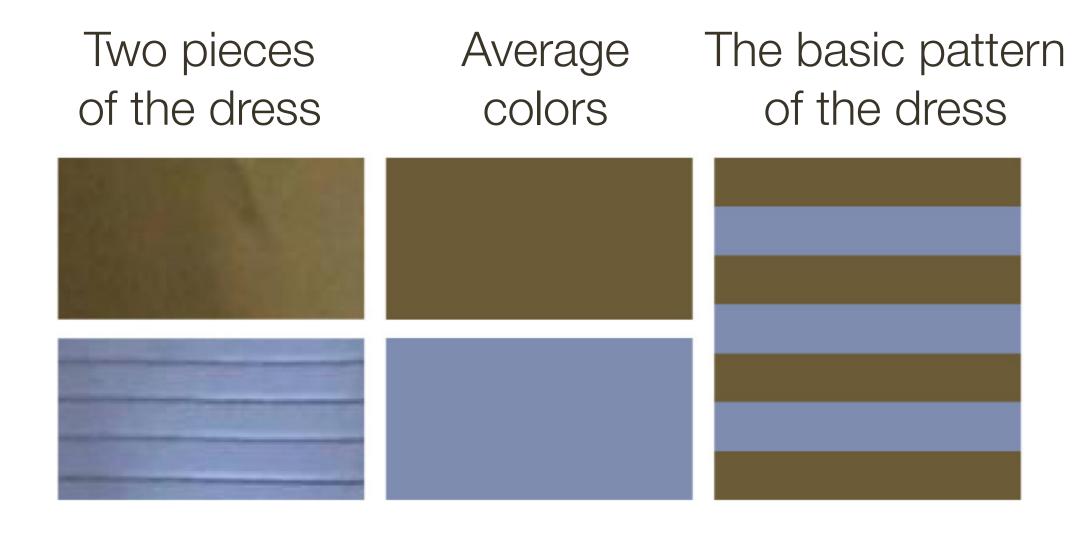


Image Credit: Akiyosha Kitoaka

- Some people see a white and gold dress.
- Some people see a blue and black dress.
- Some people see one interpretation and then switch to the other

- Some people see a white and gold dress.
- Some people see a blue and black dress.
- Some people see one interpretation and then switch to the other



IS THE DRESS IN SHADOW?

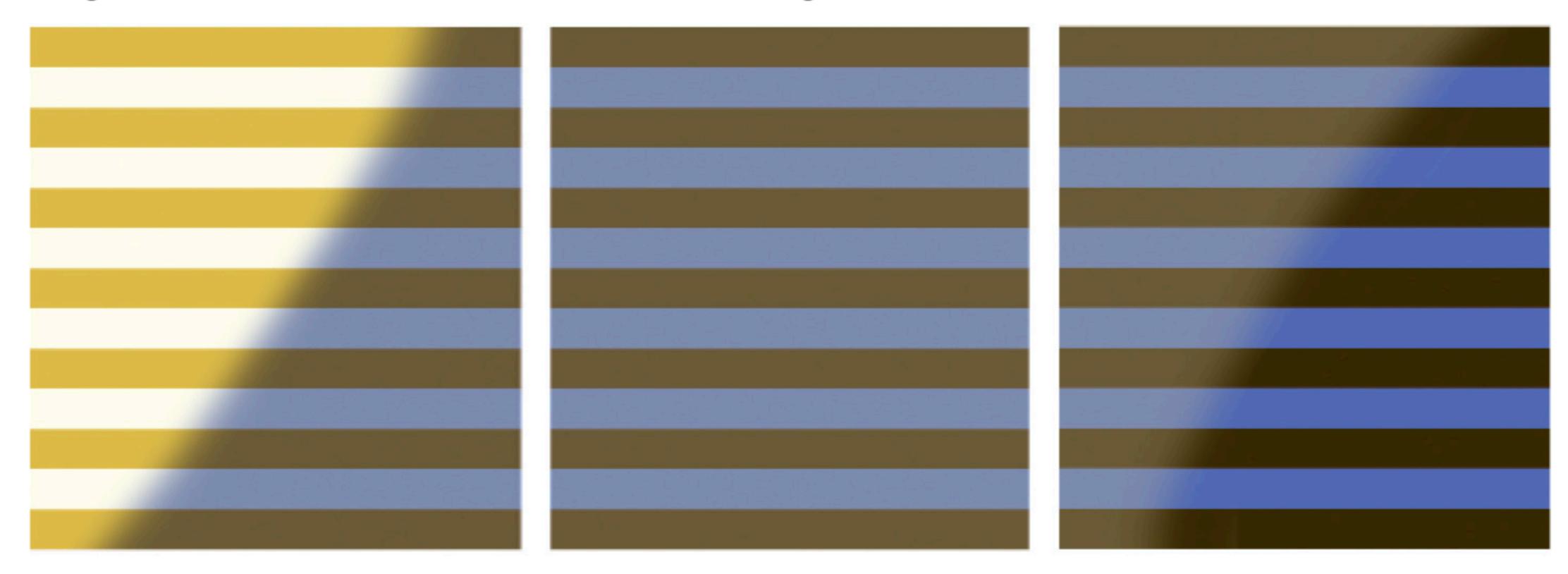
If you think the dress is in shadow, your brain may remove the blue cast and perceive the dress as being white and gold.

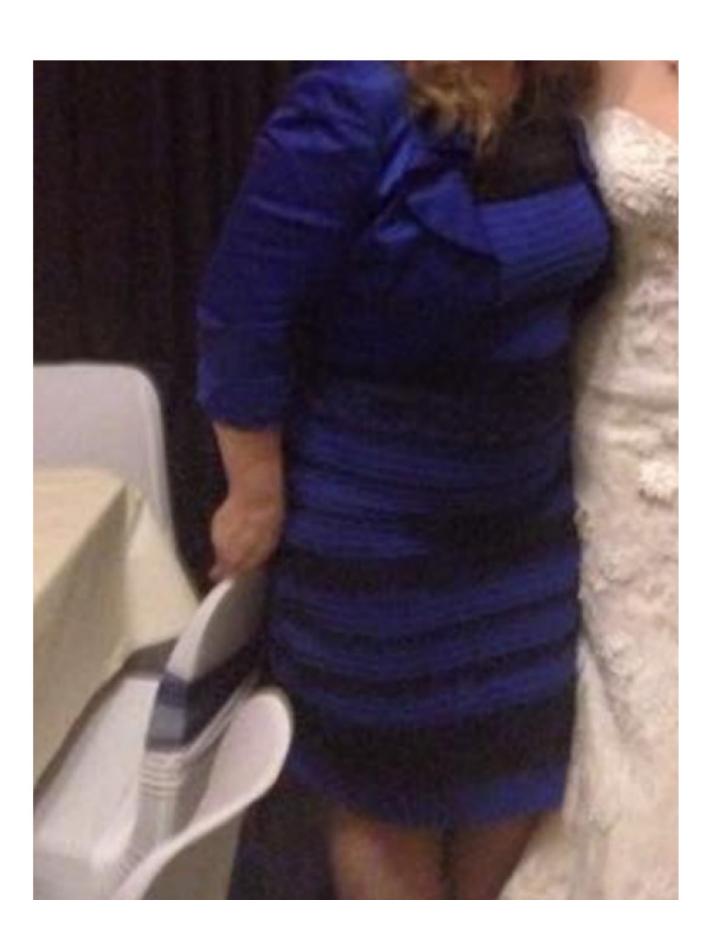
THE DRESS IN THE PHOTO

If the photograph showed more of the room, or if skin tones were visible, there might have been more clues about the ambient light.

IS THE DRESS IN BRIGHT LIGHT?

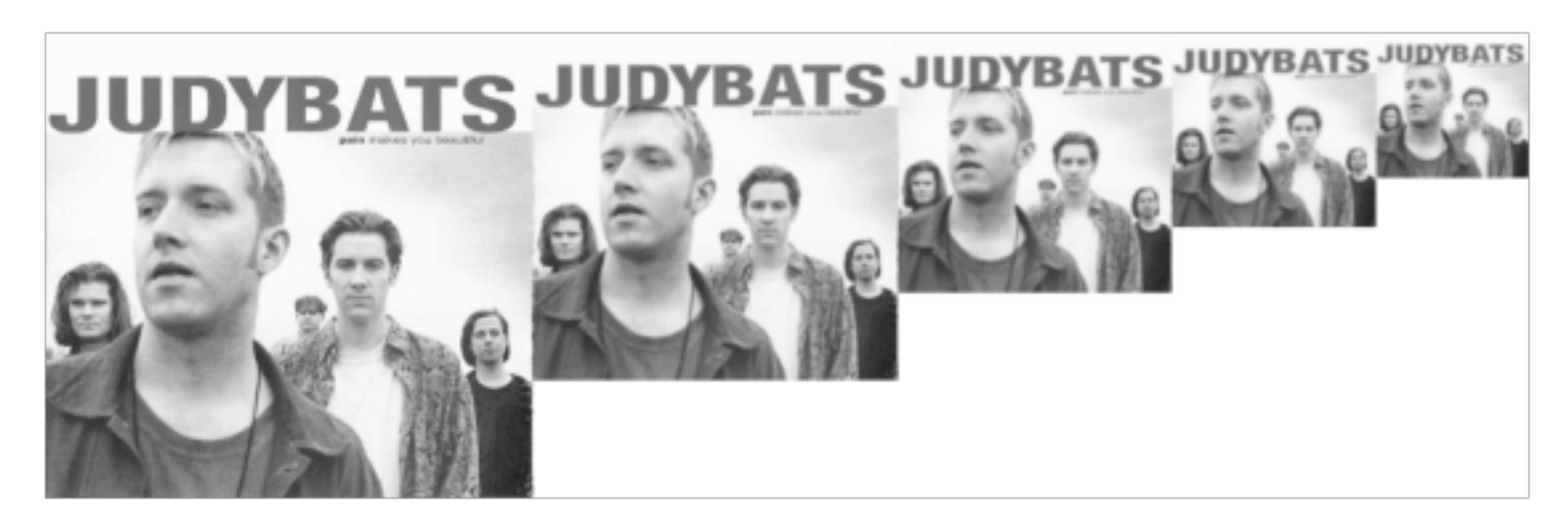
If you think the dress is being washed out by bright light, your brain may perceive the dress as a darker blue and black.

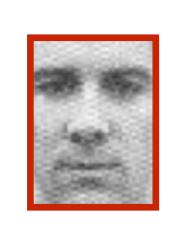




Lecture 8: Re-cap Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales

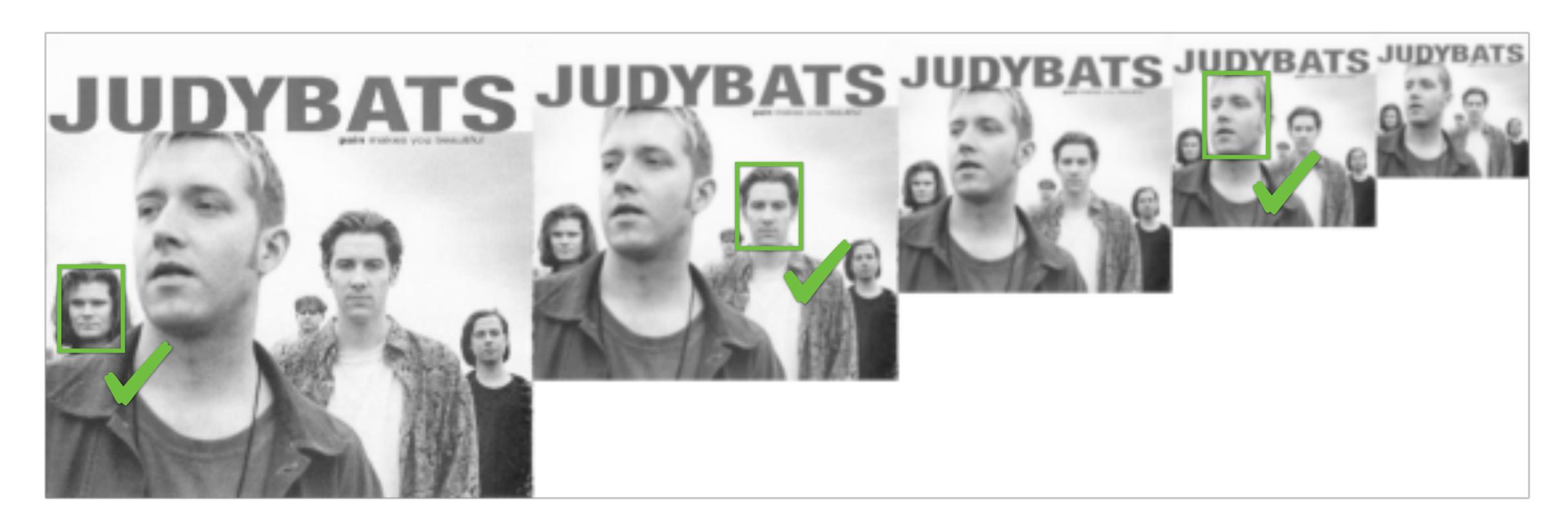




= Template

Lecture 8: Re-cap Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales



Lecture 8: Re-cap Scaled Representations

Gaussian Pyramid

- -Each level represents a low-pass filtered image at a different scale
- —Generated by successive Gaussian blurring and downsampling
- -Useful for image resizing, sampling

Laplacian Pyramid

- -Each level is a **band-pass** image at a different scale
- —Generated by differences between successive levels of a Gaussian Pyramid
- -Used for pyramid blending, feature extraction etc.

From Template Matching to Local Feature Detection

We'll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

From Template Matching to Local Feature Detection

We'll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

- from above (as in an aerial photograph or satellite image)
- head on
- sideways (i.e., in profile)
- rear on

What happens if parts of an elephant are obscured from view by trees, rocks, other elephants?

From Template Matching to Local Feature Detection

- Move from global template matching to local template matching
- Local template matching also called local feature detection
- Obvious local features to detect are edges and corners

Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

What Causes Edges?

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance
 discontinuity (i.e.,
 change in surface
 material properties)
- Illumination discontinuity (e.g., shadow)

Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

Recall, for a 2D (continuous) function, f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Differentiation is linear and shift invariant, and therefore can be implemented as a convolution

Recall, for a 2D (continuous) function, f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Differentiation is linear and shift invariant, and therefore can be implemented as a convolution

A (discrete) approximation is

$$\frac{\partial f}{\partial X} pprox \frac{F(X+1,Y)-F(X,Y)}{\Delta X}$$

Recall, for a 2D (continuous) function, f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Differentiation is linear and shift invariant, and therefore can be implemented as a convolution

A (discrete) approximation is

$$\frac{\partial f}{\partial X} pprox \frac{F(X+1,Y) - F(X,Y)}{\Delta X}$$

$$-1$$
 1

A (discrete) approximation is

$$\frac{\partial f}{\partial X} pprox \frac{F(X+1,Y)-F(X,Y)}{\Delta X}$$

"forward difference" implemented as

correlation

convolution

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$1 \quad -1$$

from left

A (discrete) approximation is

$$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Delta X}$$

"forward difference" implemented as

"backward difference" implemented as

correlation

convolution

correlation

convolution

$$1 \quad \boxed{-1}$$

$$1 \quad \boxed{-1}$$

from left

A (discrete) approximation is

$$\frac{\partial f}{\partial X} \approx \frac{F(X+1,Y) - F(X,Y)}{\Delta X}$$

"forward difference" implemented as

"backward difference" implemented as

correlation

-1 1

from **left**

convolution

$$1 -1$$

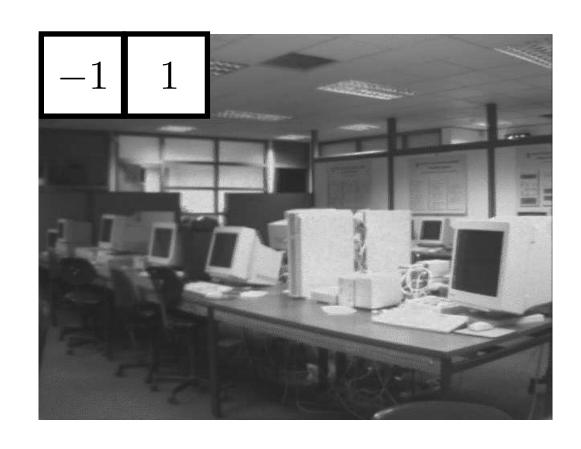
correlation

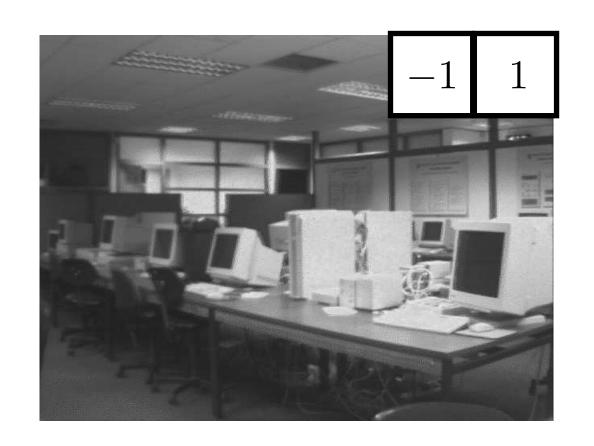
$$-1$$
 1

from right

convolution

$$1 \quad | \quad -1$$





"forward difference" implemented as

correlation

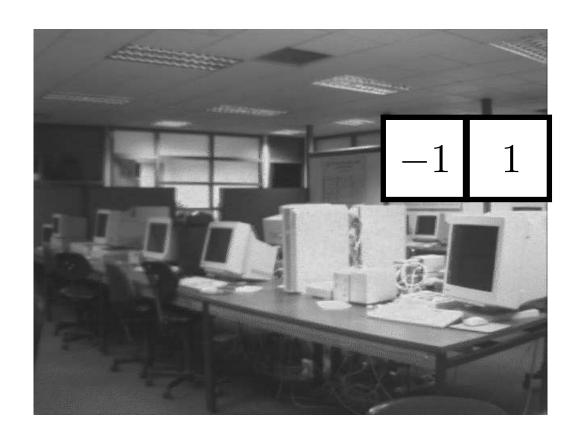
-1 1

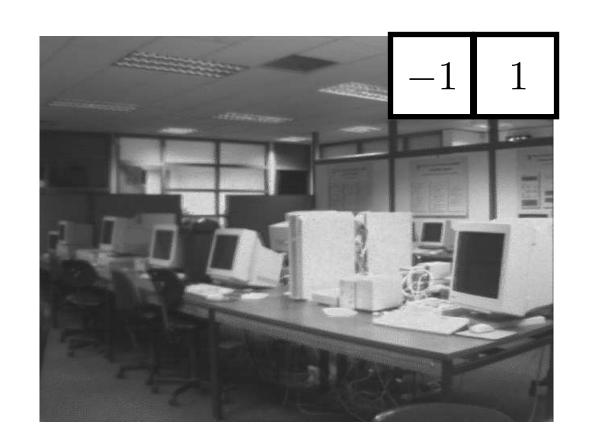
from **left**

"backward difference" implemented as

correlation

-1 1





"forward difference" implemented as

correlation

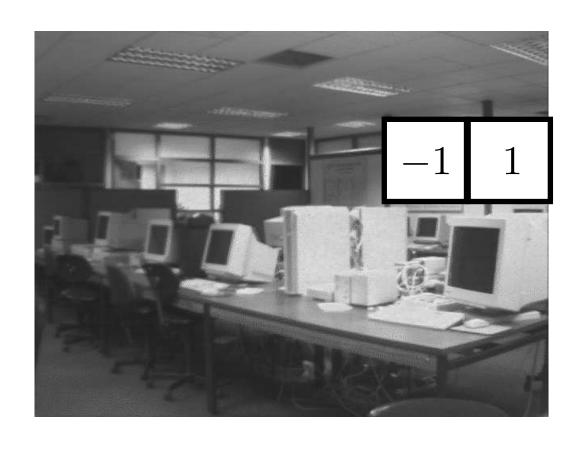
-1 1

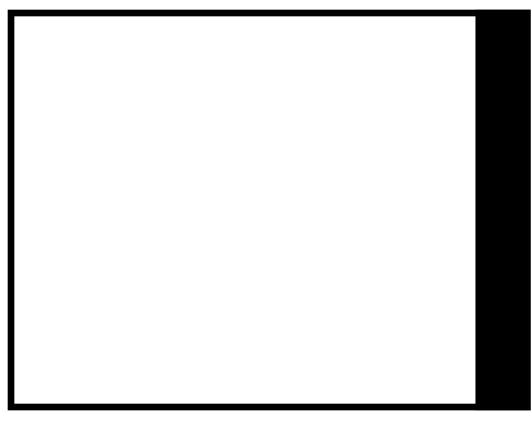
from **left**

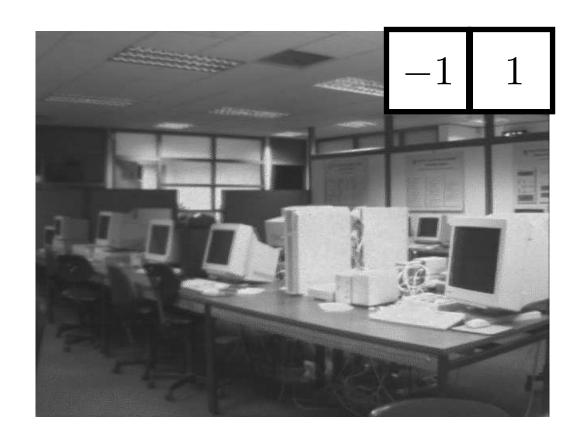
"backward difference" implemented as

correlation

-1 1







"forward difference" implemented as

correlation

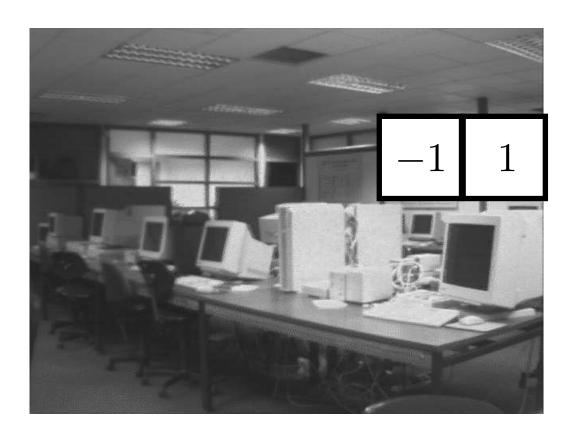
-1 1

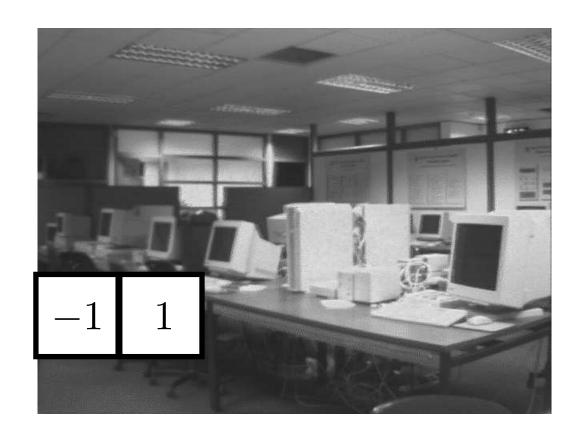
from **left**

"backward difference" implemented as

correlation

-1 1





"forward difference" implemented as

correlation

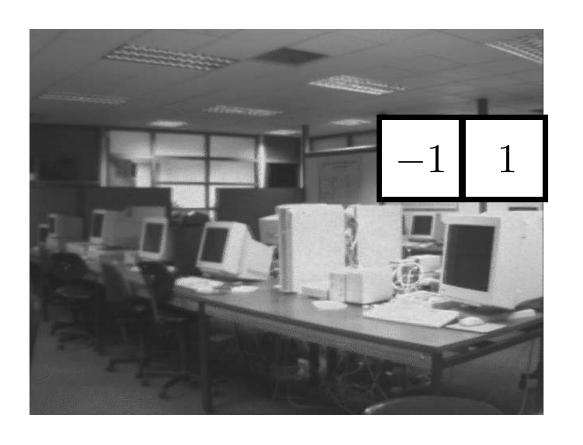
-1 1

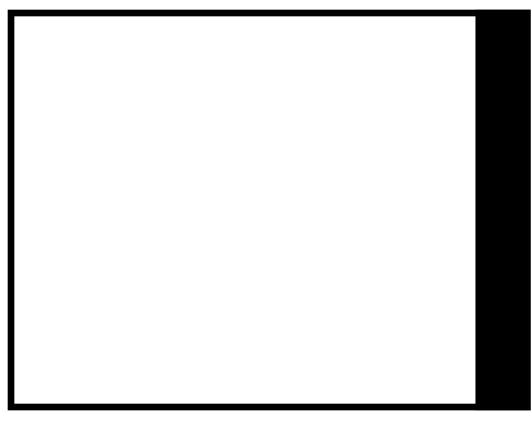
from **left**

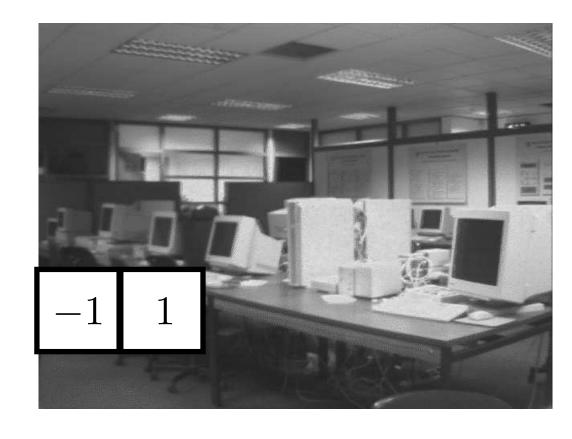
"backward difference" implemented as

correlation

-1 1







"forward difference" implemented as

correlation

-1 1

from **left**

"backward difference" implemented as

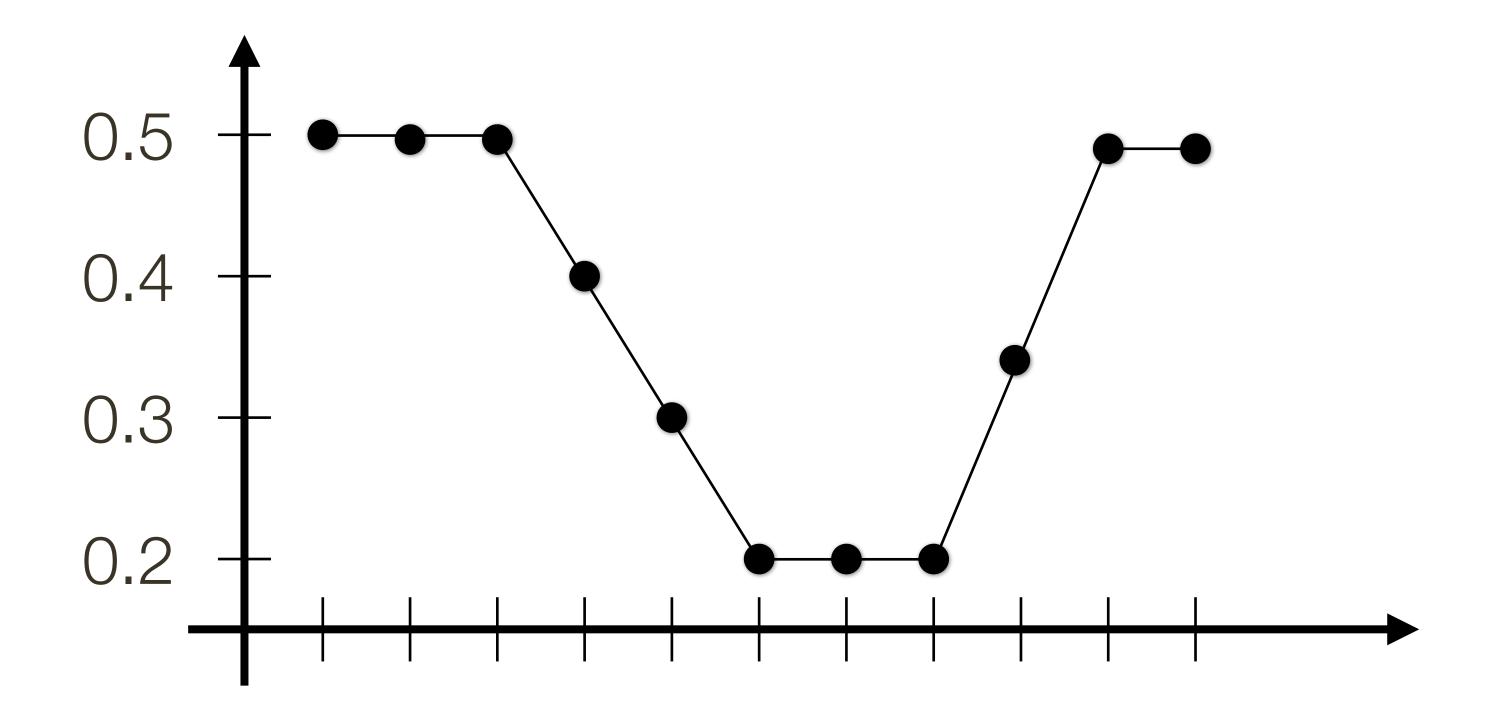
correlation

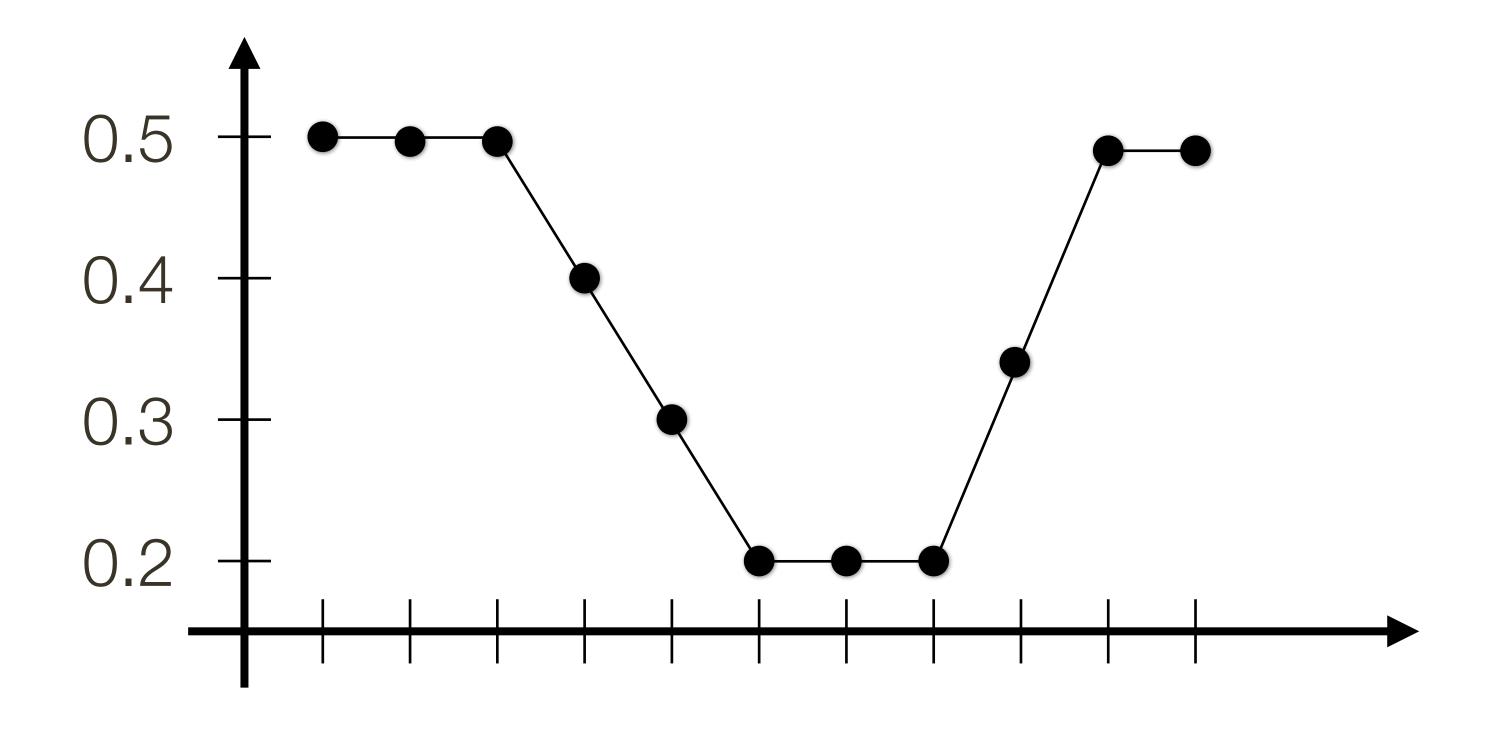
-1 1

A similar definition (and approximation) holds for $\frac{\partial f}{\partial y}$

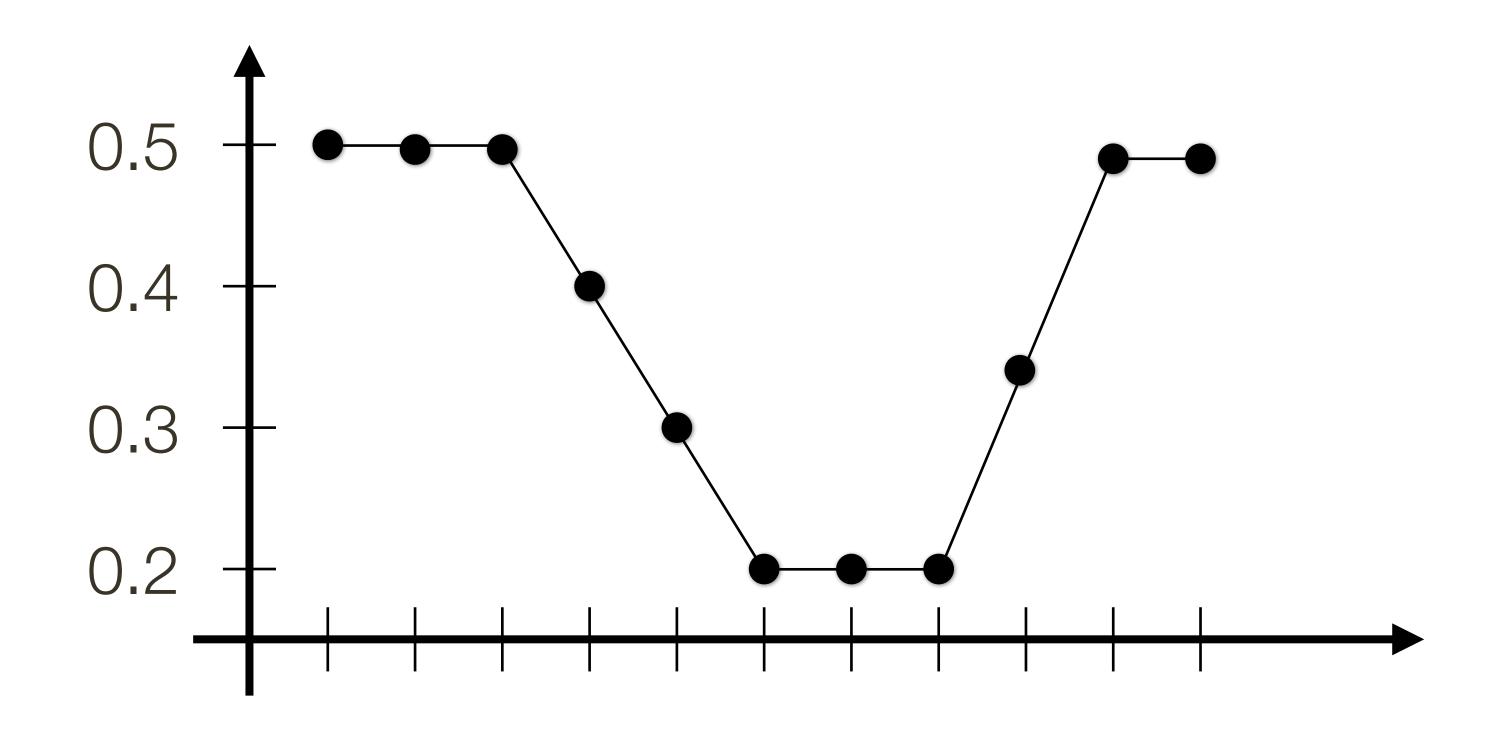
Image **noise** tends to result in pixels not looking exactly like their neighbours, so simple "finite differences" are sensitive to noise.

The usual way to deal with this problem is to **smooth** the image prior to derivative estimation.



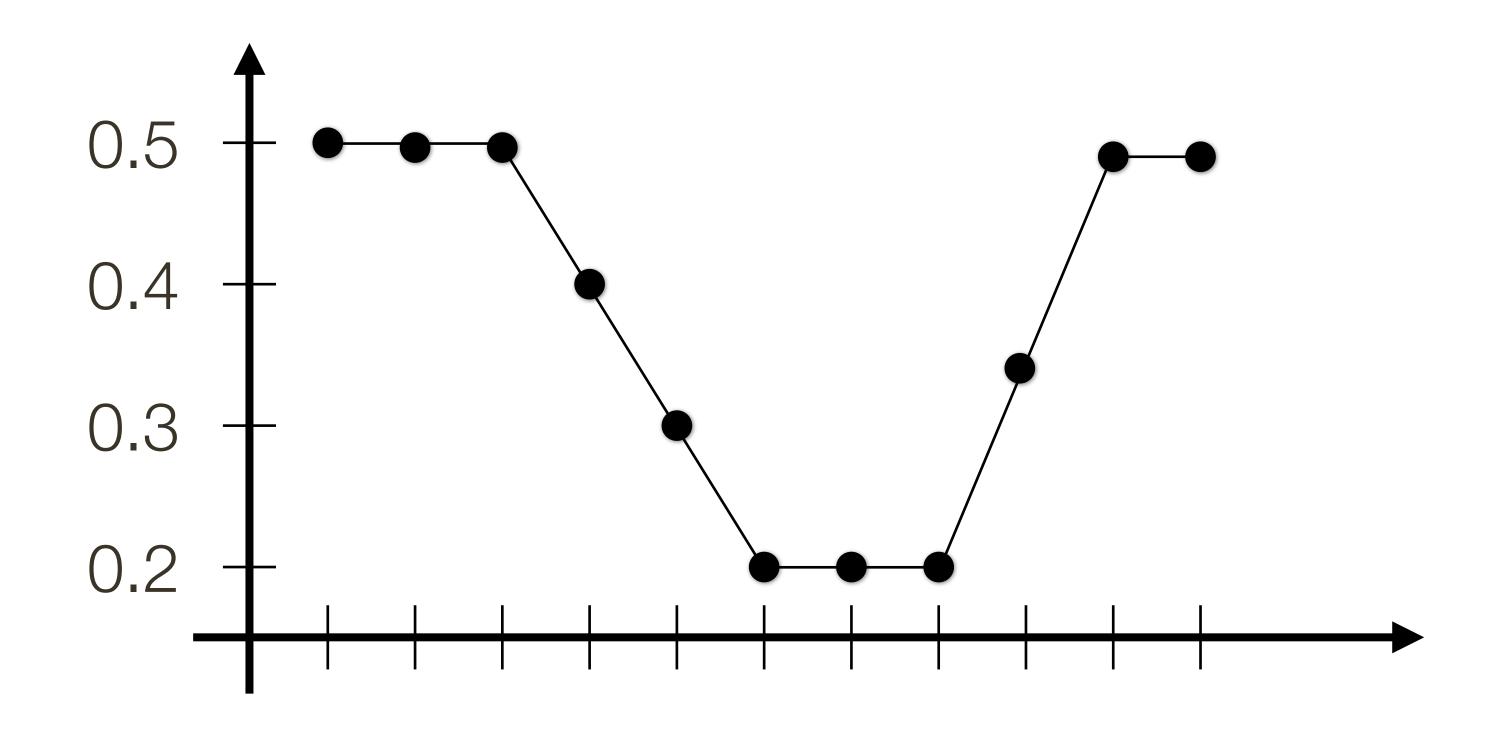


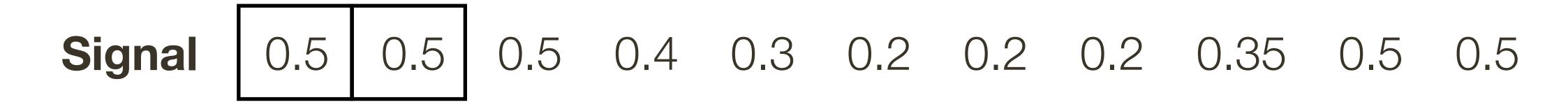
Signal 0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5



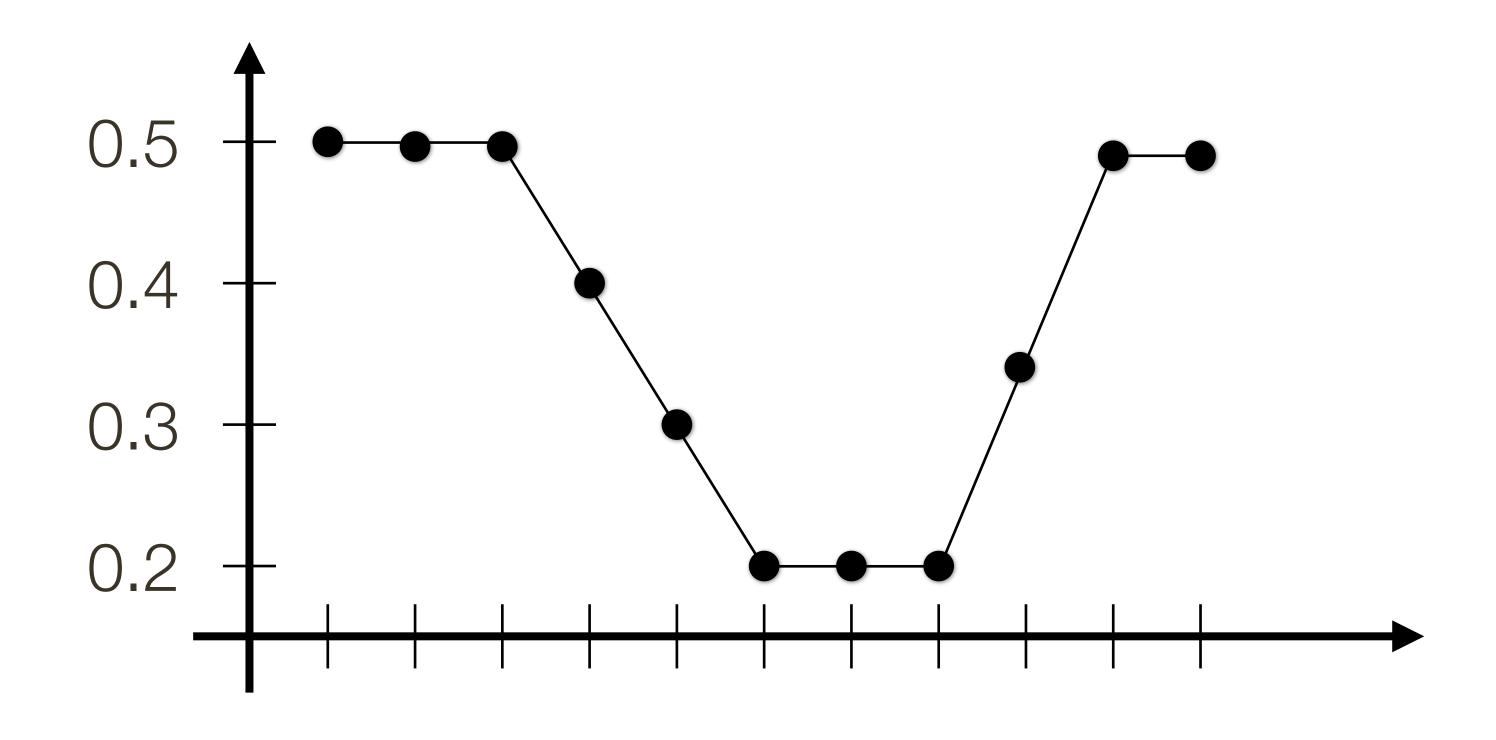
Signal 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5 0.5

Derivative



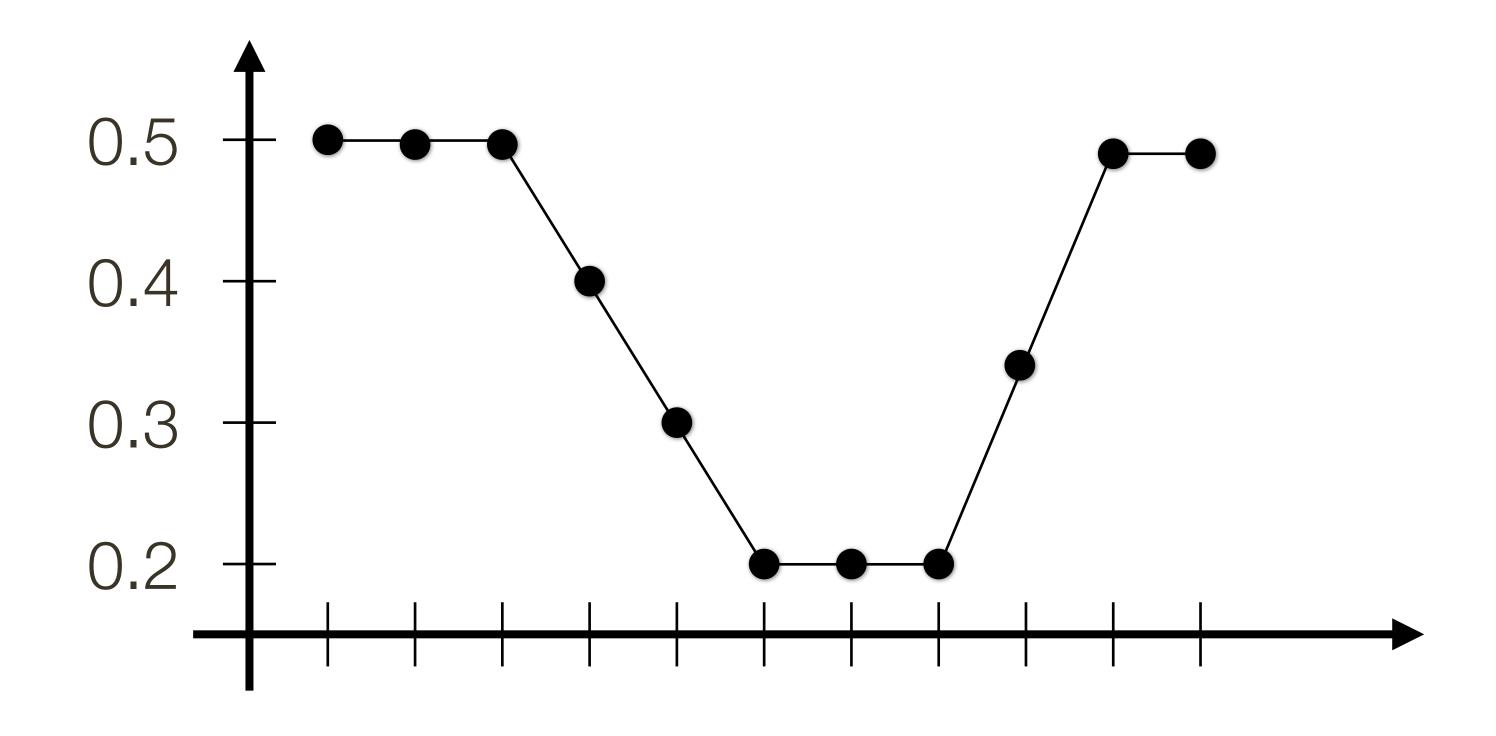


Derivative 0.0

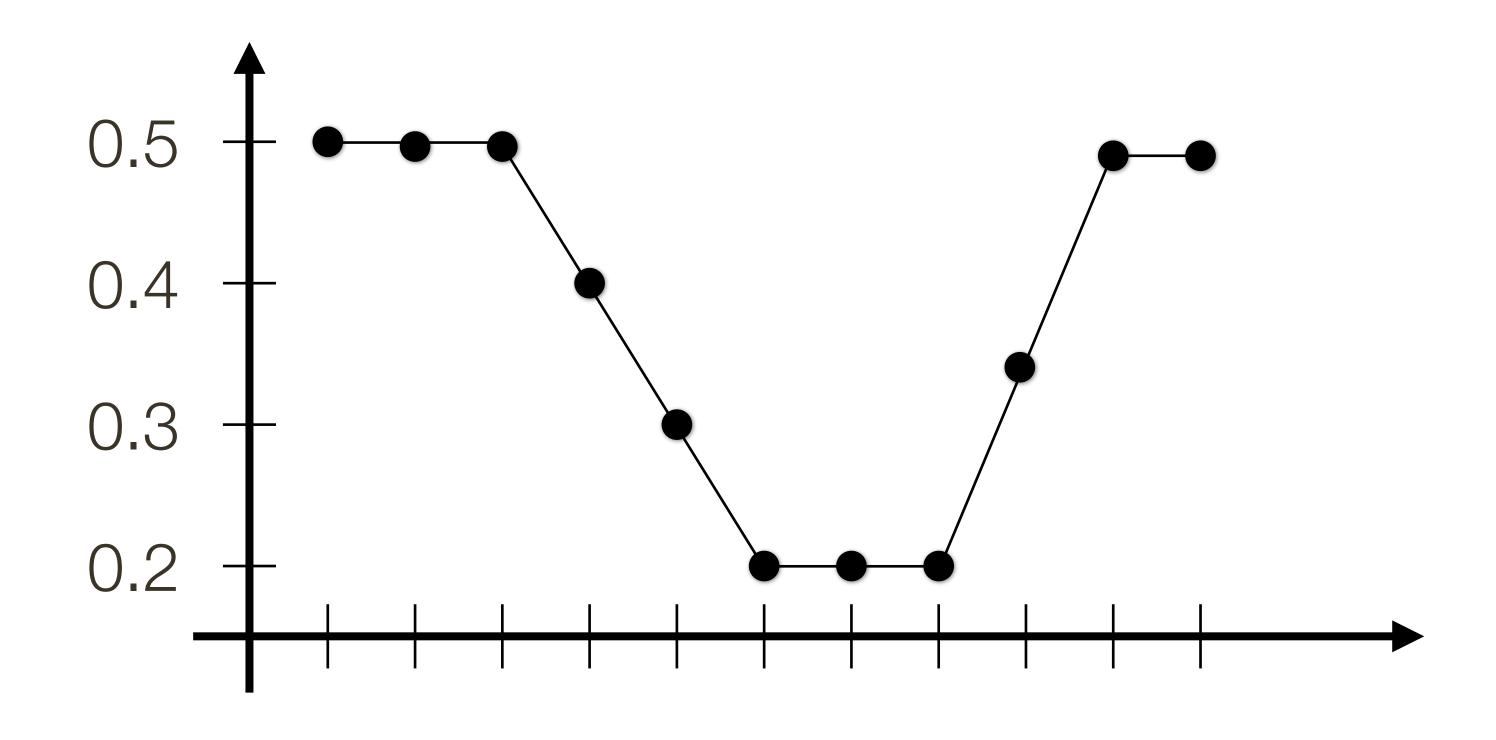


Signal 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5

Derivative 0.0



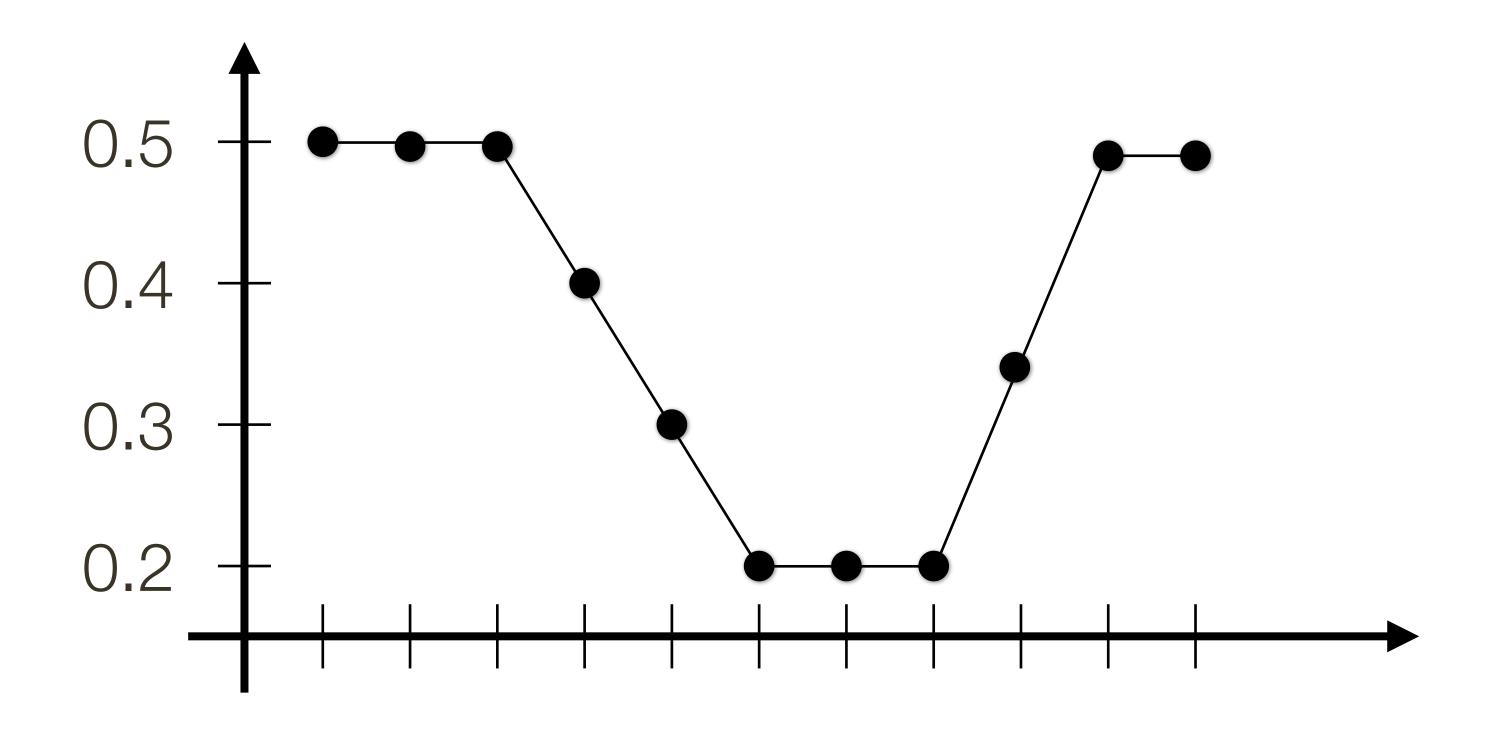




Signal 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5

Derivative 0.0 0.0

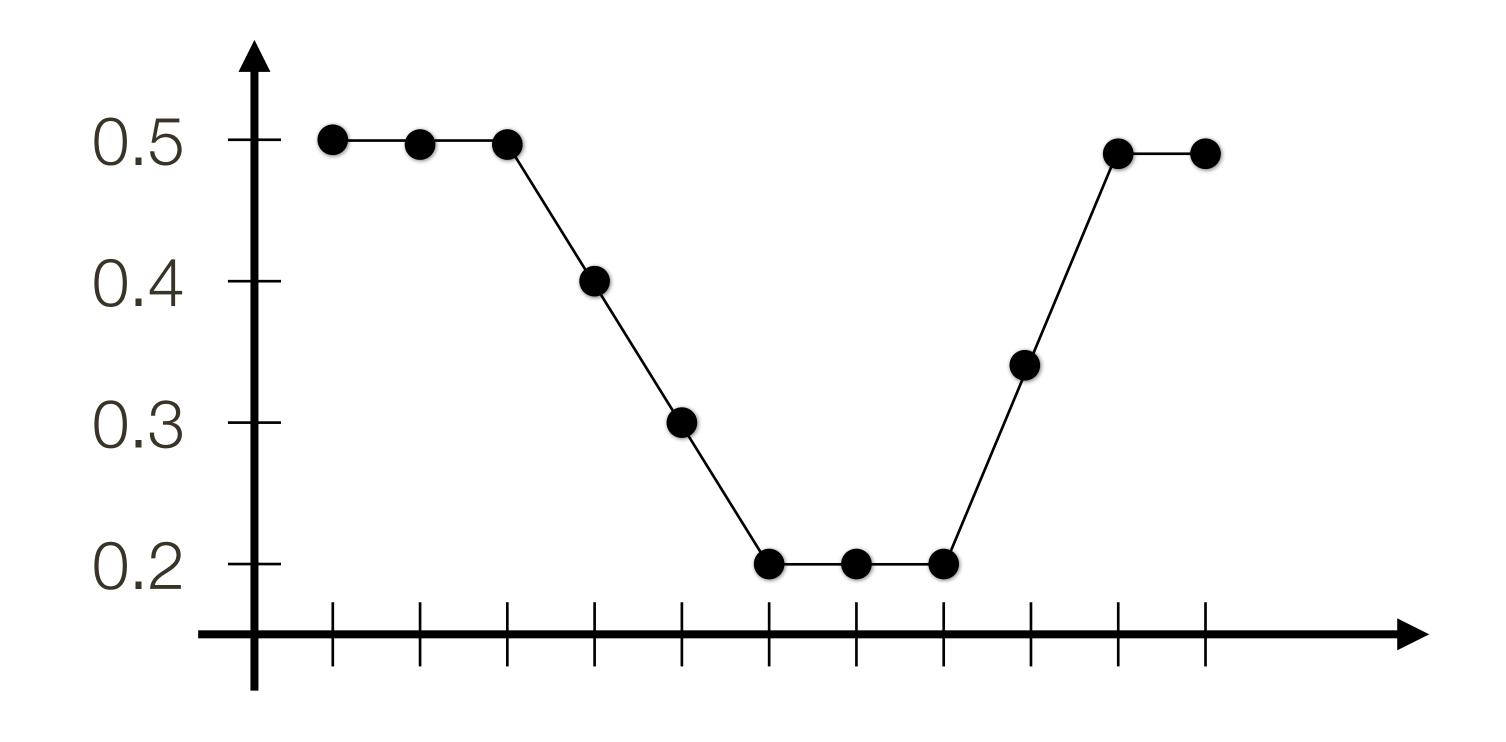
Example 1D



Signal 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.35 0.5

Derivative 0.0 0.0 -0.1

Example 1D

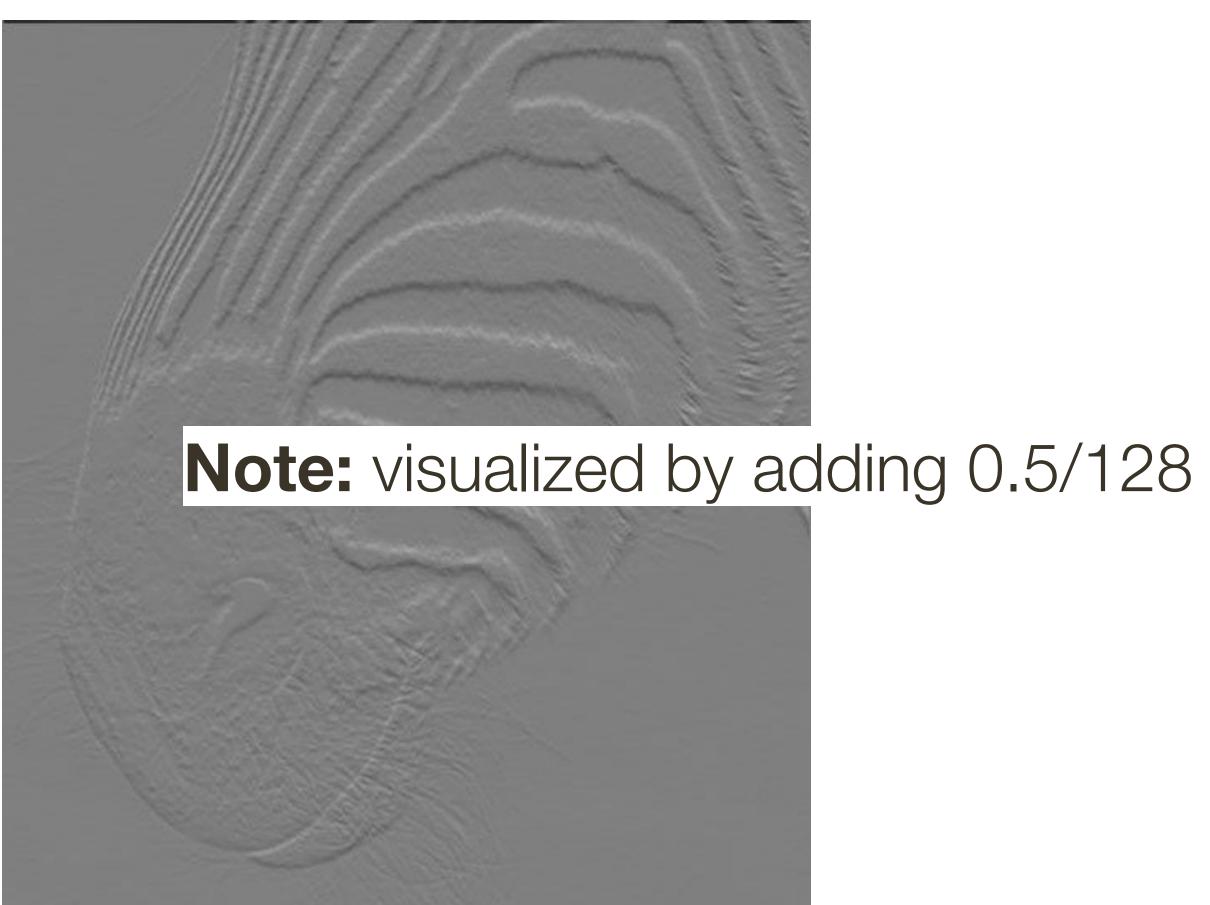


Derivative in Y (i.e., vertical) direction



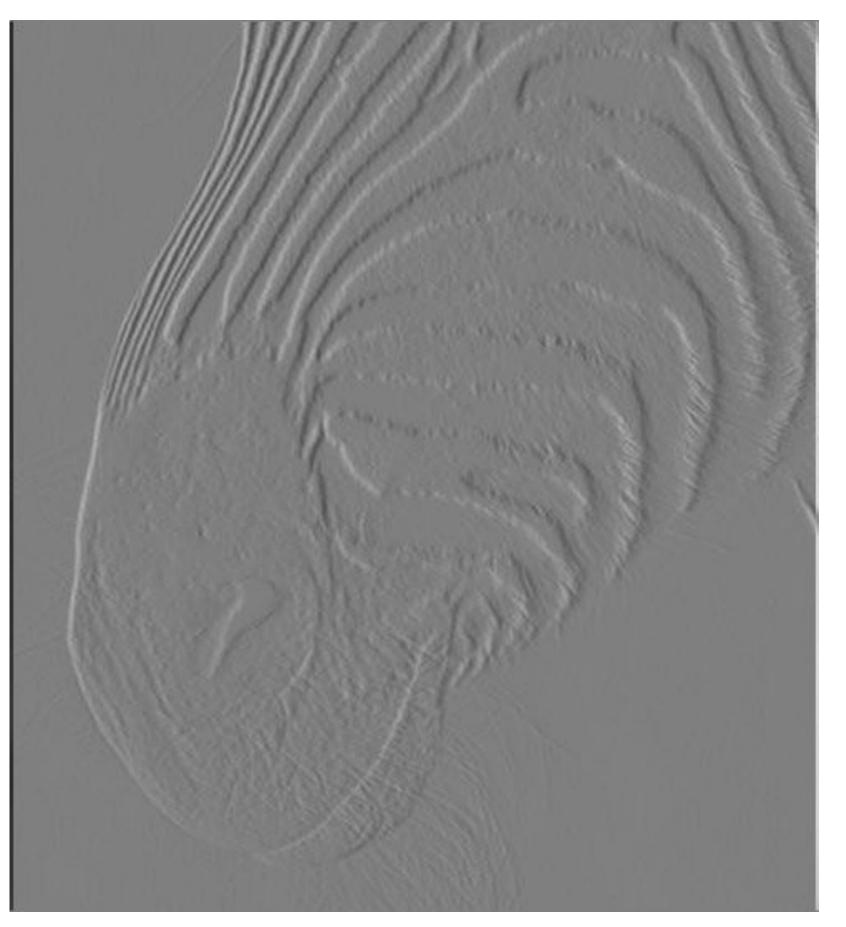
Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Derivative in Y (i.e., vertical) direction



Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Derivative in X (i.e., horizontal) direction



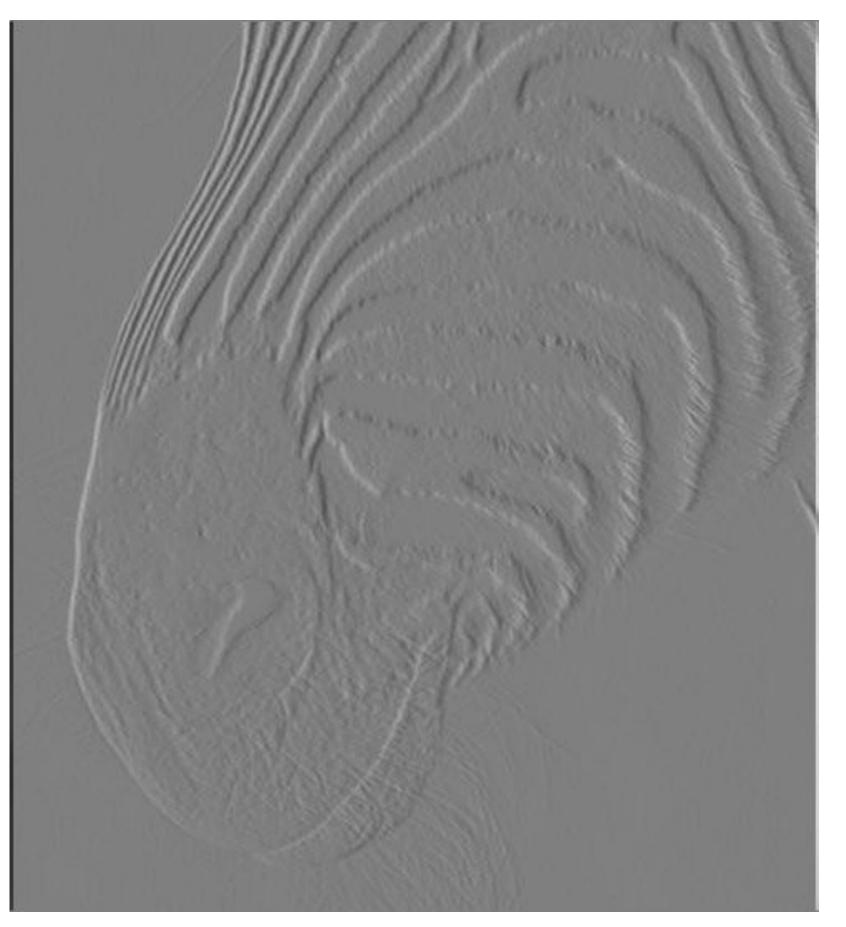
Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

Derivative in Y (i.e., vertical) direction



Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Derivative in X (i.e., horizontal) direction



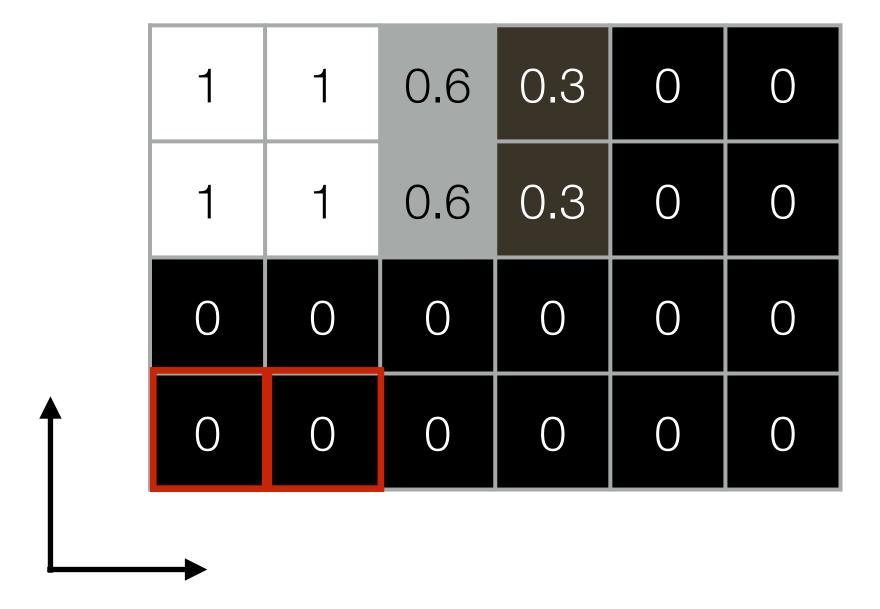
Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

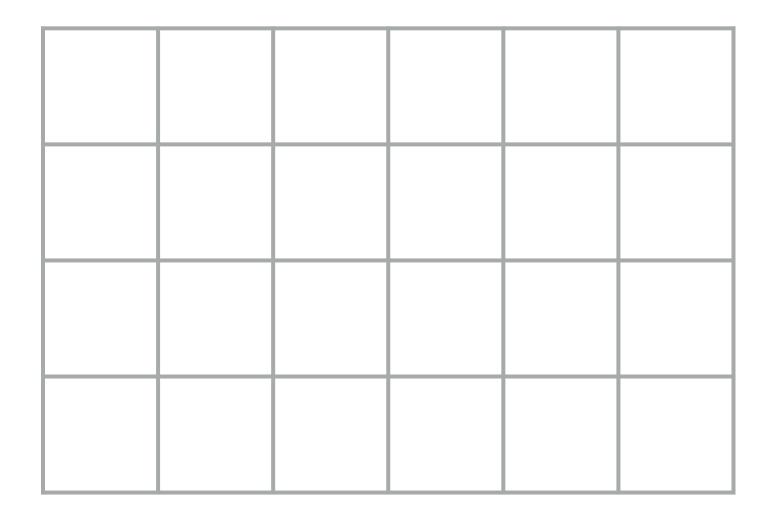
A Sort Exercise

Use the "first forward difference" to compute the image derivatives in X and Y directions.

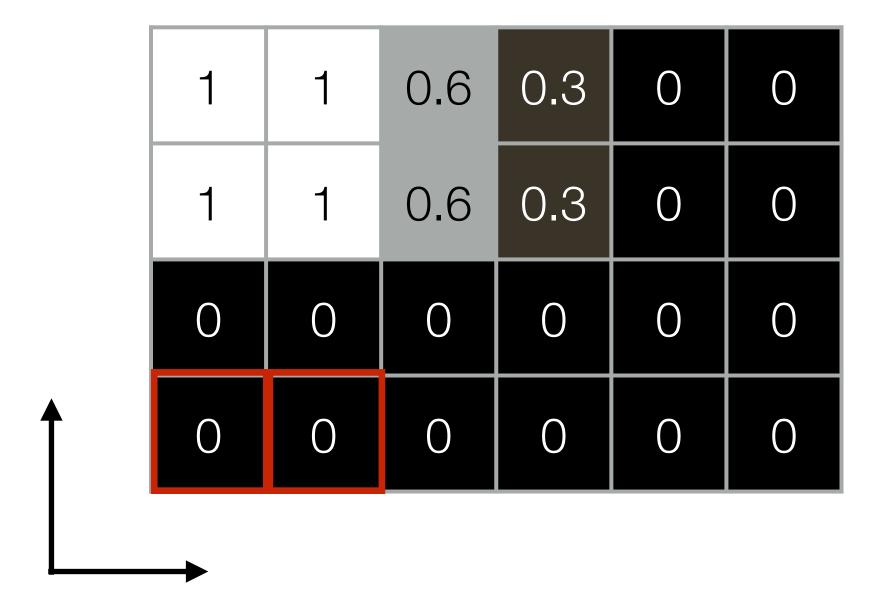
1	1	0.6	0.3	O	O
1	1	0.6	0.3	O	O
O	O	0	O	O	O
0	O	0	O	O	O

Use the "first forward difference" to compute the image derivatives in X and Y directions.



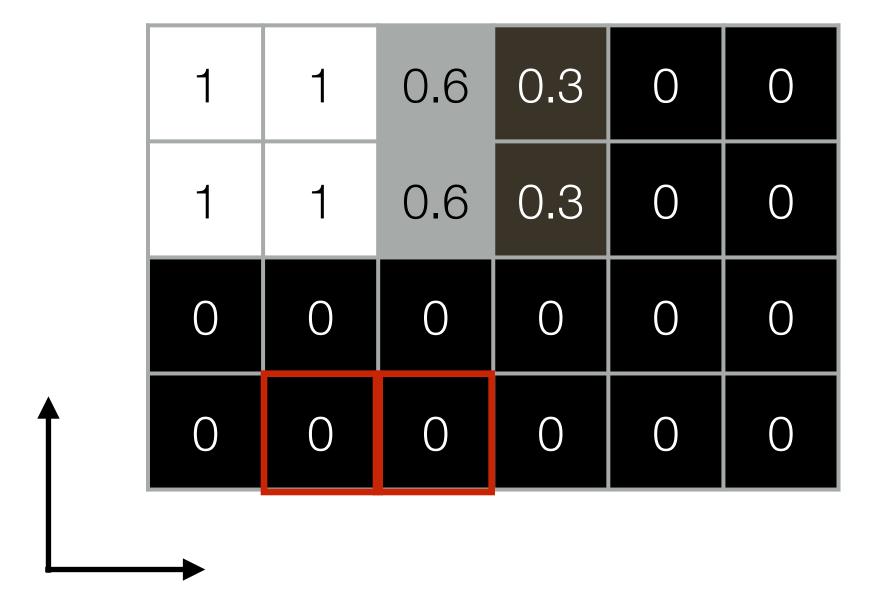


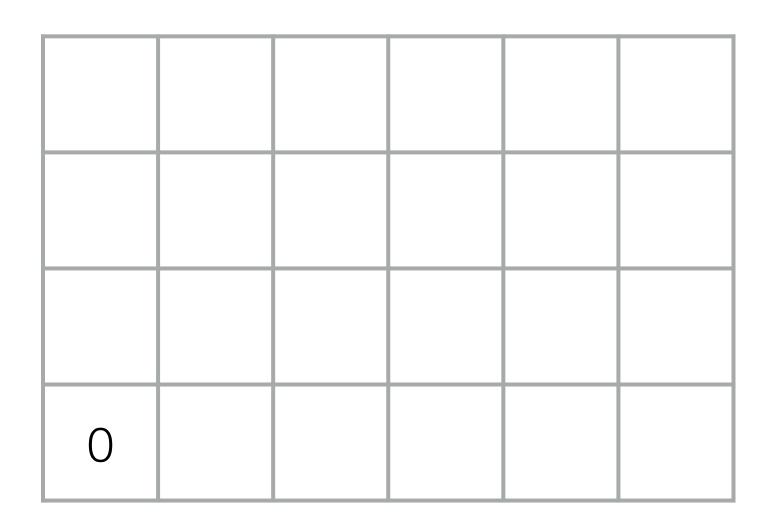
Use the "first forward difference" to compute the image derivatives in X and Y directions.



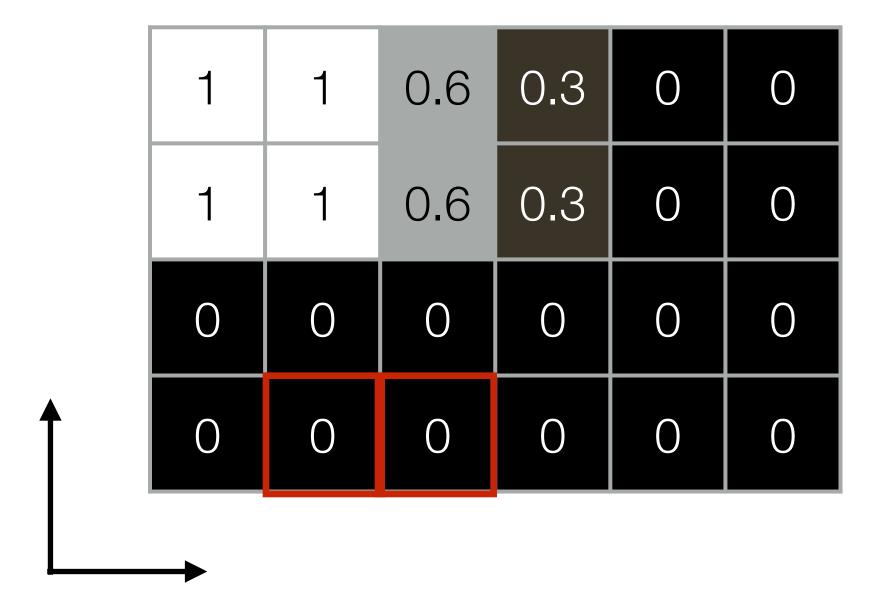
0			

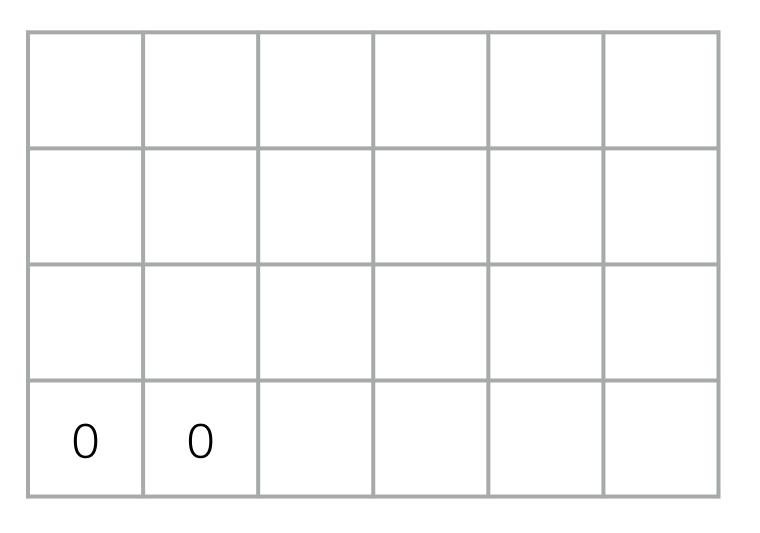
Use the "first forward difference" to compute the image derivatives in X and Y directions.



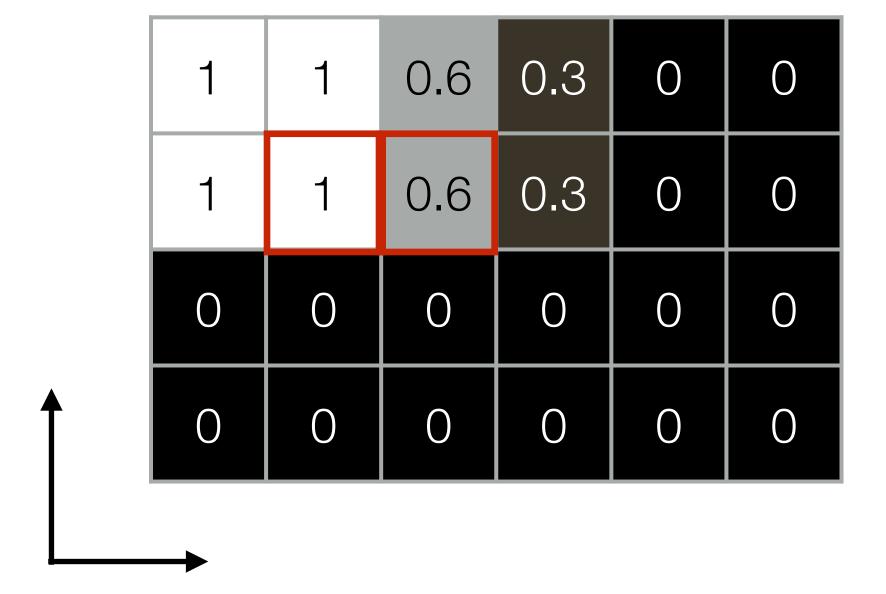


Use the "first forward difference" to compute the image derivatives in X and Y directions.



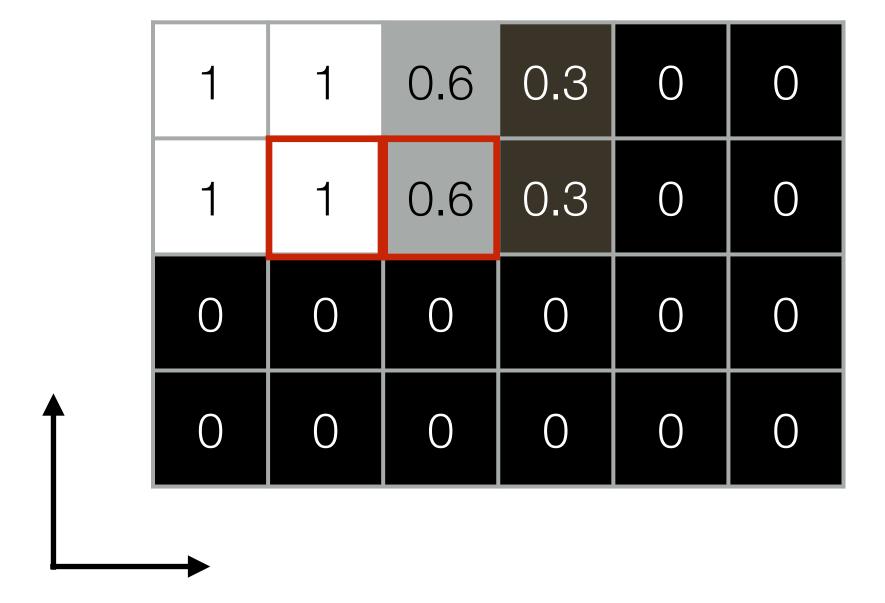


Use the "first forward difference" to compute the image derivatives in X and Y directions.



0					
0	0	0	0	0	
0	0	0	0	0	

Use the "first forward difference" to compute the image derivatives in X and Y directions.



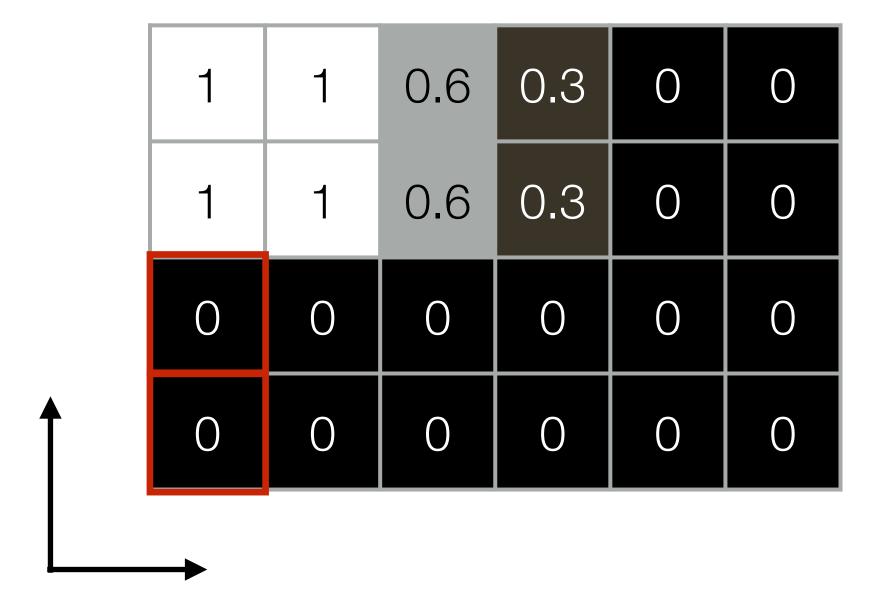
0	-0.4				
0	0	0	0	0	
0	0	0	0	0	

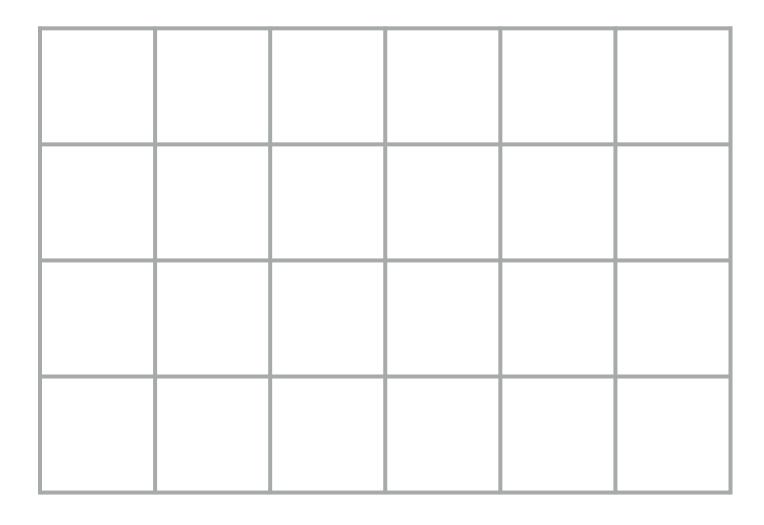
Use the "first forward difference" to compute the image derivatives in X and Y directions.

1	1	0.6	0.3	O	O
1	1	0.6	0.3	O	O
0	O	0	O	O	O
0	O	0	O	O	O

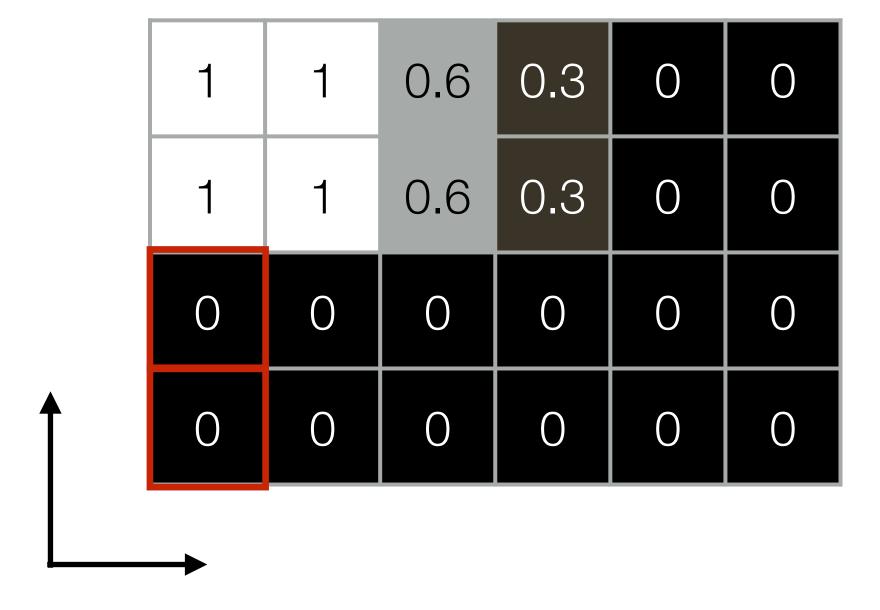
0	-0.4	-0.3	-0.3	O	
0	-0.4	-0.3	-0.3	0	
0	0	0	0	0	
0	0	0	0	0	

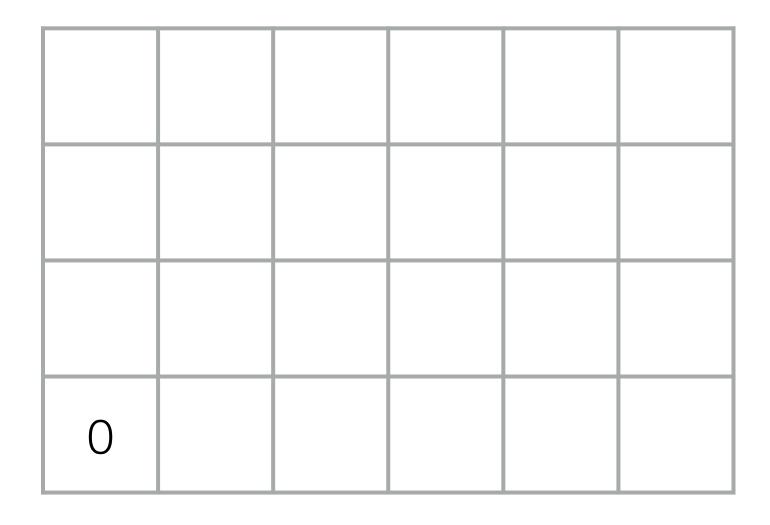
Use the "first forward difference" to compute the image derivatives in X and Y directions.



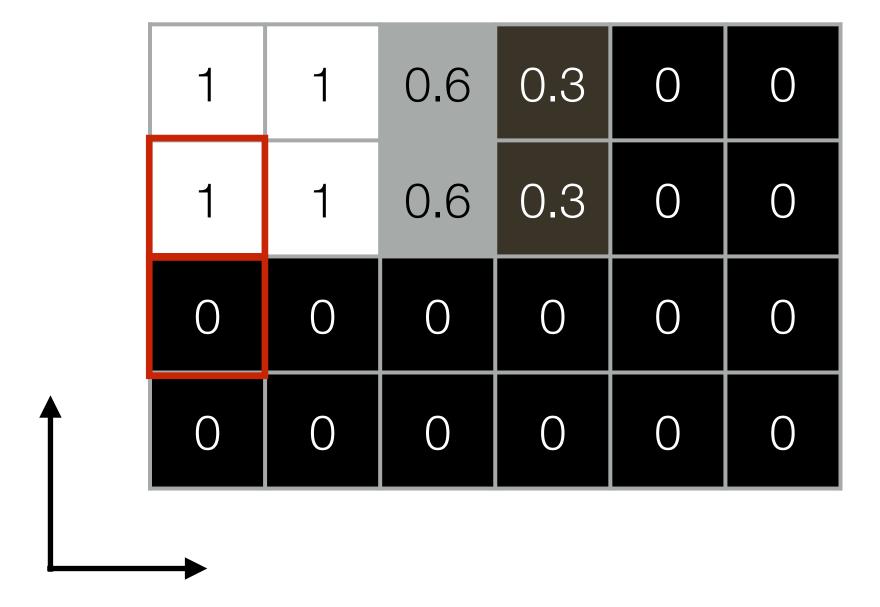


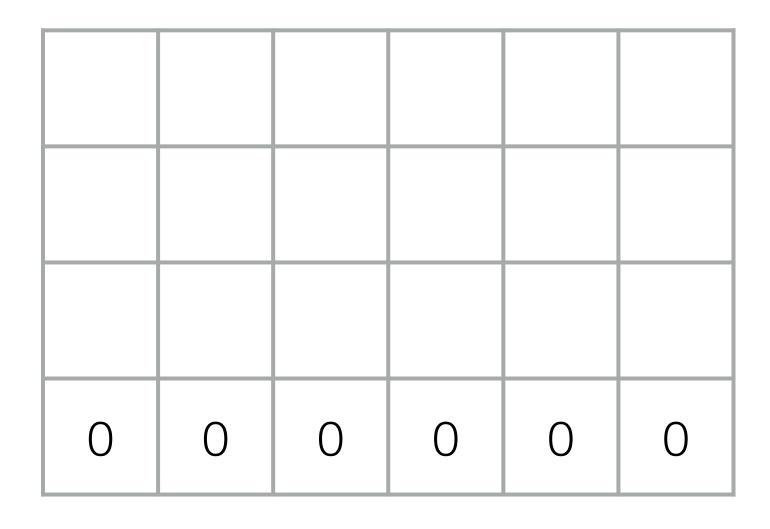
Use the "first forward difference" to compute the image derivatives in X and Y directions.





Use the "first forward difference" to compute the image derivatives in X and Y directions.





Use the "first forward difference" to compute the image derivatives in X and Y directions.

1	1	0.6	0.3	O	O
1	1	0.6	0.3	O	O
0	O	0	O	O	O
O	O	O	O	O	O

0	0	0	0	0	0
1	1	0.6	0.3	0	0
0	0	0	0	0	0

-1 1

Question: Why, in general, should the weights of a filter used for differentiation sum to 0?

Question: Why, in general, should the weights of a filter used for differentiation sum to 0?

Answer: Think of a constant image, I(X,Y)=k. The derivative is 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

Question: Why, in general, should the weights of a filter used for differentiation sum to 0?

Answer: Think of a constant image, I(X,Y)=k. The derivative is 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

$$\sum_{i=1}^{N} f_i \cdot k = k \sum_{i=1}^{N} f_i = 0 \implies \sum_{i=1}^{N} f_i = 0$$

Smoothing and Differentiation

Edge: a location with high gradient (derivative)

Need smoothing to reduce noise prior to taking derivative

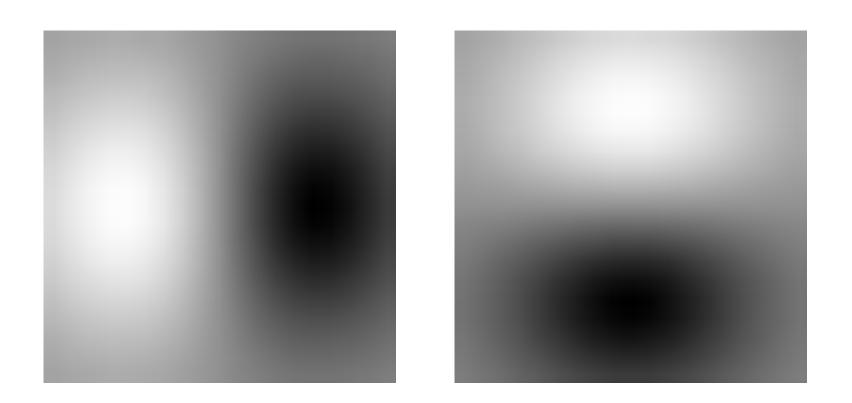
Need two derivatives, in x and y direction

We can use derivative of Gaussian filters

- because differentiation is convolution, and
- convolution is associative

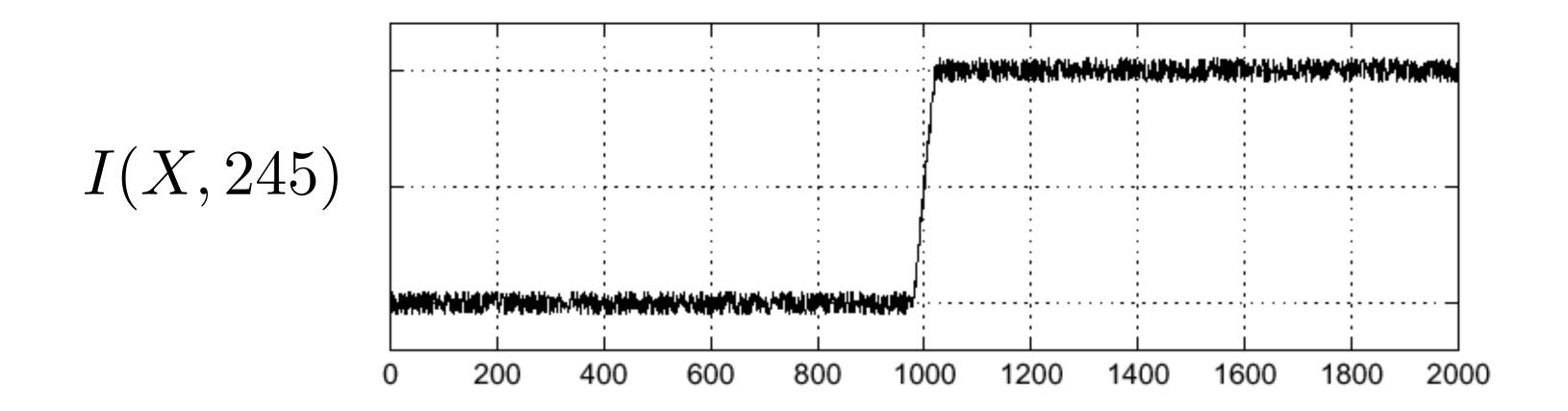
Let \otimes denote convolution

$$D\otimes (G\otimes I(X,Y))=(D\otimes G)\otimes I(X,Y)$$



1D Example

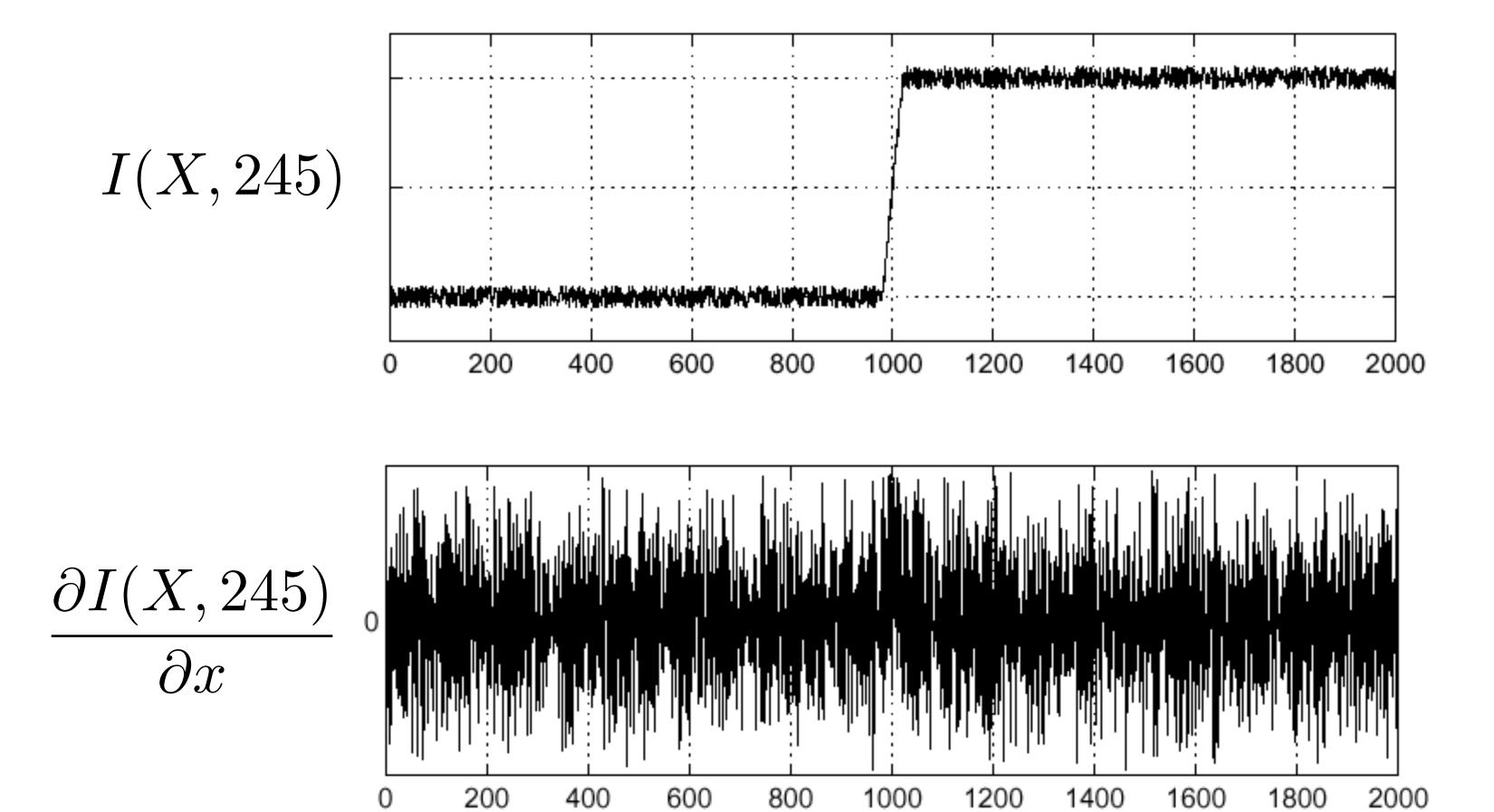
Lets consider a row of pixels in an image:



Where is the edge?

1D Example: Derivative

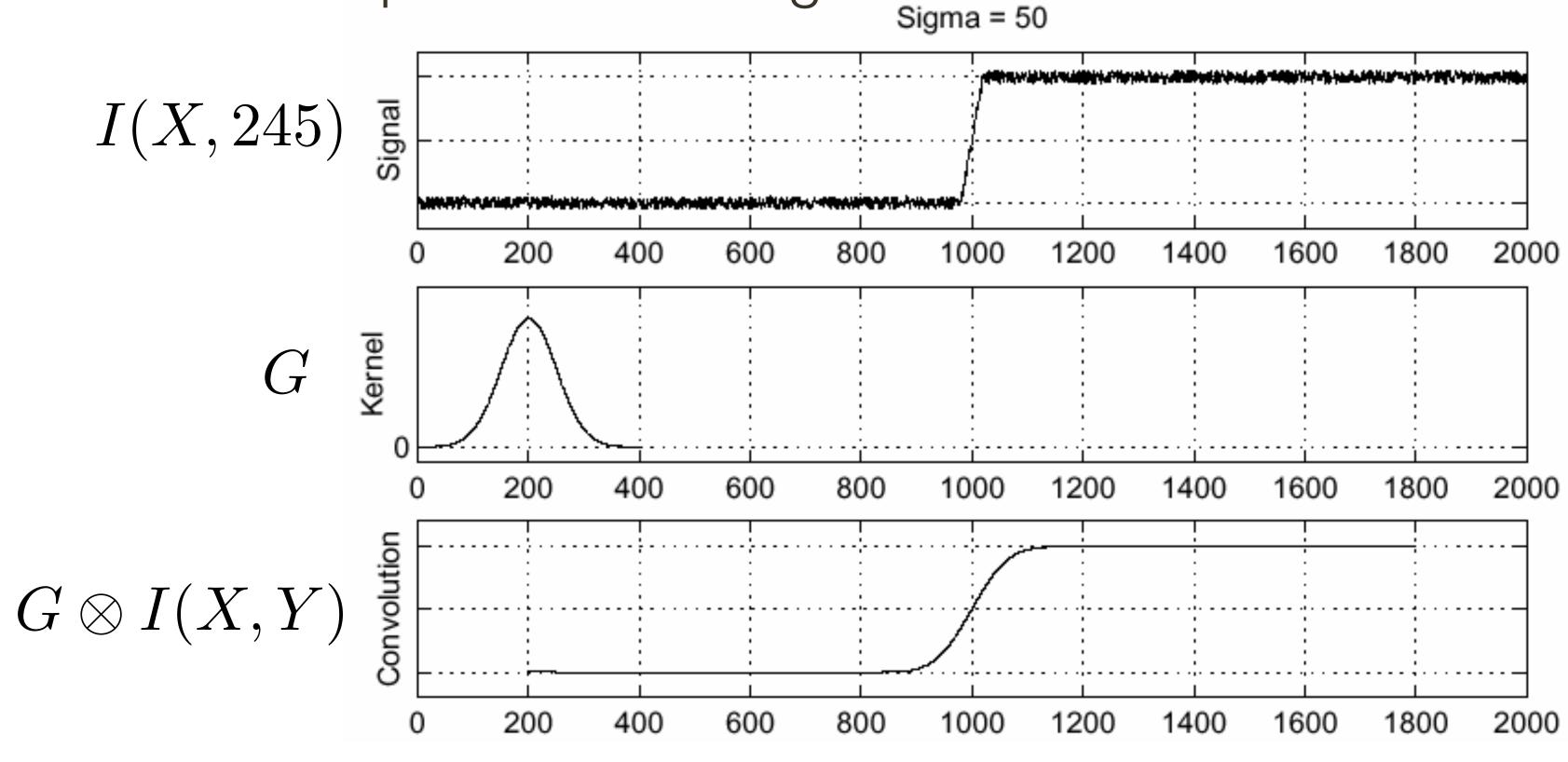
Lets consider a row of pixels in an image:



Where is the edge?

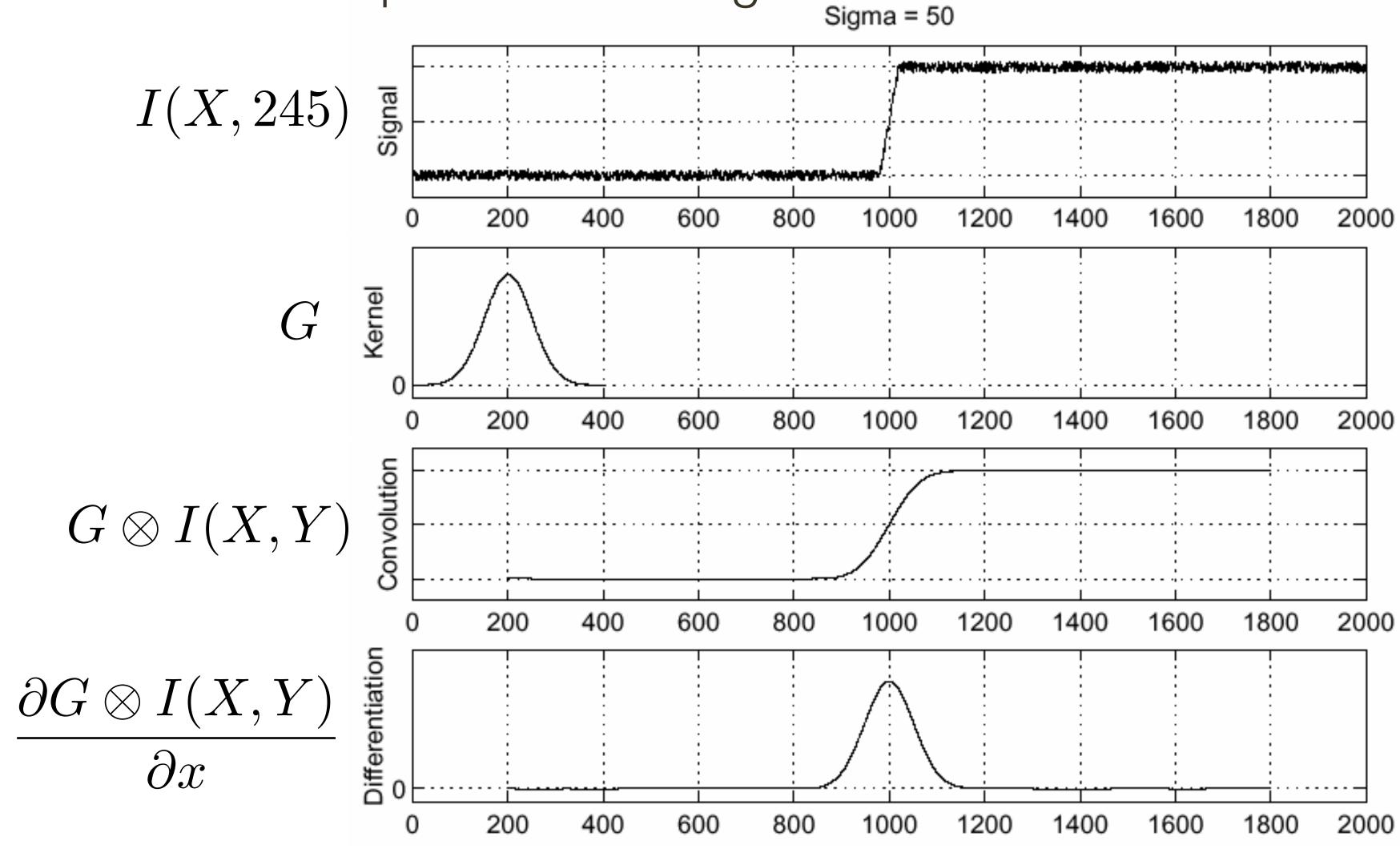
1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:



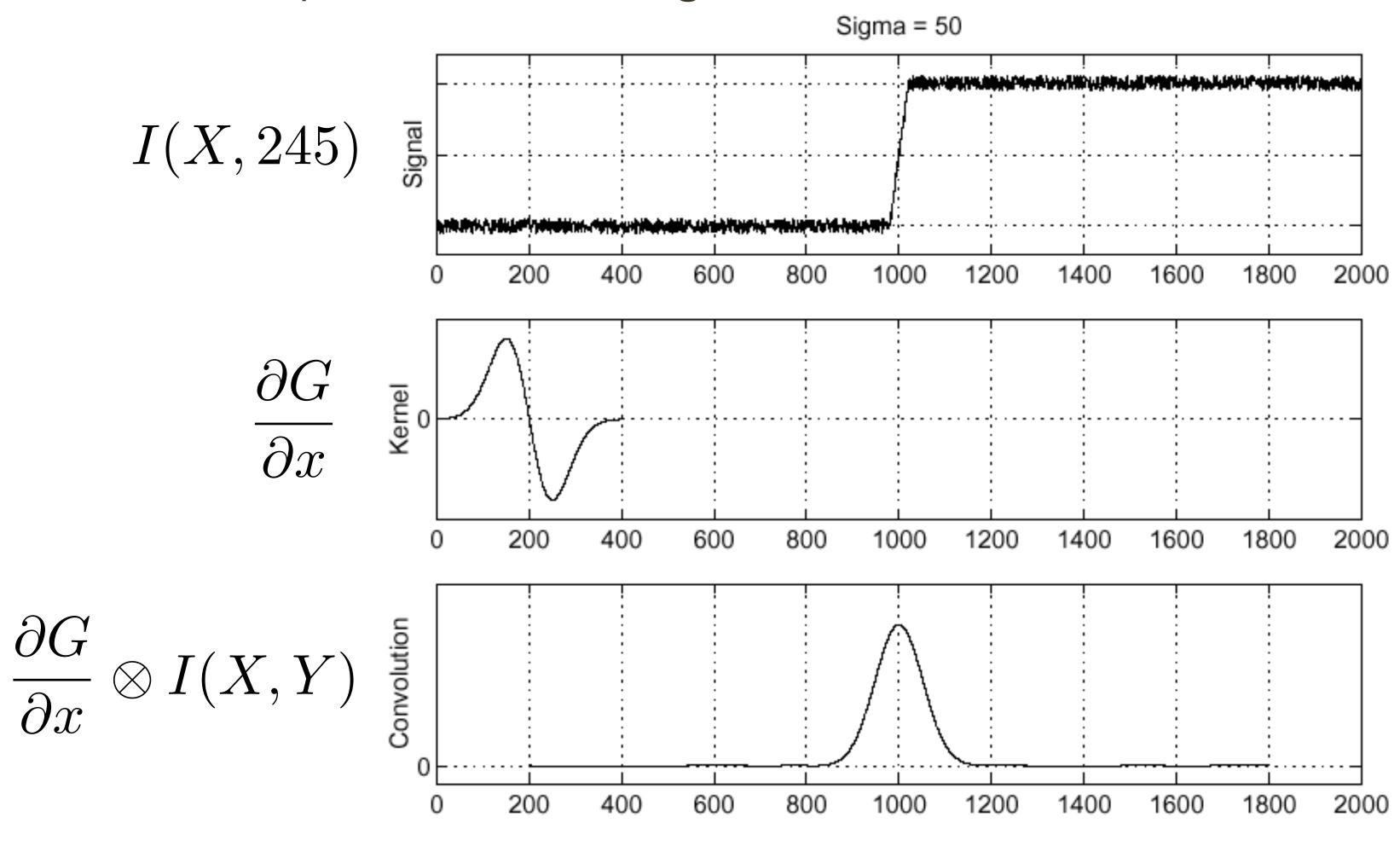
1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:

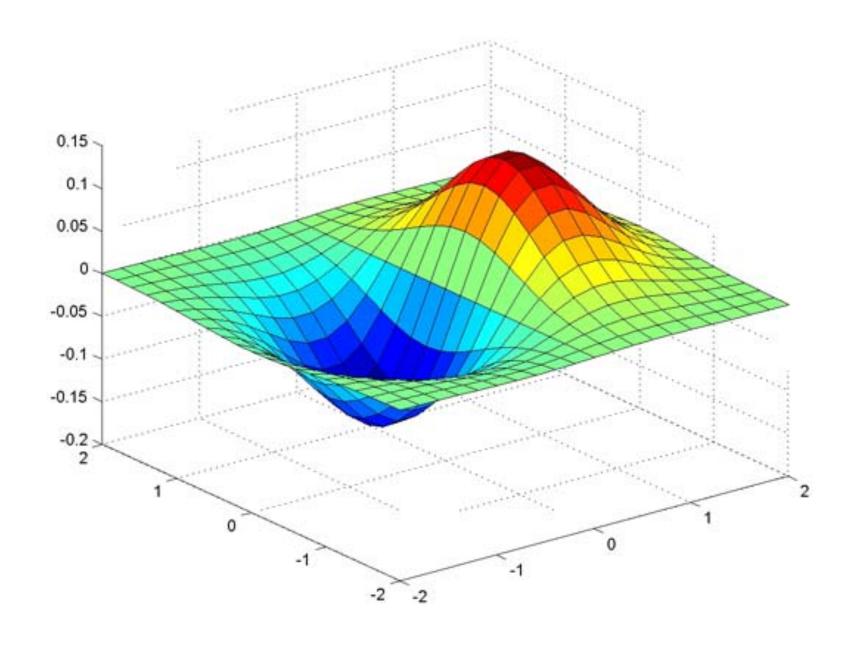


1D **Example**: Smoothing + Derivative (efficient)

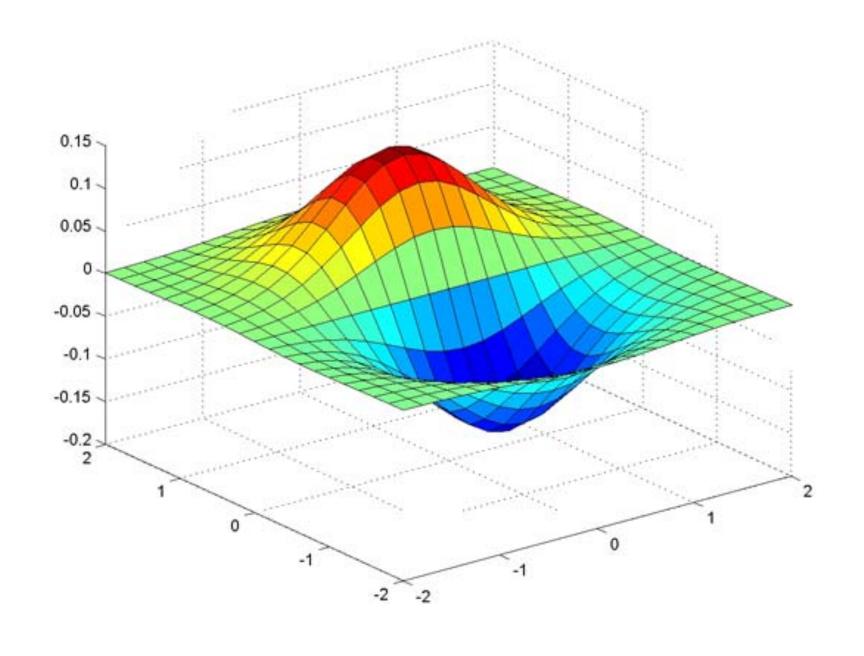
Lets consider a row of pixels in an image:



Partial Derivatives of Gaussian



$$\frac{\partial}{\partial x}G_{\sigma}$$



$$\frac{\partial}{\partial y}G_{\sigma}$$

Gradient Magnitude

Let I(X,Y) be a (digital) image

Let $I_x(X,Y)$ and $I_y(X,Y)$ be estimates of the partial derivatives in the x and y directions, respectively.

Call these estimates I_x and I_y (for short) The vector $\left[I_x,I_y\right]$ is the **gradient**

The scalar $\sqrt{I_x^2 + I_y^2}$ is the gradient magnitude

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

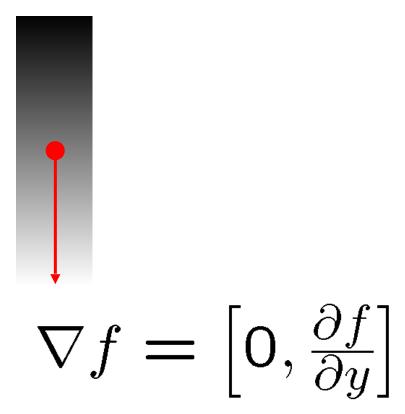
$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

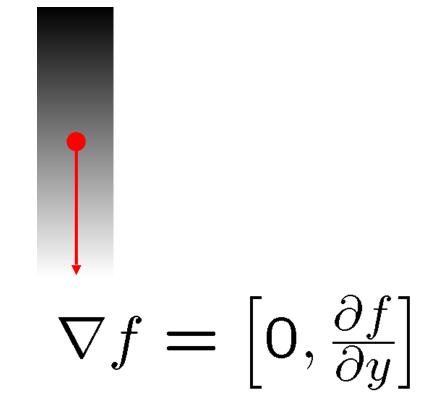
The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

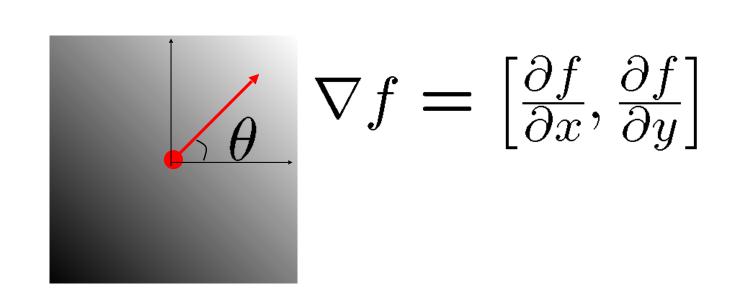
$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$



The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

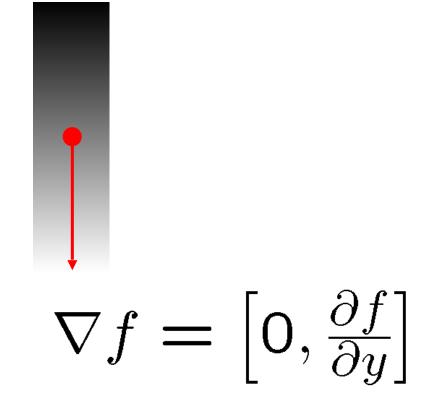


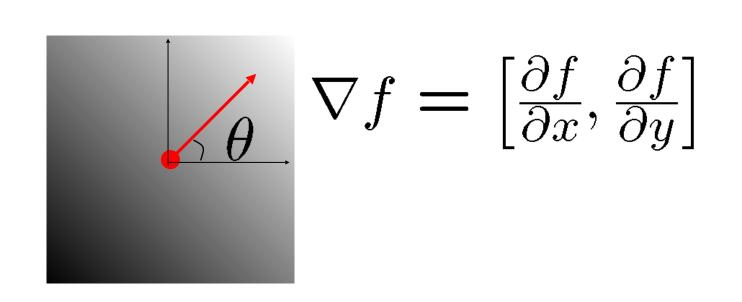


The gradient points in the direction of most rapid increase of intensity:

The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





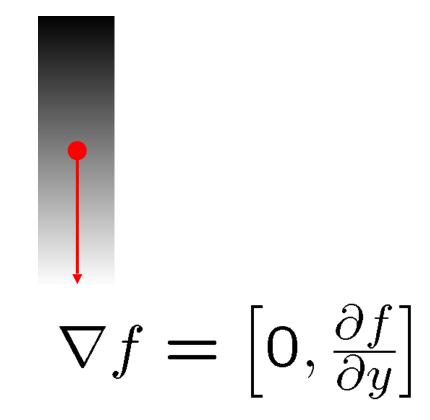
The gradient points in the direction of most rapid increase of intensity:

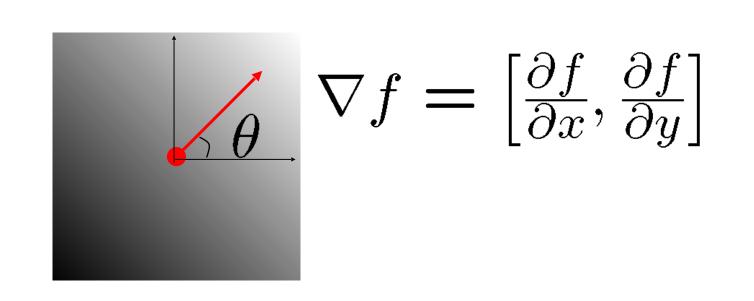
The gradient direction is given by:

(how is this related to the direction of the edge?)

The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





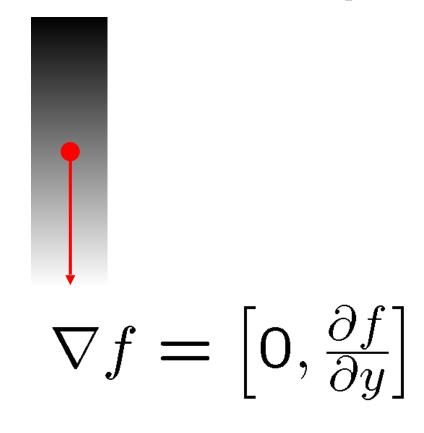
The gradient points in the direction of most rapid increase of intensity:

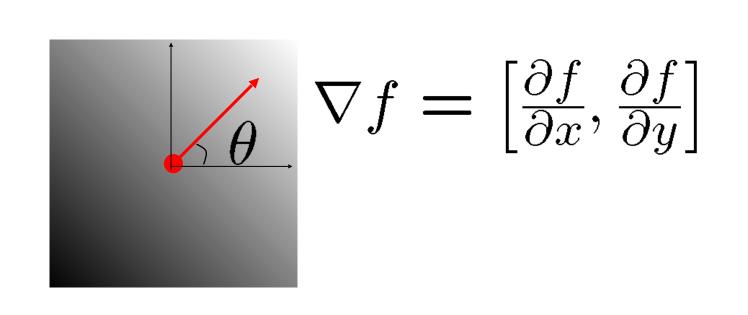
The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

(how is this related to the direction of the edge?)

The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





The gradient points in the direction of most rapid increase of intensity:

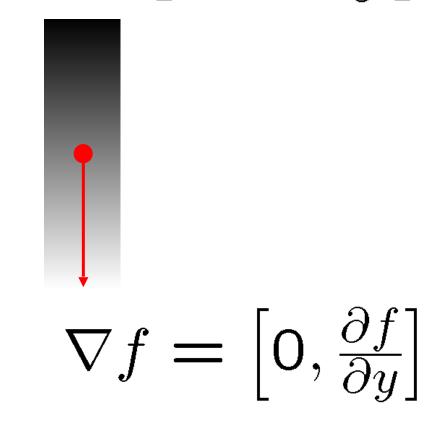
The gradient direction is given by:

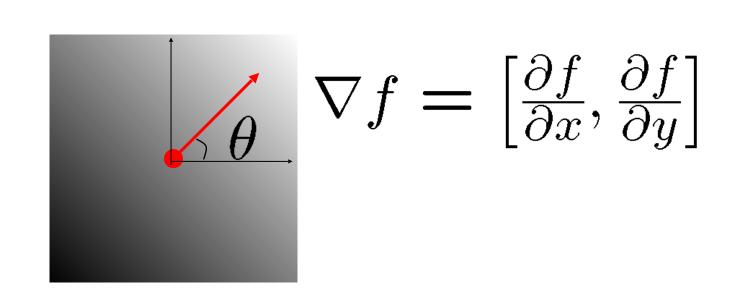
(how is this related to the direction of the edge?)

The edge strength is given by the gradient magnitude:

The gradient of an image:
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





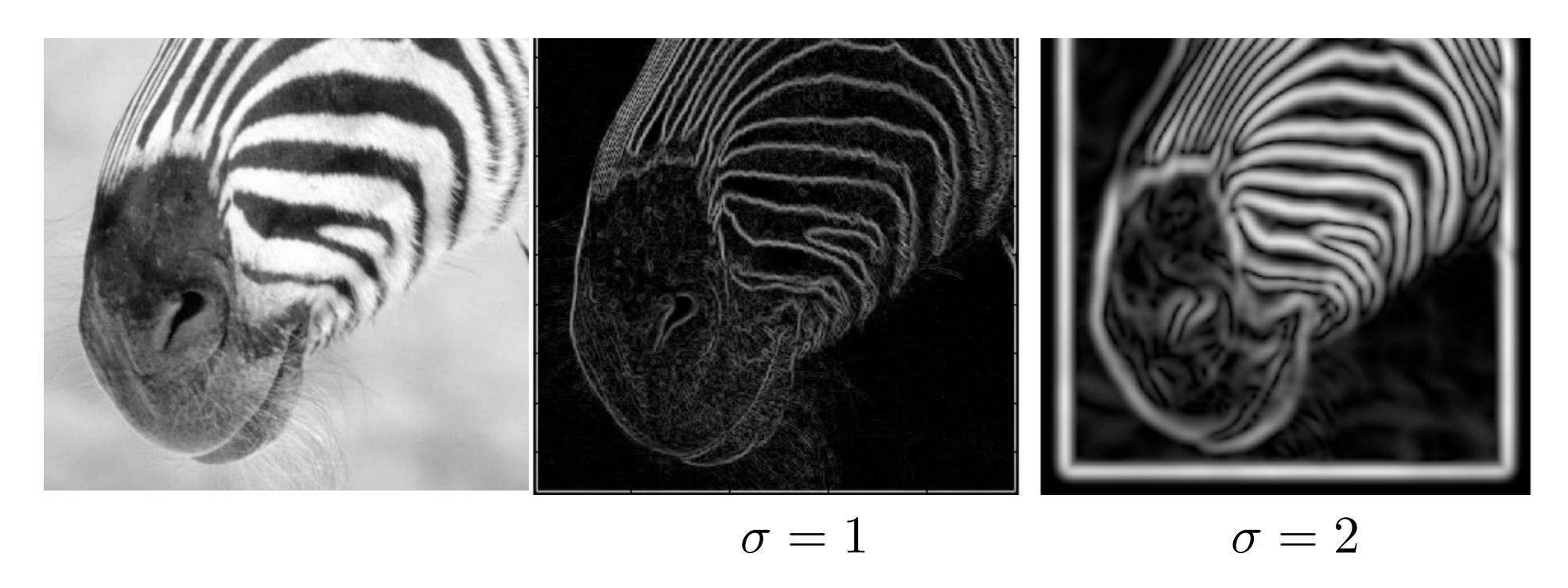
The gradient points in the direction of most rapid increase of intensity:

The gradient direction is given by: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial u} / \frac{\partial f}{\partial x} \right)$

(how is this related to the direction of the edge?)

The edge strength is given by the **gradient magnitude**: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial u}\right)^2}$

Gradient Magnitude



Forsyth & Ponce (2nd ed.) Figure 5.4

Increased smoothing:

- eliminates noise edges
- makes edges smoother and thicker
- removes fine detail

Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first

forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

Sobel Gradient

Sobel Edges

Sobel Edge Detector

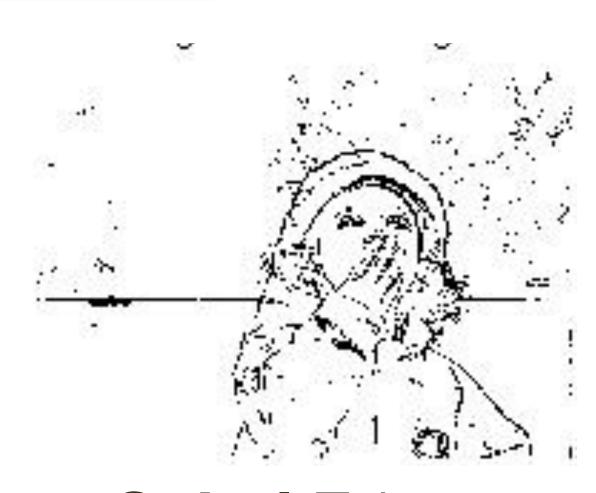
1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

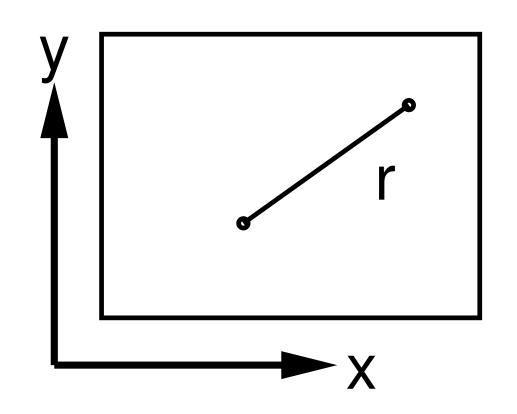
Sobel Gradient



Sobel Edges

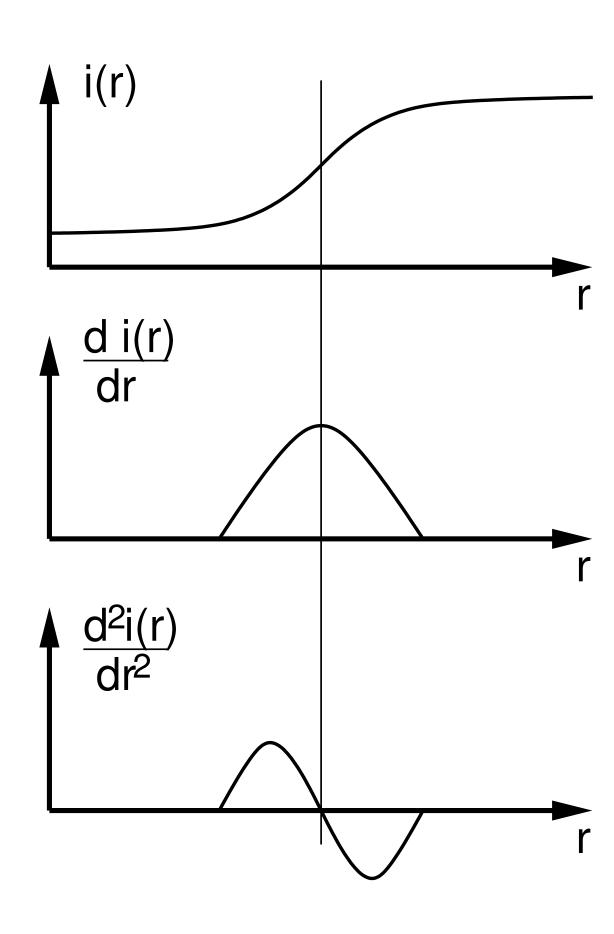
Thresholds are brittle, we can do better!

Two Generic Approaches for **Edge** Detection



Two generic approaches to edge point detection:

- (significant) local extrema of a first derivative operator
- zero crossings of a second derivative operator



A "zero crossings of a second derivative operator" approach

Design Criteria:

- 1. localization in space
- 2. localization in frequency
- 3. rotationally invariant

A "zero crossings of a second derivative operator" approach

Steps:

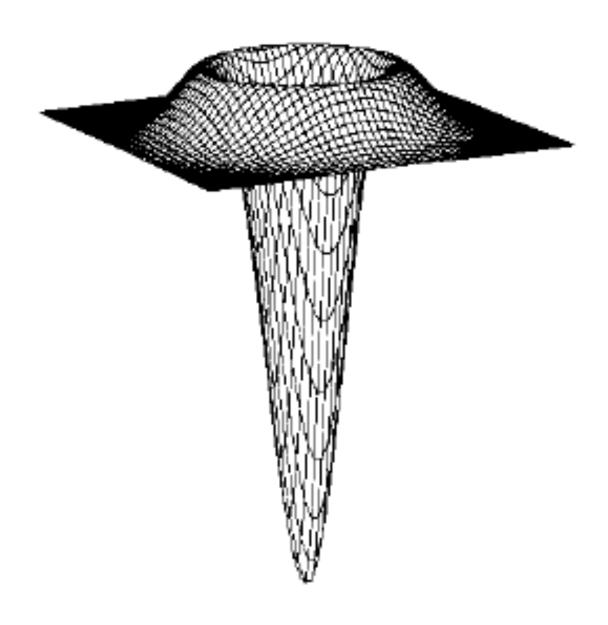
- 1. Gaussian for smoothing
- 2. Laplacian (∇^2) for differentiation where

$$\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

3. Locate zero-crossings in the Laplacian of the Gaussian ($abla^2G$) where

$$\nabla^{2}G(x,y) = \frac{-1}{2\pi\sigma^{4}} \left[2 - \frac{x^{2} + y^{2}}{\sigma^{2}} \right] \exp^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

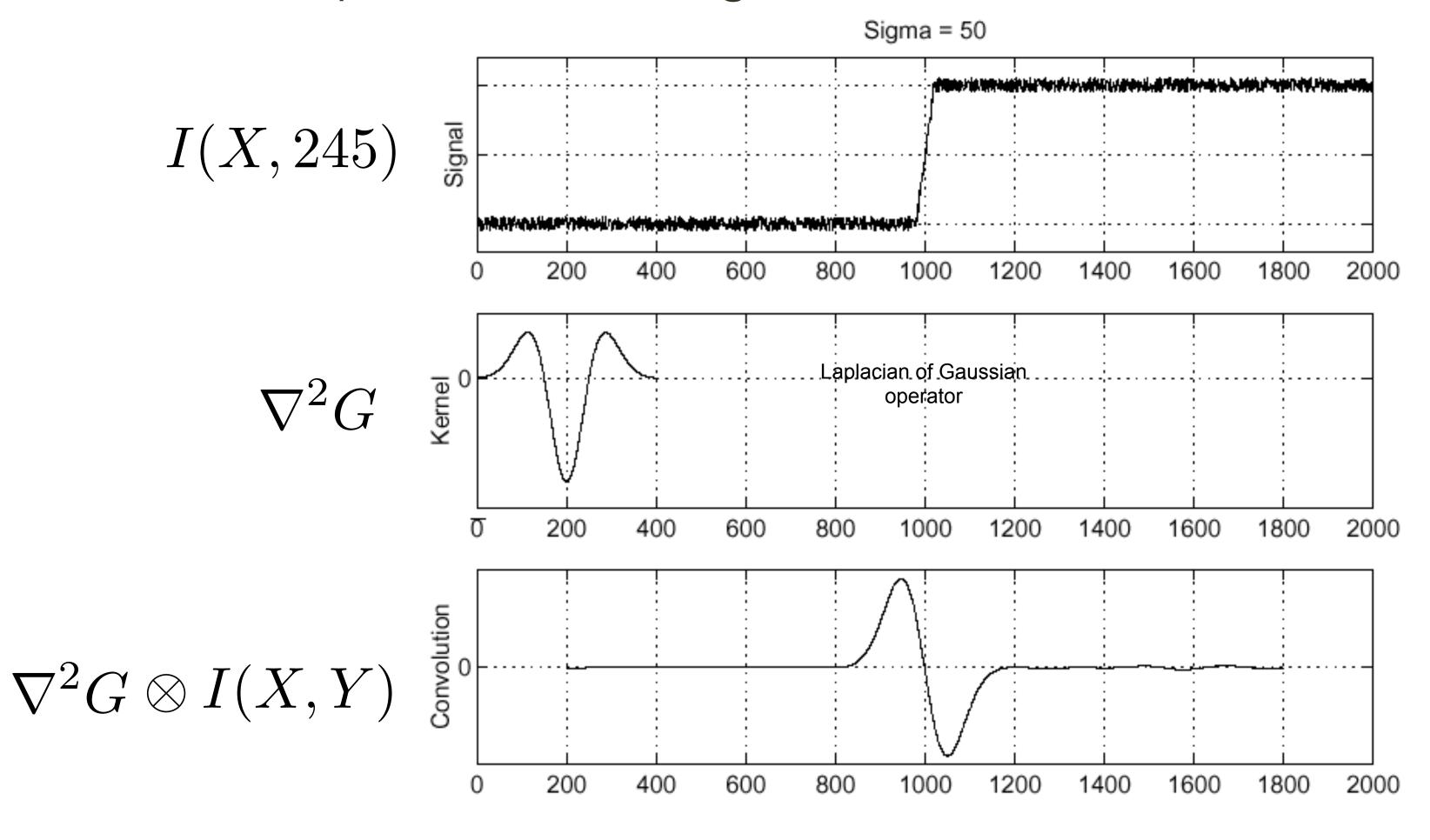
Here's a 3D plot of the Laplacian of the Gaussian ($\nabla^2 G$)



... with its characteristic "Mexican hat" shape

1D Example: Continued

Lets consider a row of pixels in an image:



Where is the edge?

Zero-crossings of bottom graph

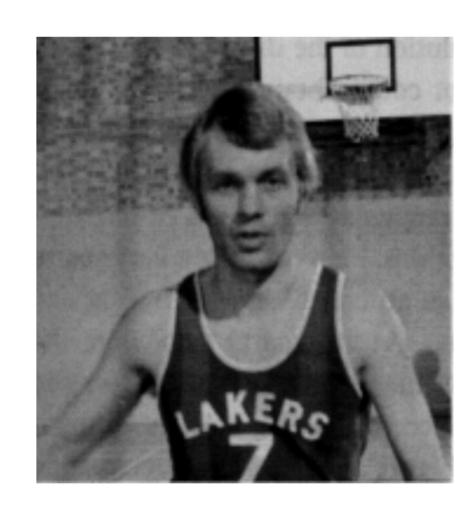
5 x 5 LoG filter

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

17 x 17 LoG filter

0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0

Scale (o)



Original Image

LoG Filter

Zero Crossings

Scale (o)

original

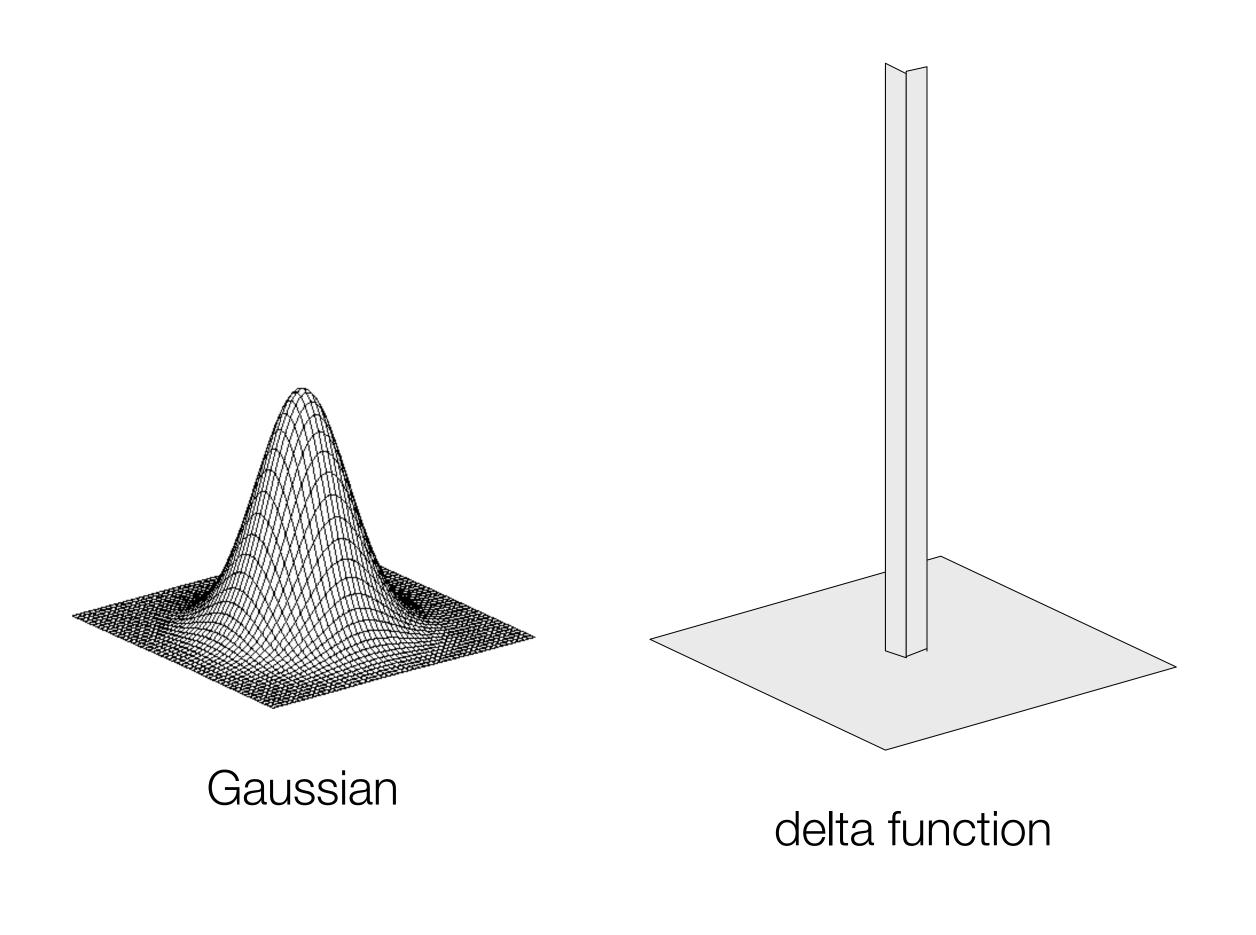
smoothed (5x5 Gaussian)

original - smoothed (scaled by 4, offset +128)

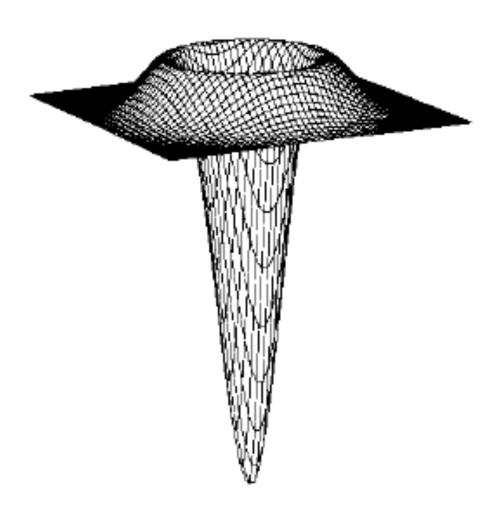
original

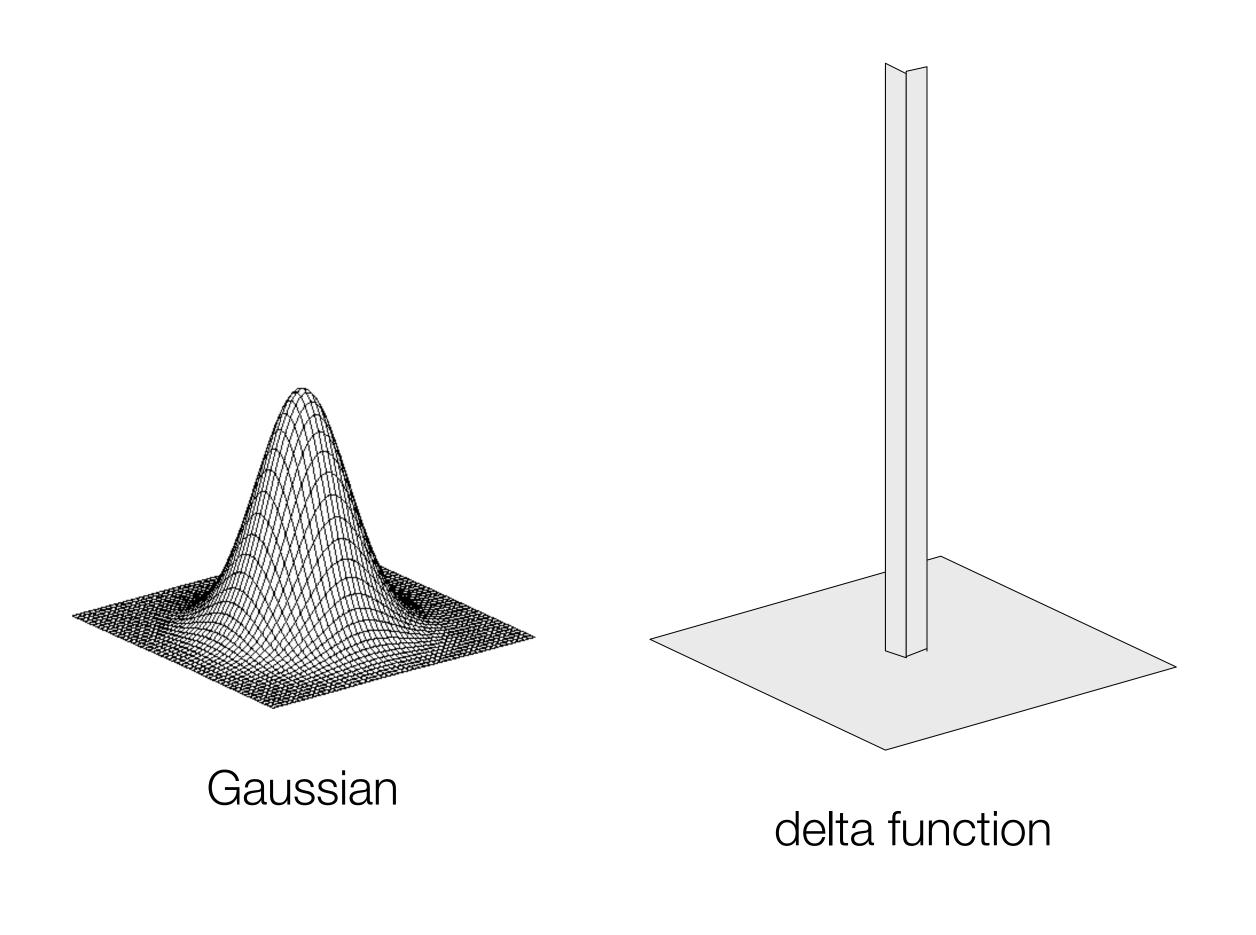
smoothed (5x5 Gaussian)

smoothed - original (scaled by 4, offset +128)

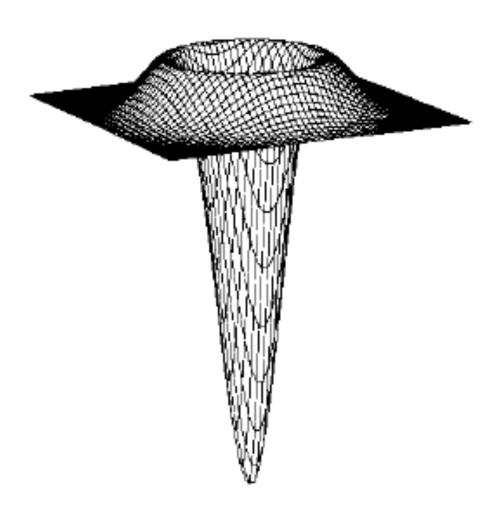


Laplacian of Gaussian





Laplacian of Gaussian



Comparing **Edge** Detectors

Comparing **Edge** Detectors

Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

Comparing **Edge** Detectors

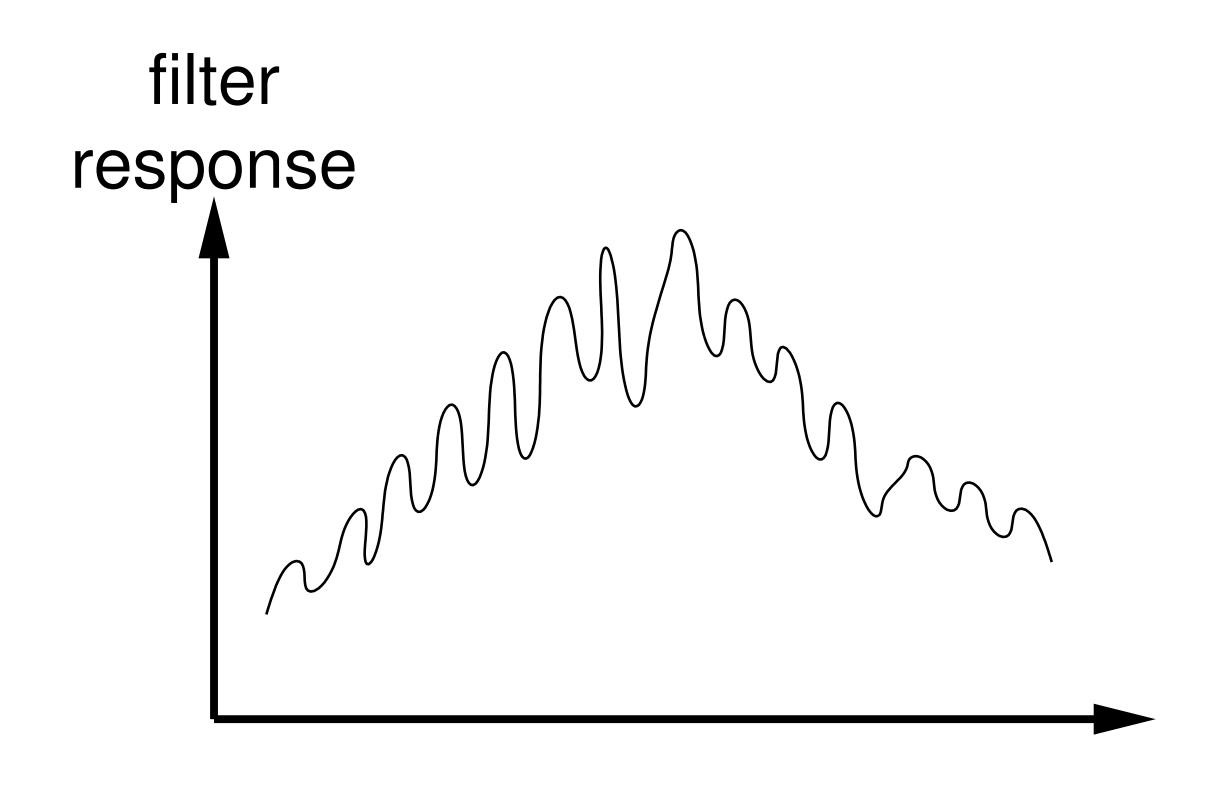
Good detection: minimize probability of false positives/negatives (spurious/missing) edges

Good localization: found edges should be as close to true image edge as possible

Single response: minimize the number of edge pixels around a single edge

	Approach	Detection	Localization	Single Resp	Limitations
Sobel	Gradient Magnitude Threshold	Good	Poor	Poor	Results in Thick Edges
Marr / Hildreth	Zero-crossings of 2nd Derivative (LoG)	Good	Good	Good	Smooths Corners
Canny	Local extrema of 1st Derivative	Best	Good	Good	

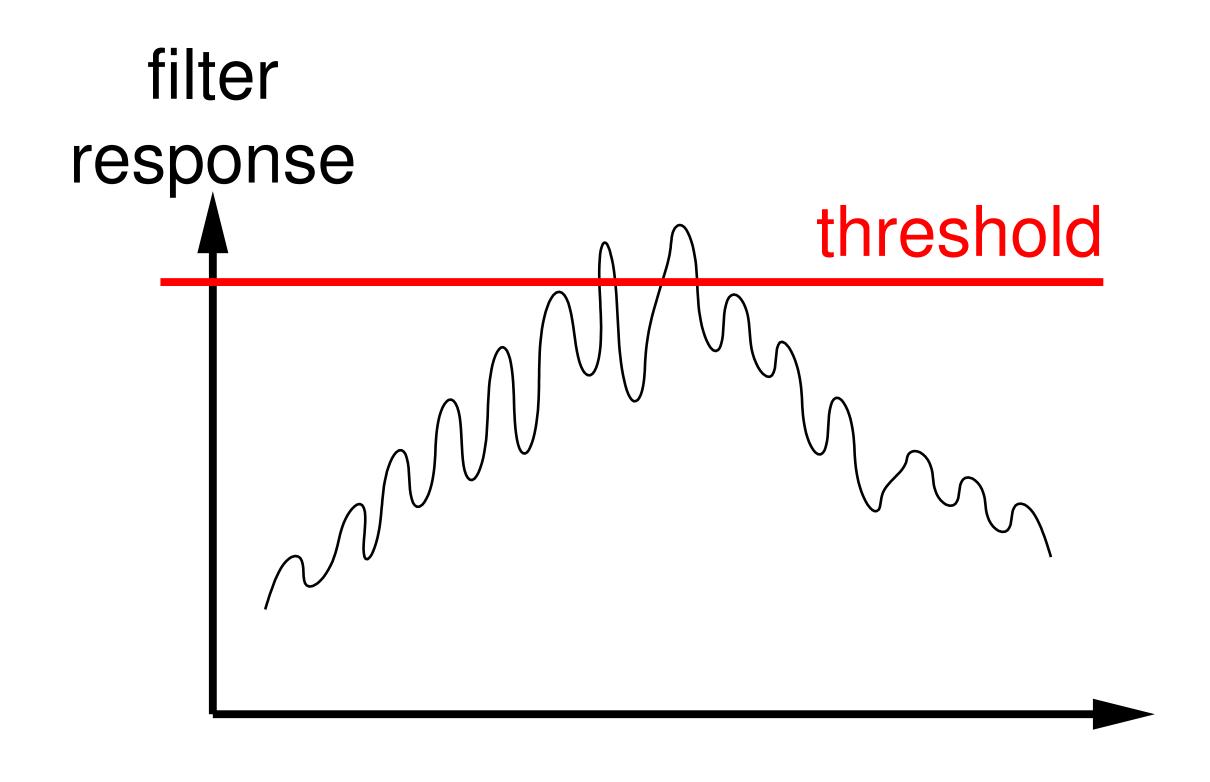
Example: Edge Detection



Question: How many edges are there?

Question: What is the position of each edge?

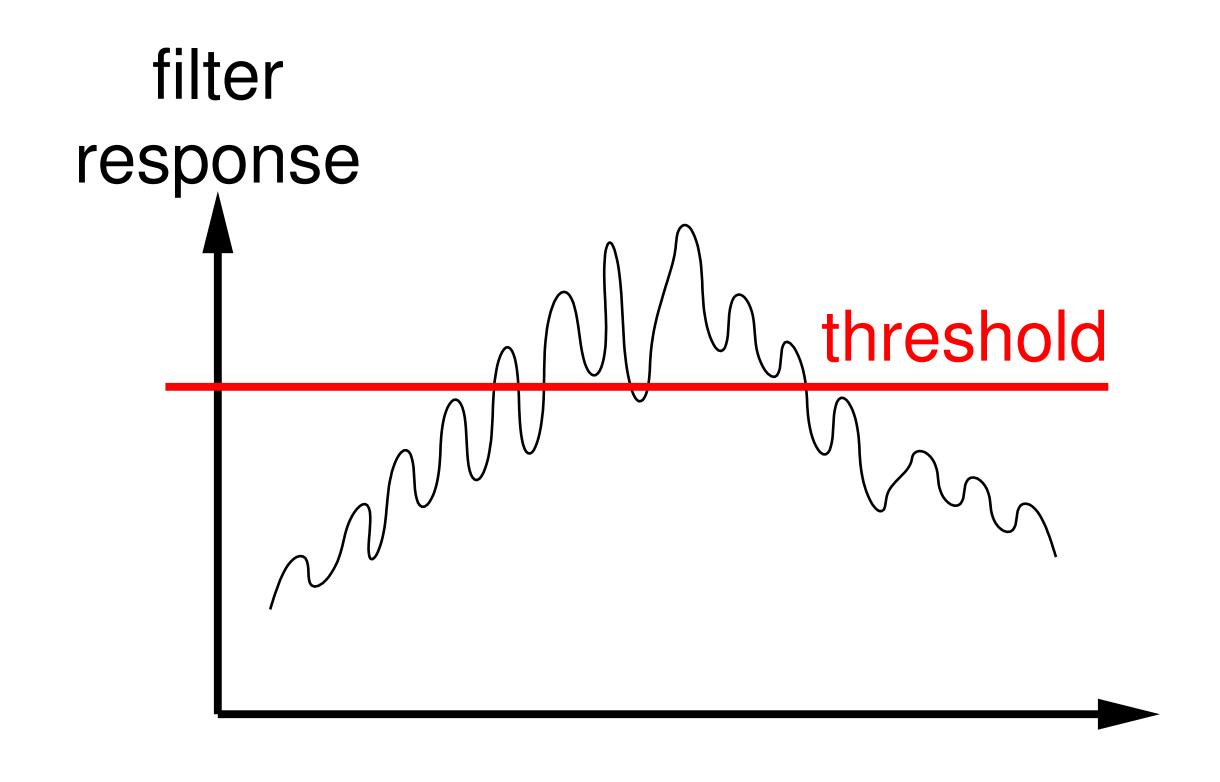
Example: Edge Detection



Question: How many edges are there?

Question: What is the position of each edge?

Example: Edge Detection



Question: How many edges are there?

Question: What is the position of each edge?

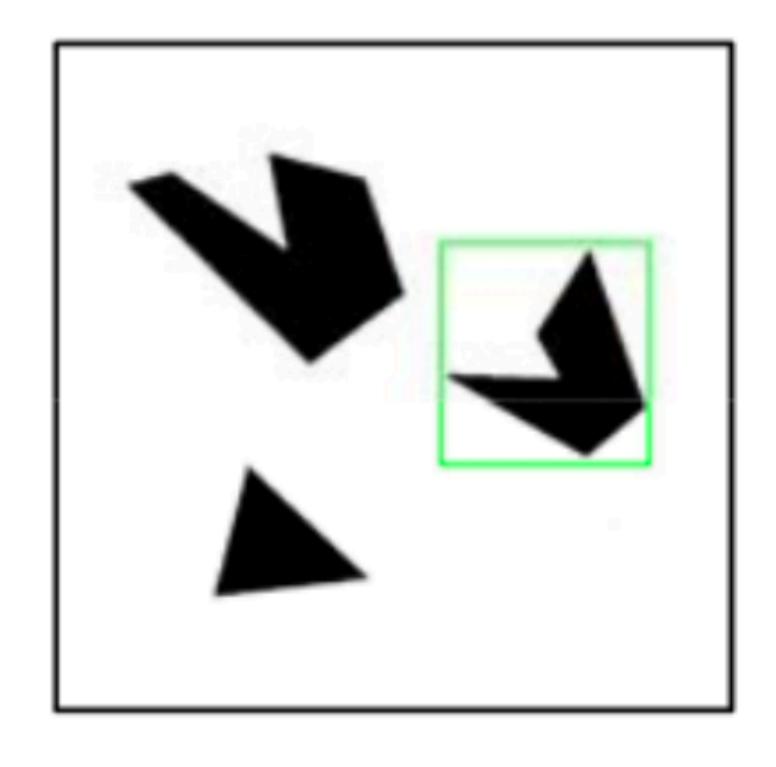
Canny Edge Detector

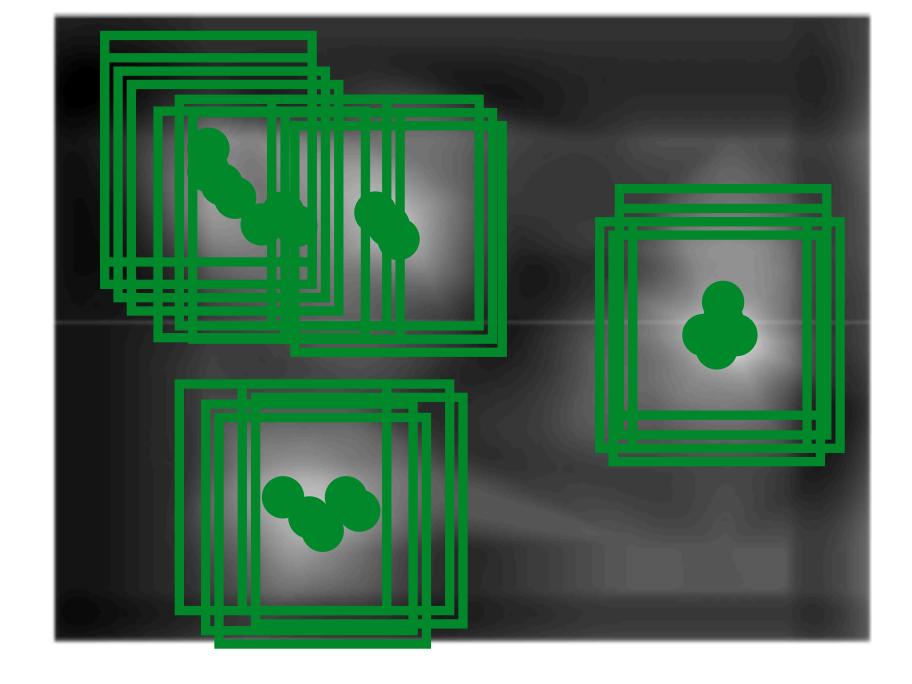
Steps:

- 1. Apply directional derivatives of Gaussian
- 2. Compute gradient magnitude and gradient direction
- 3. Non-maximum suppression
 - thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

Idea: suppress near-by similar detections to obtain one "true" result

Idea: suppress near-by similar detections to obtain one "true" result



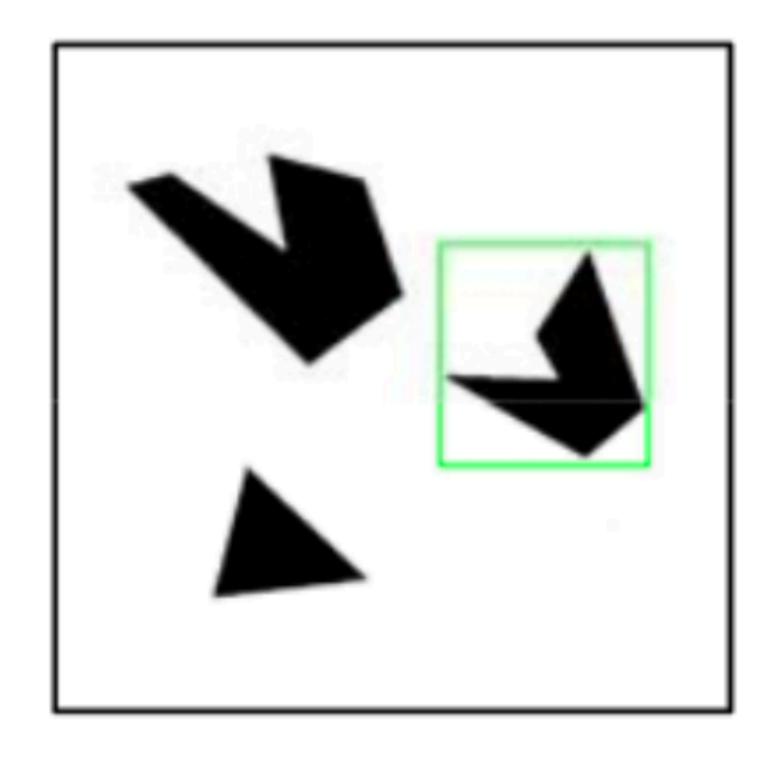


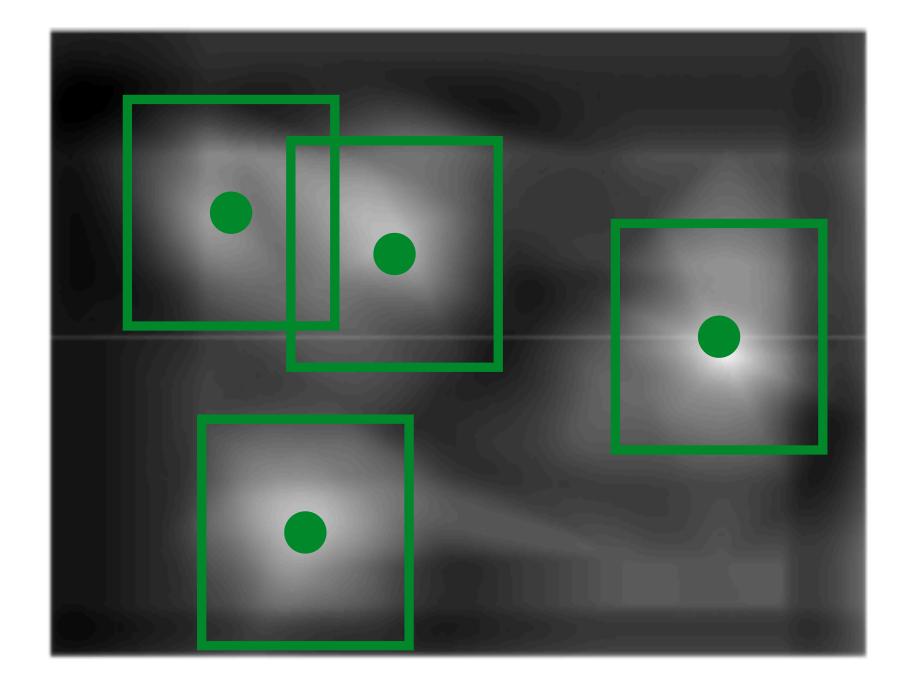
Detected template

Correlation map

Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one "true" result

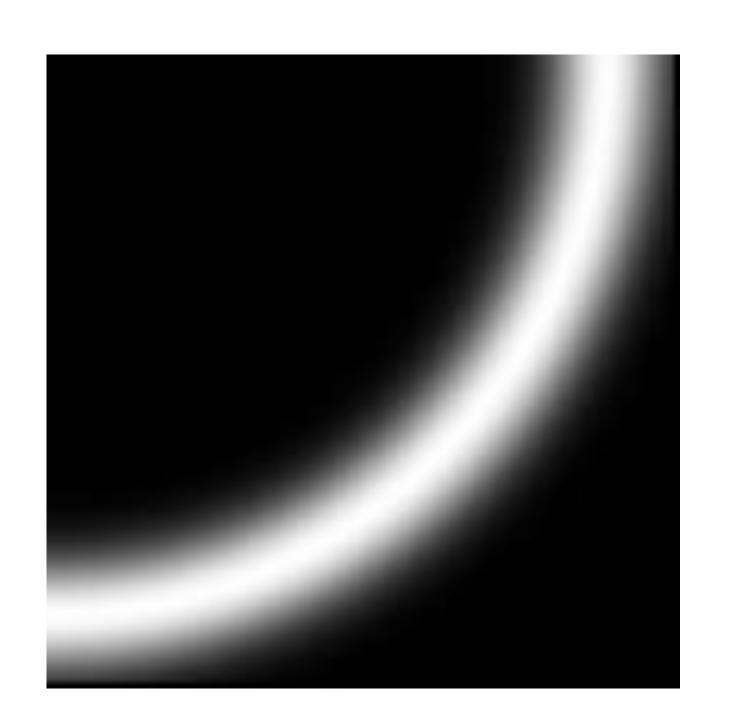




Detected template

Correlation map

Slide Credit: Kristen Grauman

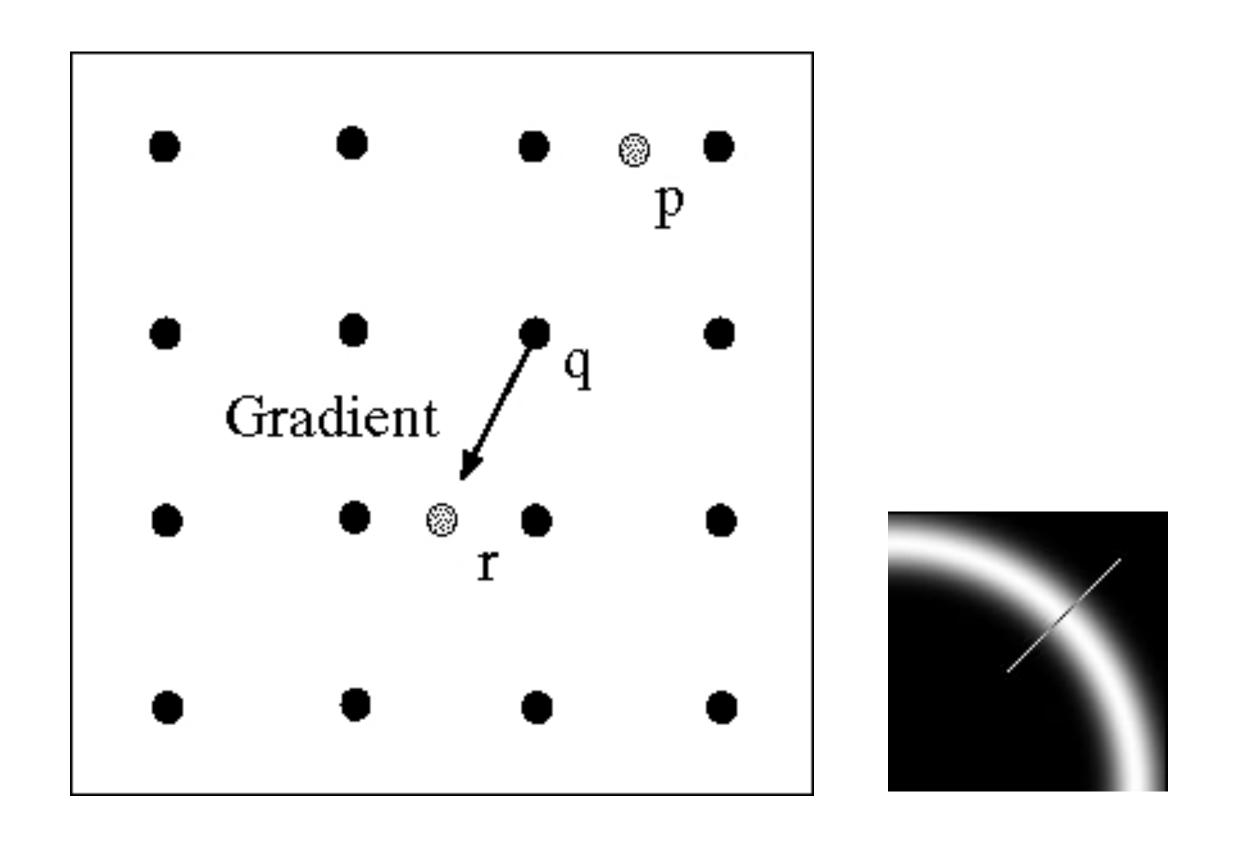




Forsyth & Ponce (1st ed.) Figure 8.11

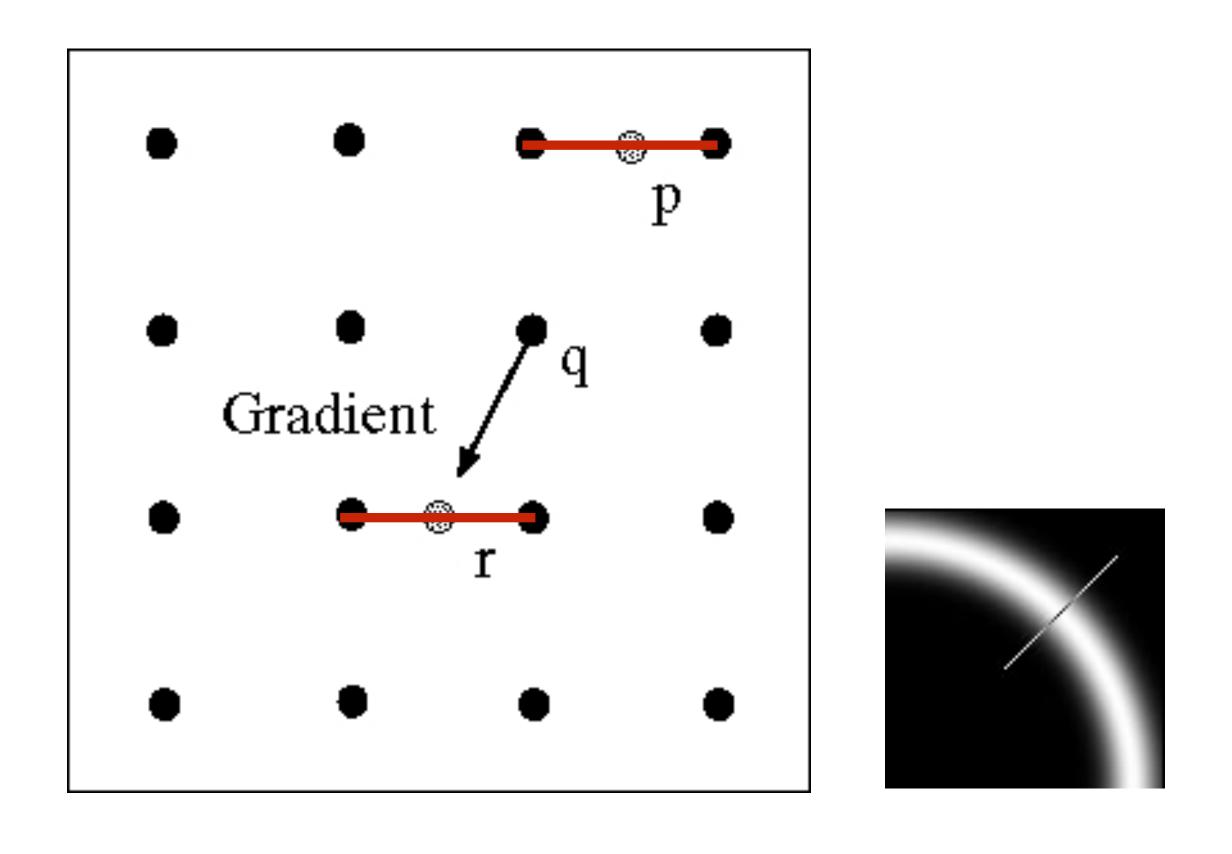
Select the image maximum point across the width of the edge

Value at q must be larger than interpolated values at p and r



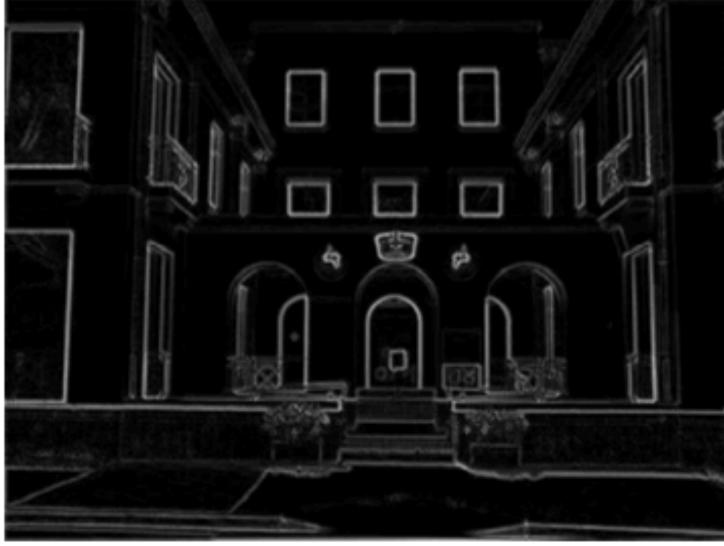
Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r



Forsyth & Ponce (2nd ed.) Figure 5.5 left

Example: Non-maxima Suppression



courtesy of G. Loy

Original Image

Gradient Magnitude

Non-maxima
Suppression

Slide Credit: Christopher Rasmussen

Forsyth & Ponce (1st ed.) Figure 8.13 top

Forsyth & Ponce (1st ed.) Figure 8.13 top

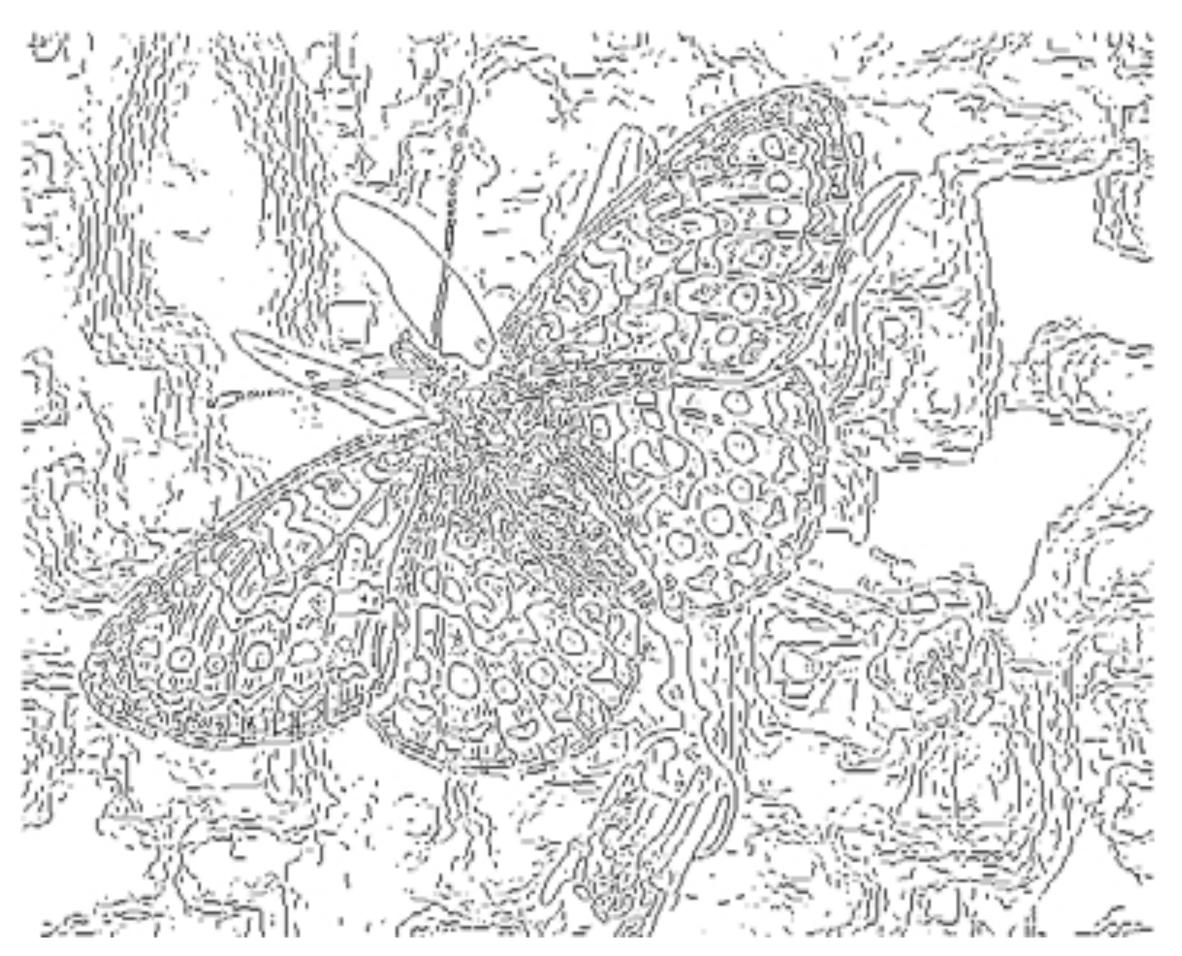


Figure 8.13 bottom left Fine scale ($\sigma=1$), high threshold

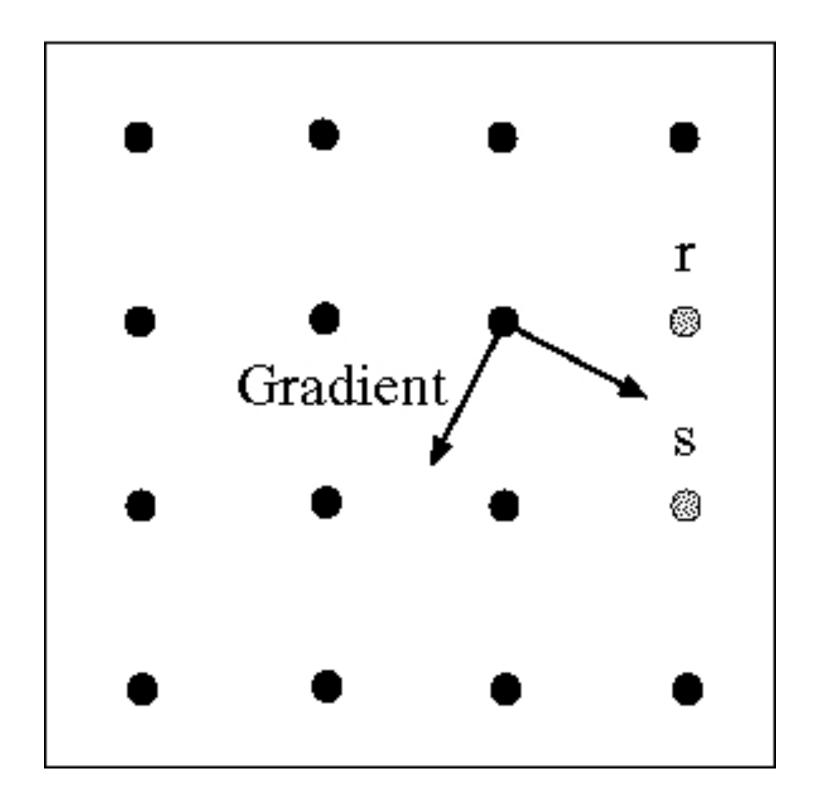
Forsyth & Ponce (1st ed.) Figure 8.13 top

Figure 8.13 bottom middle Fine scale ($\sigma=4$), high threshold

Forsyth & Ponce (1st ed.) Figure 8.13 top

Figure 8.13 bottom right Fine scale ($\sigma=4$), low threshold

Linking Edge Points



Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point is an **edge point**. Take the normal to the gradient at that point and use this to predict continuation points (either *r* or *s*)

Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis

Hysteresis: A lag or momentum factor

Idea: Maintain two thresholds \mathbf{k}_{high} and \mathbf{k}_{low}

- Use khigh to find strong edges to start edge chain
- Use klow to find weak edges which continue edge chain

Typical ratio of thresholds is (roughly):

$$\frac{\mathbf{k}_{high}}{\mathbf{k}_{low}} = 2$$

Canny Edge Detector

Original Image

Strong +
connected
Weak Edges

StrongEdges

Edges

Weak

courtesy of G. Loy