

CPSC 425: Computer Vision

Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Lecture 8: Scaled Representations

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today

Topics:

- Imaging Blending
- Scaled Representations

- Edge Detection
- Quiz 1

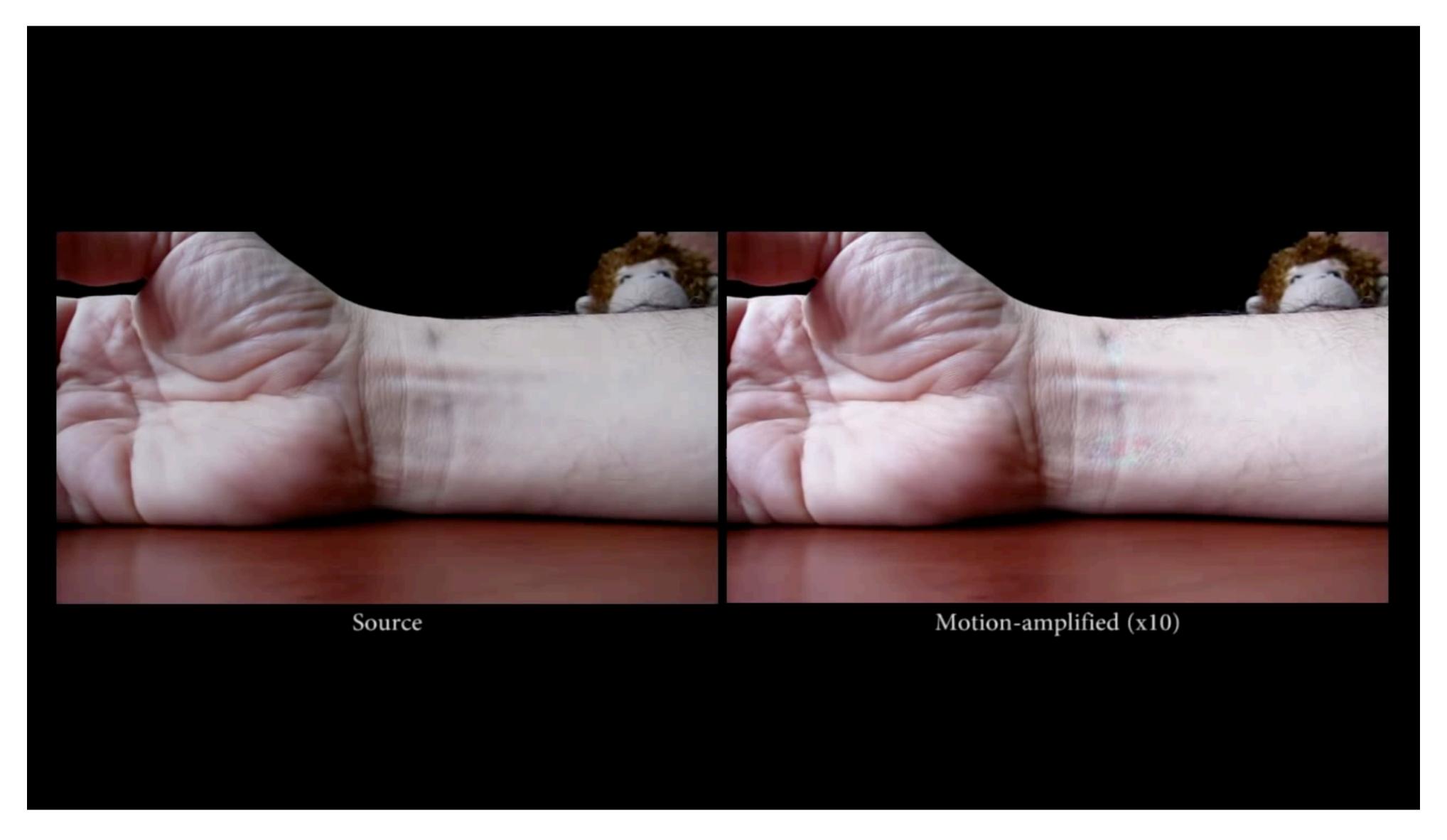
Readings:

- Today's Lecture: Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

Reminders:

Assignment 2: Scaled Representations, Face Detection and Image Blending

Today's "fun" Example: Eulerian Video Magnification



Today's "fun" Example: Eulerian Video Magnification

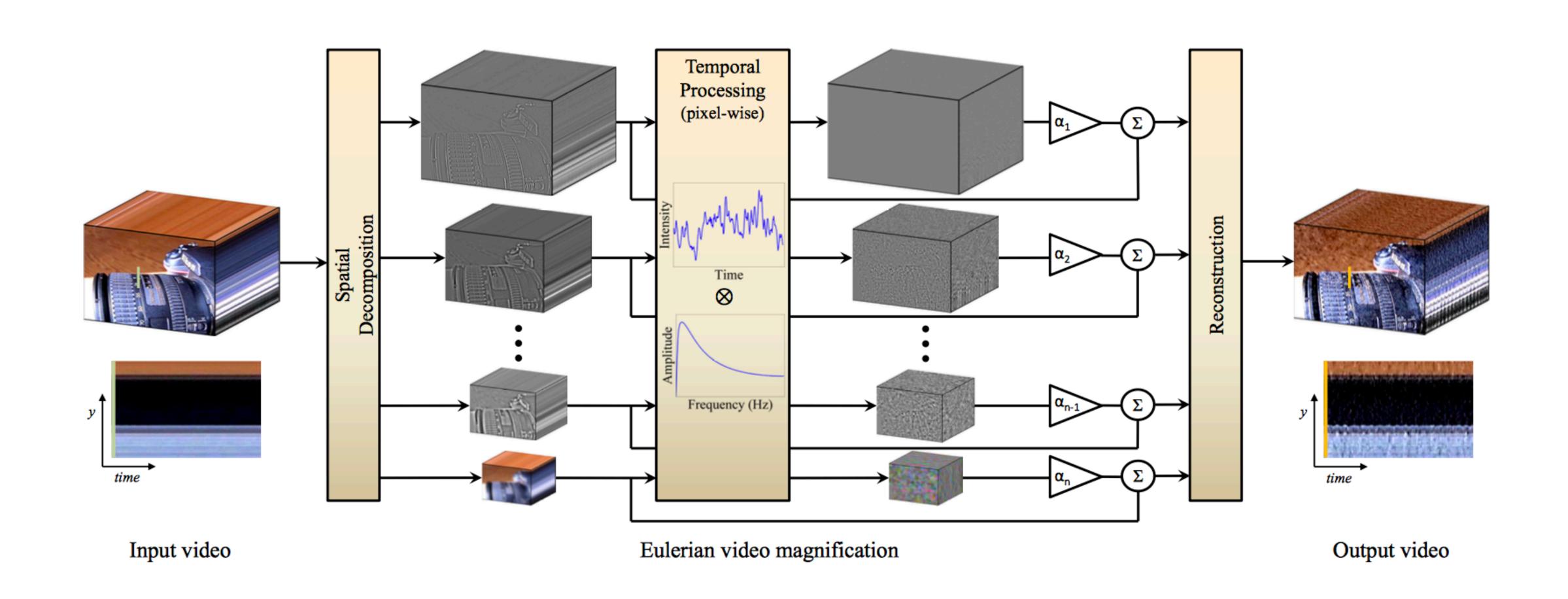
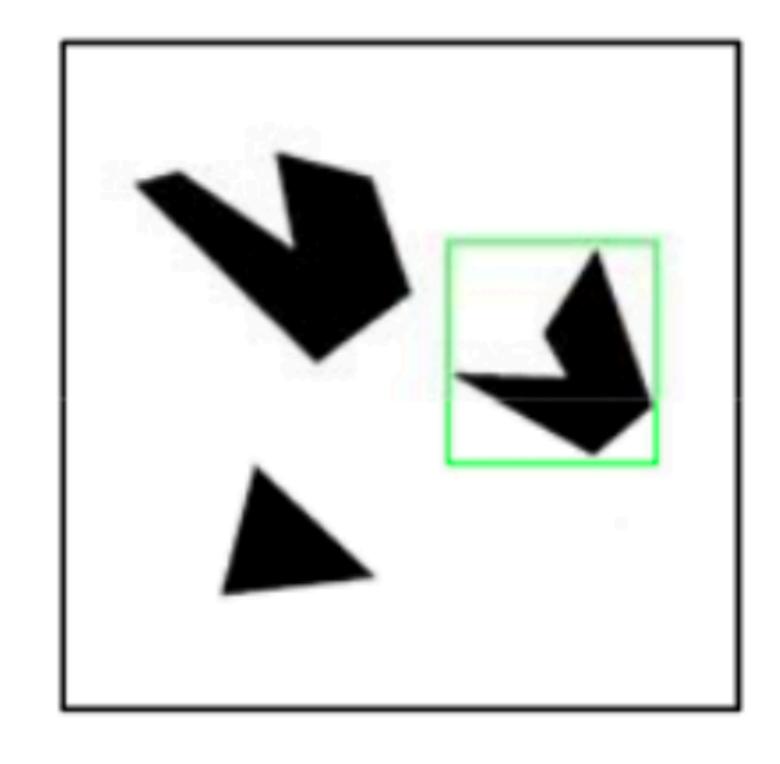
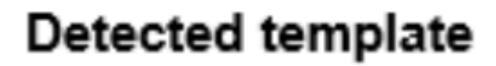
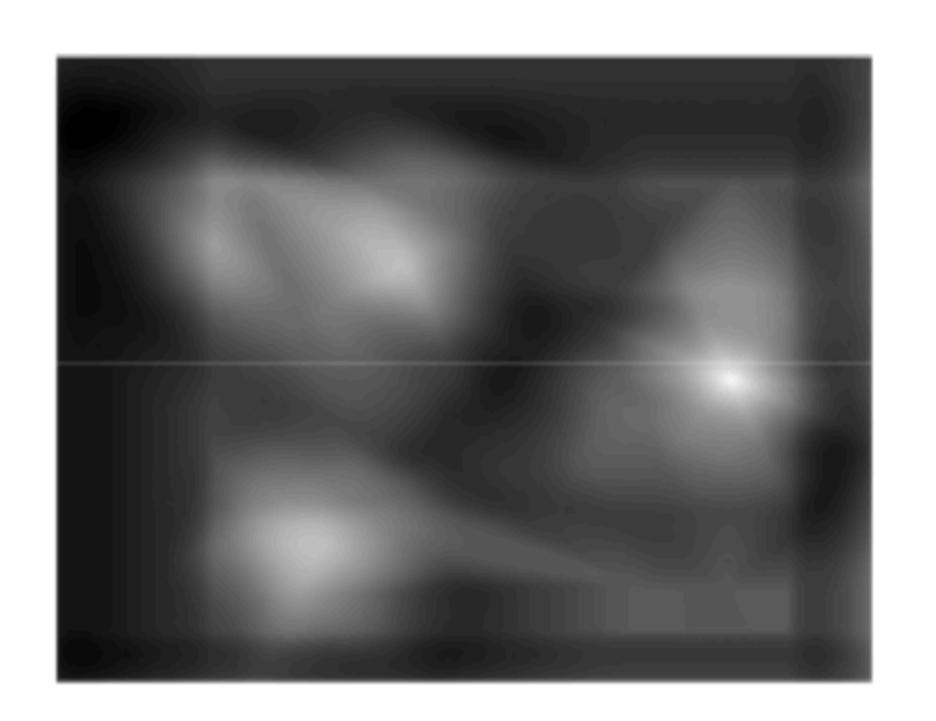


Figure From: Wu at al., Siggraph 2012

Lecture 7: Re-cap Template Matching







Correlation map

Lecture 7: Re-cap Template Matching

Linear filtering the entire image computes the entire set of dot products, one for each possible alignment of filter and image

Important Insight:

- filters look like the pattern they are intended to find
- filters find patterns they look like

Linear filtering is sometimes referred to as template matching

Lecture 7: Re-cap Template Matching

Similarity measures between a filter J local image region I

Correlation,
$$CORR = \mathbf{I} \cdot \mathbf{J} = \mathbf{I}^T \mathbf{J}$$

Normalised Correlation, NCORR =
$$\mathbf{I} \cdot \mathbf{J} = \mathbf{I}^T \mathbf{J}$$

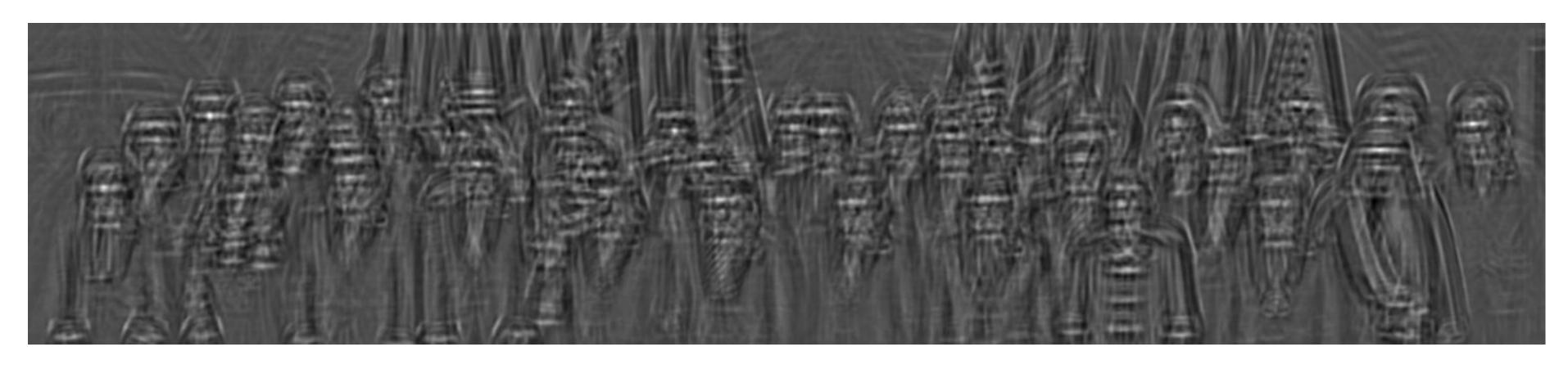
 $|\mathbf{I}| |\mathbf{J}| = \cos \theta$

Sum Squared Difference,
$$SSD = |\mathbf{I} - \mathbf{J}|^2$$

Normalized correlation varies between -1 and 1, attains the value 1 when the filter and image region are identical (up to a scale factor)

Minimising SSD and maximizing Normalized Correlation are equivalent if $|\mathbf{I}| = |\mathbf{J}| = 1$

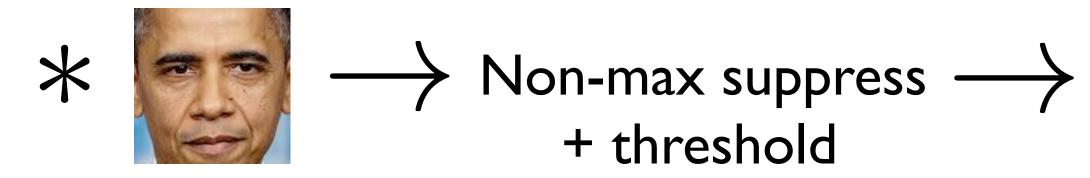
Correlate image with a template

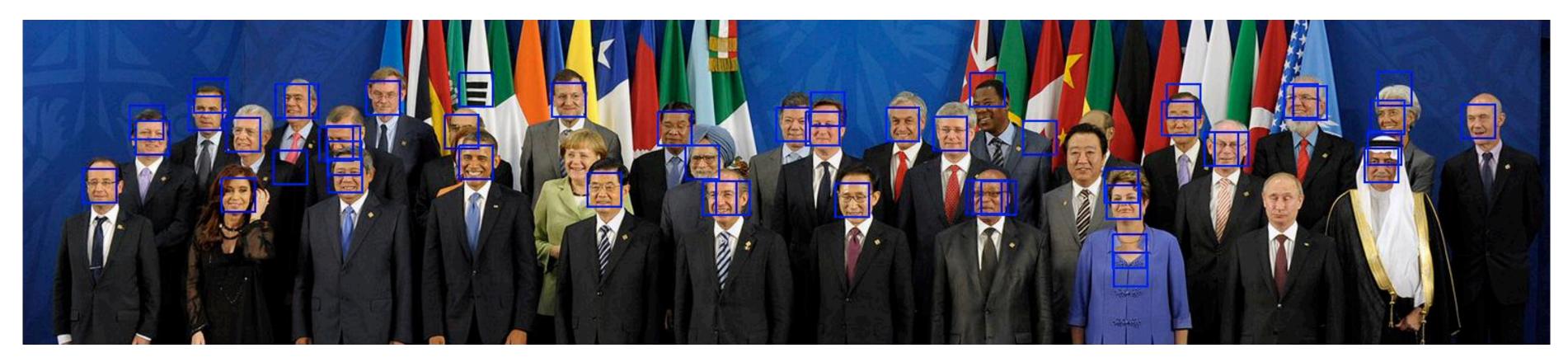


Correlate image with a template



Correlate image with a template





Detection Performance

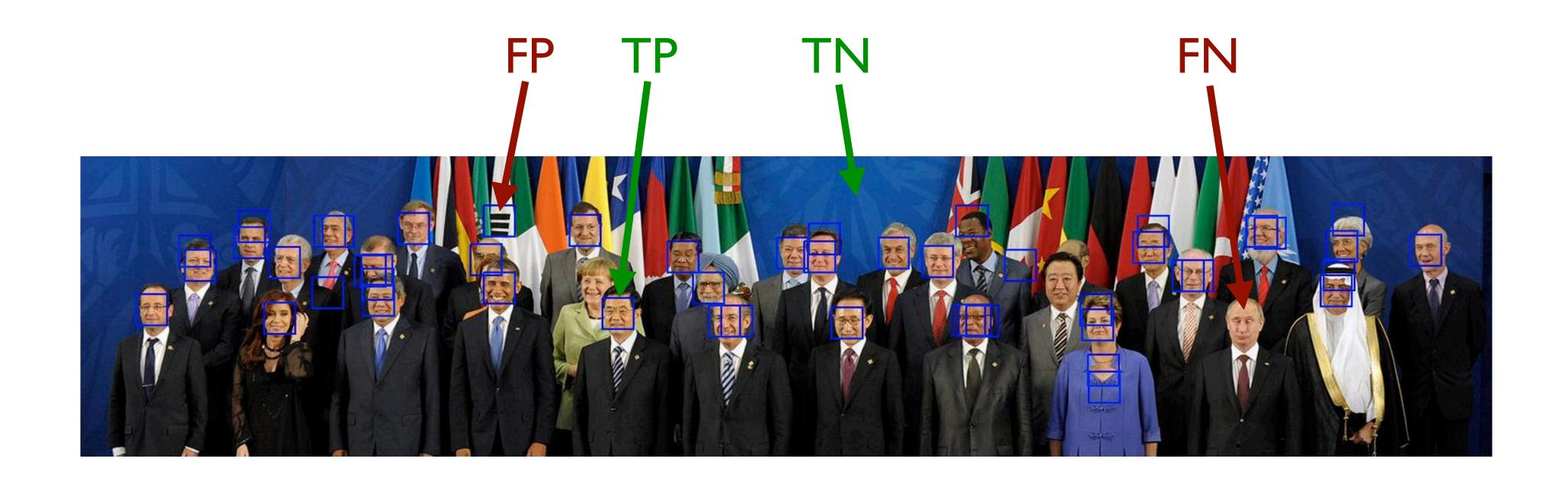
Types of errors in detection:

TP = True positive (true face and detected)

FP = False positive (not face and detected)

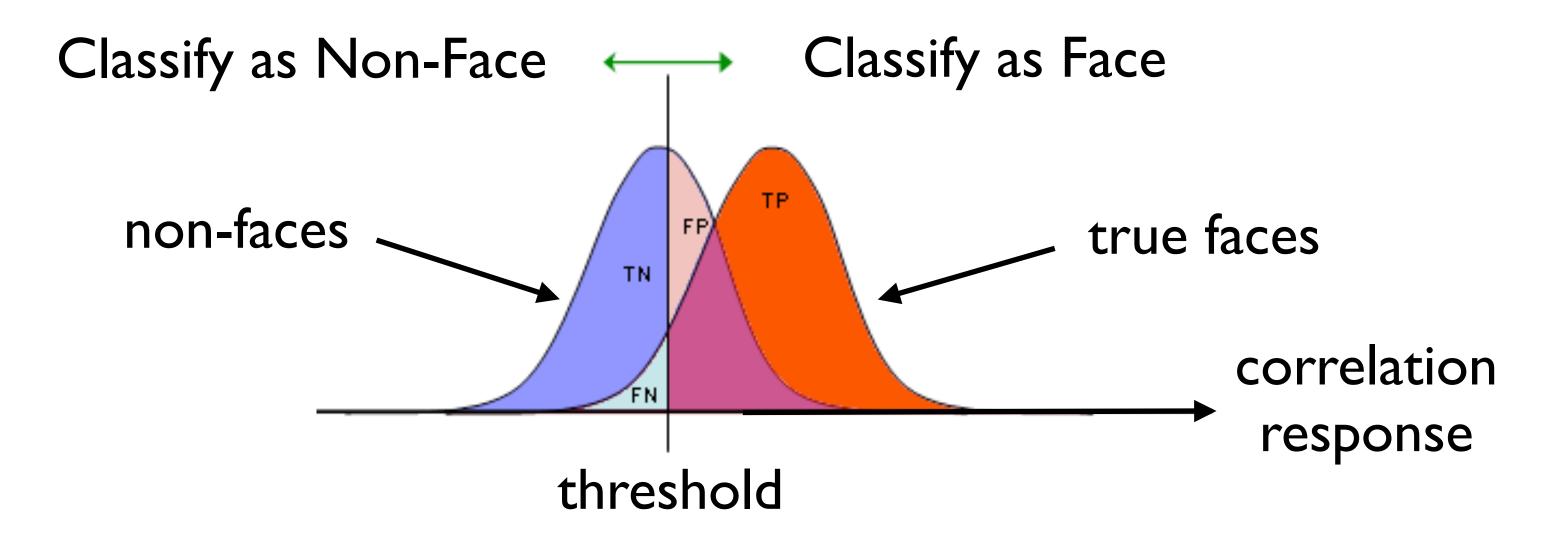
TN = True negative (not face and no detection)

FN = False negative (true face and not detected)



Detection Performance

Depending on where we set the threshold, we can tradeoff between true positives and false positives:



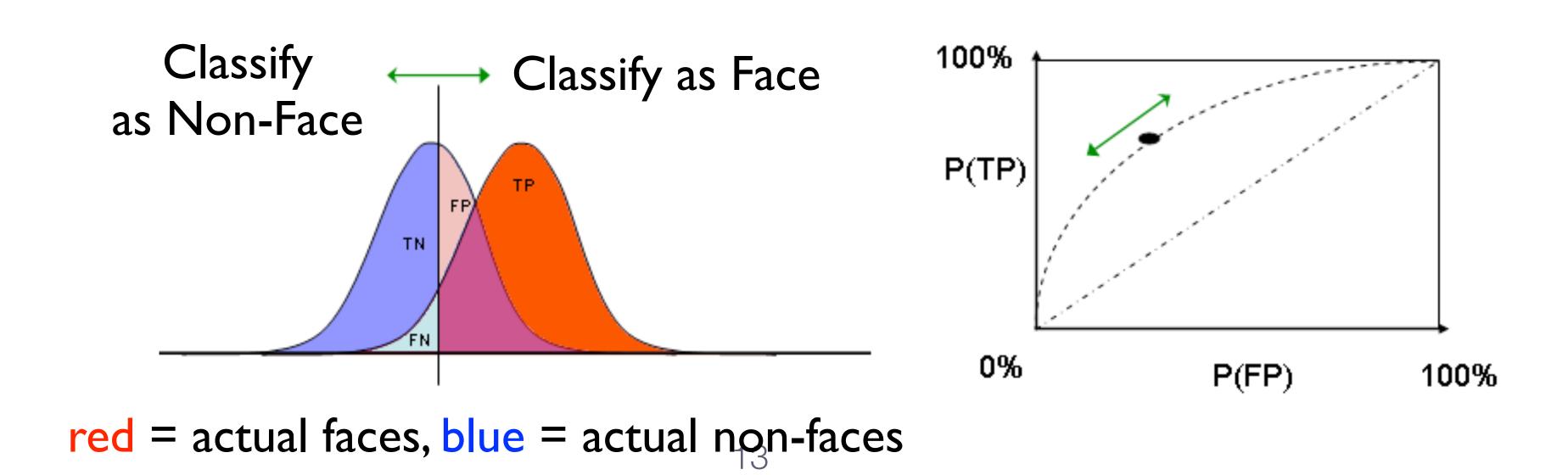
ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get 100% false positives as well!)

It is a tradeoff between true positive rate (TP) and false positive rate (FP)

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold

This is a Receiver Operating Characteristic (ROC) curve



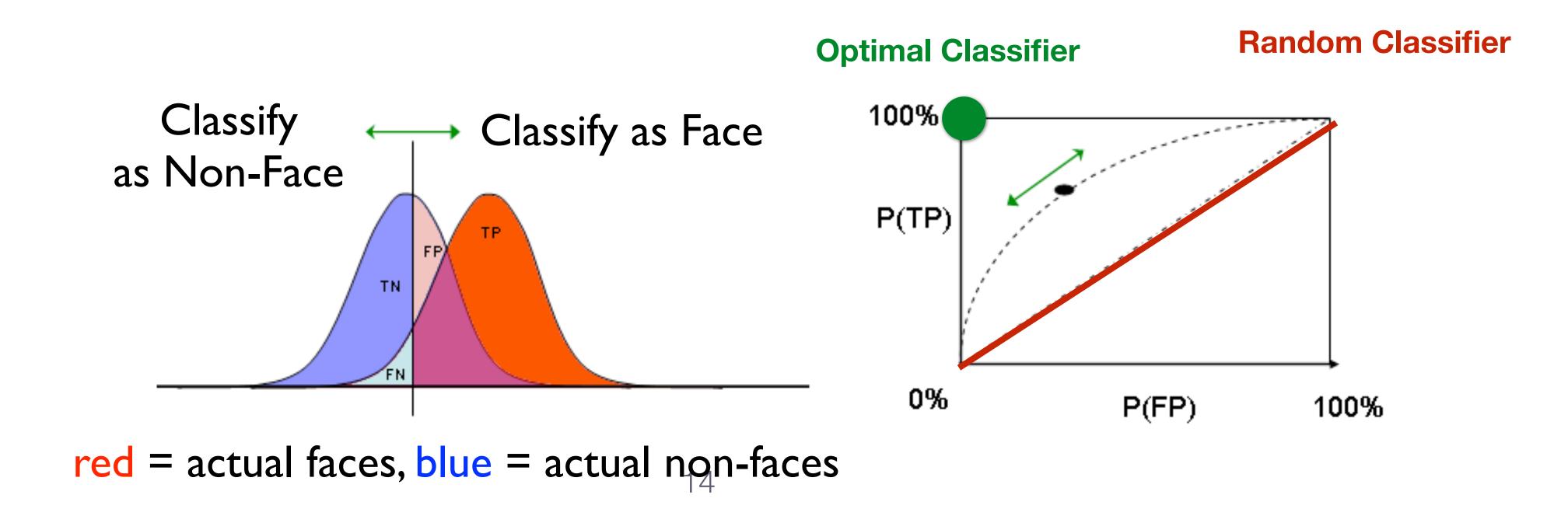
ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get 100% false positives as well!)

It is a tradeoff between true positive rate (TP) and false positive rate (FP)

We can plot a curve of all TP rates vs FP rates by varying the classifier threshold

This is a Receiver Operating Characteristic (ROC) curve

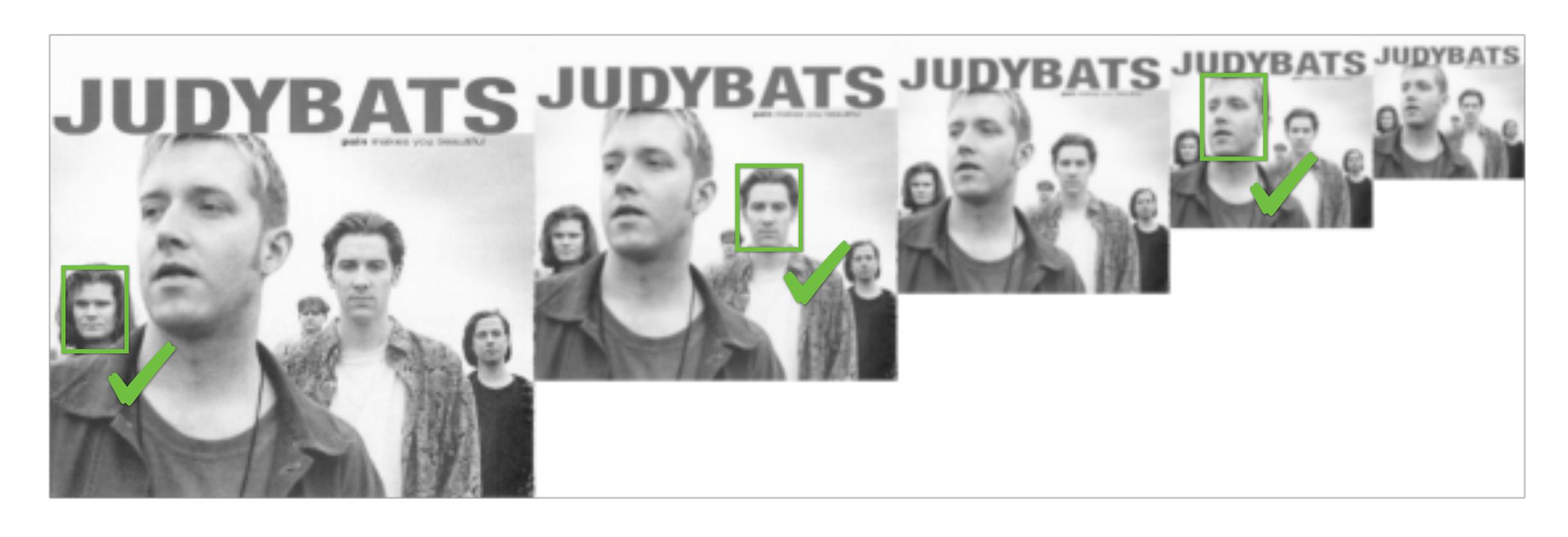


Correlation with a fixed-sized template only detects faces at specific scales

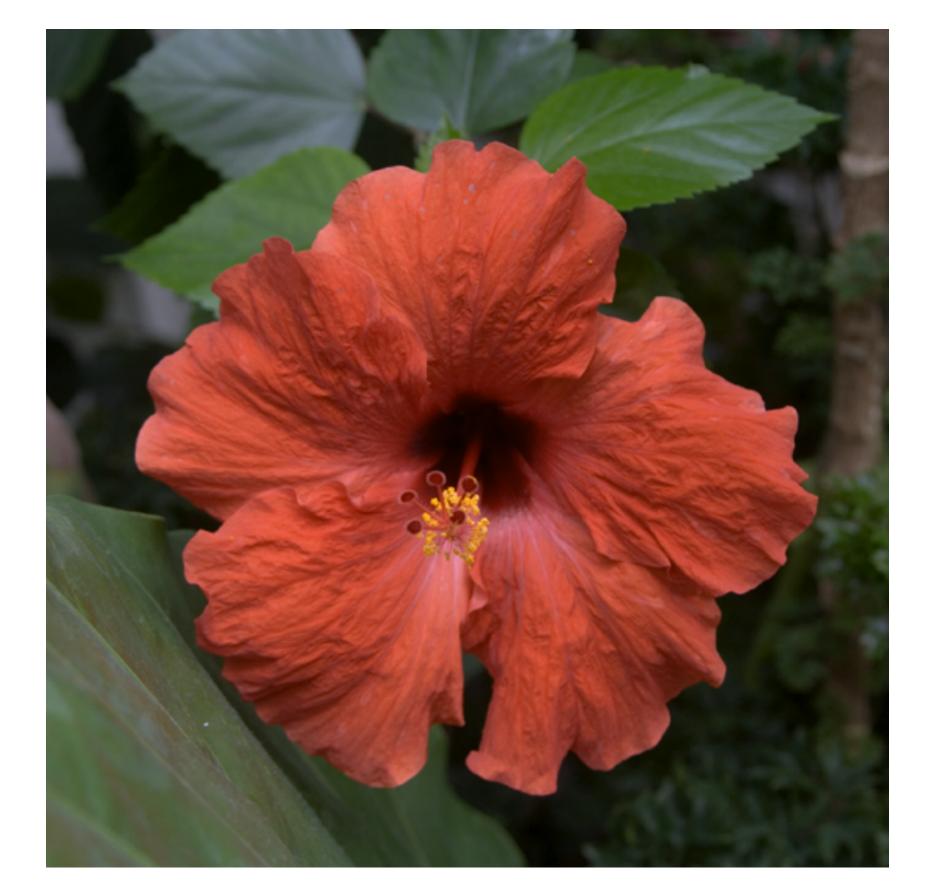
Image Pyramid

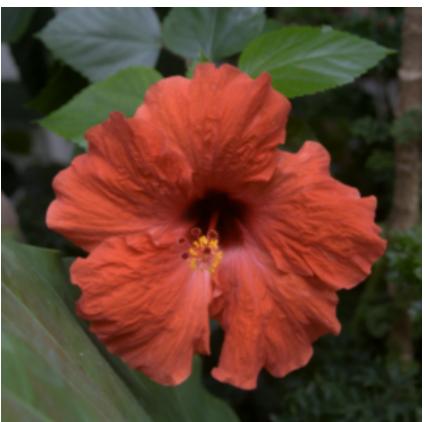
Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale

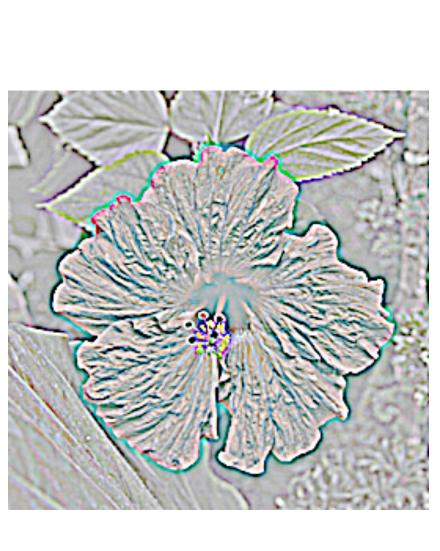


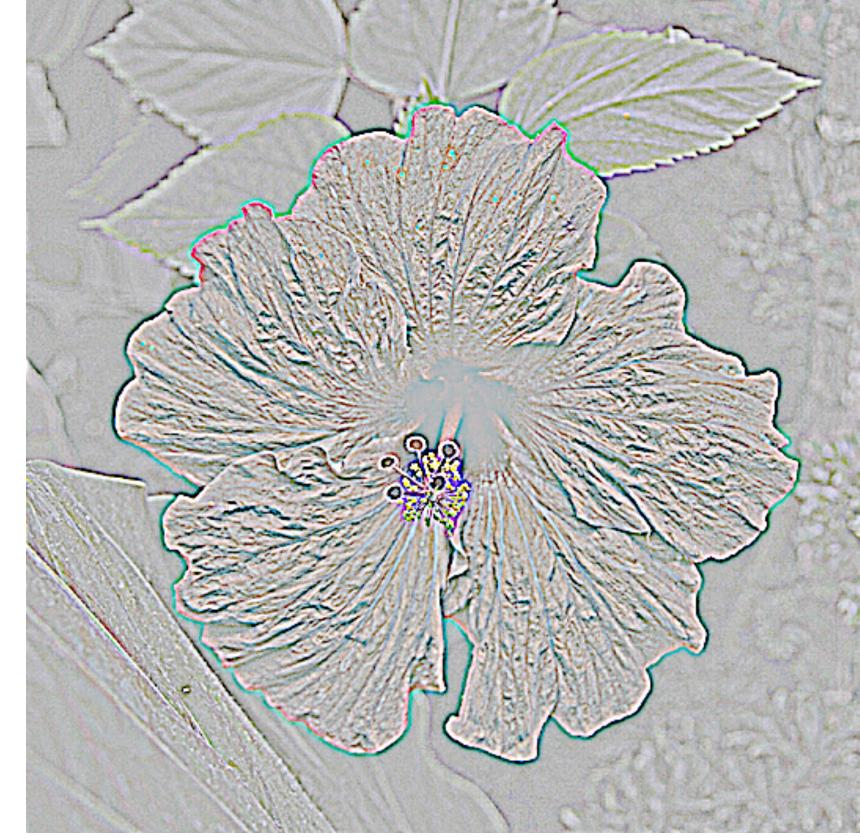
Gaussian vs Laplacian Pyramid

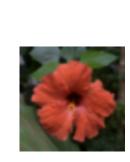


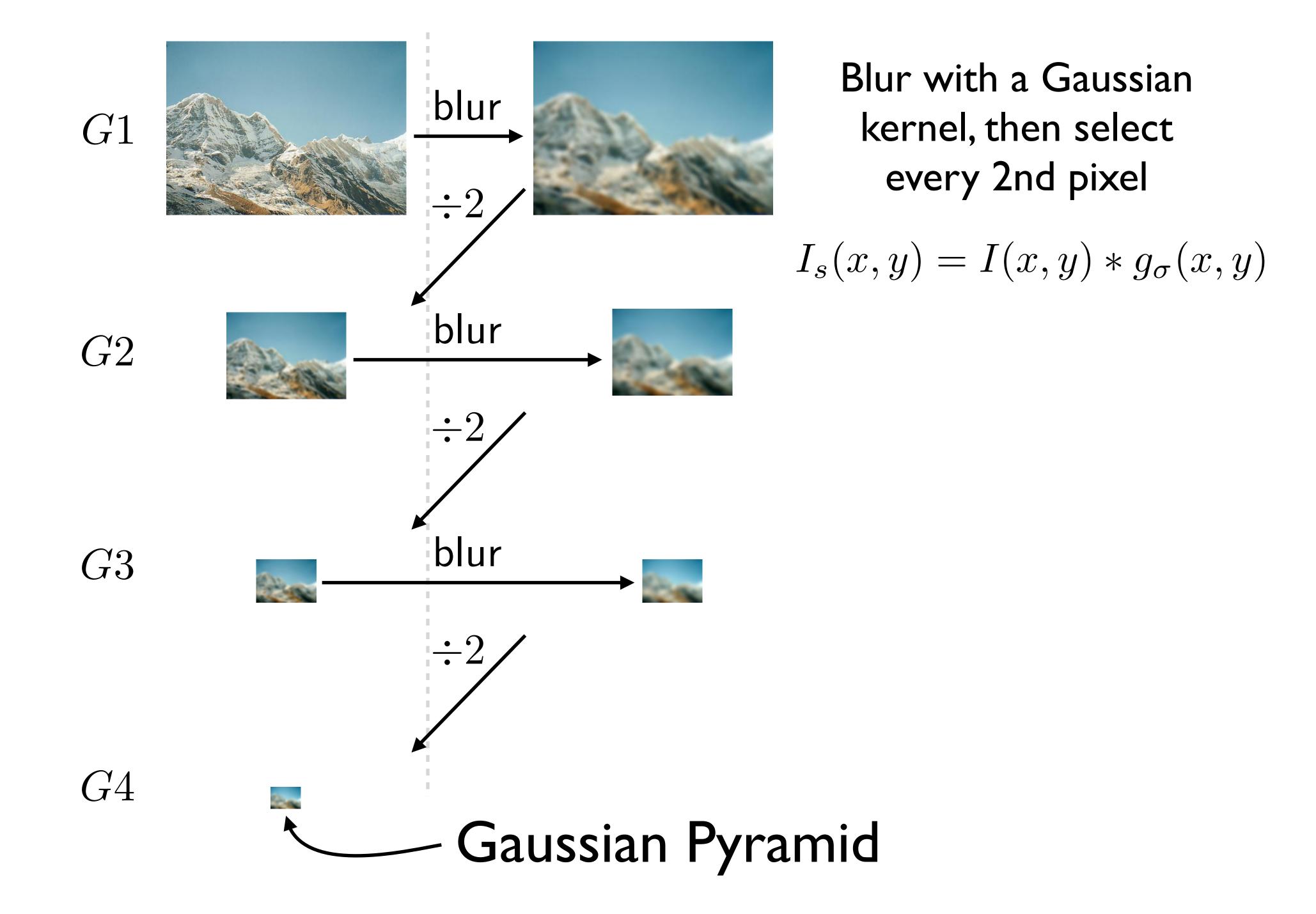


Shown in opposite order for space





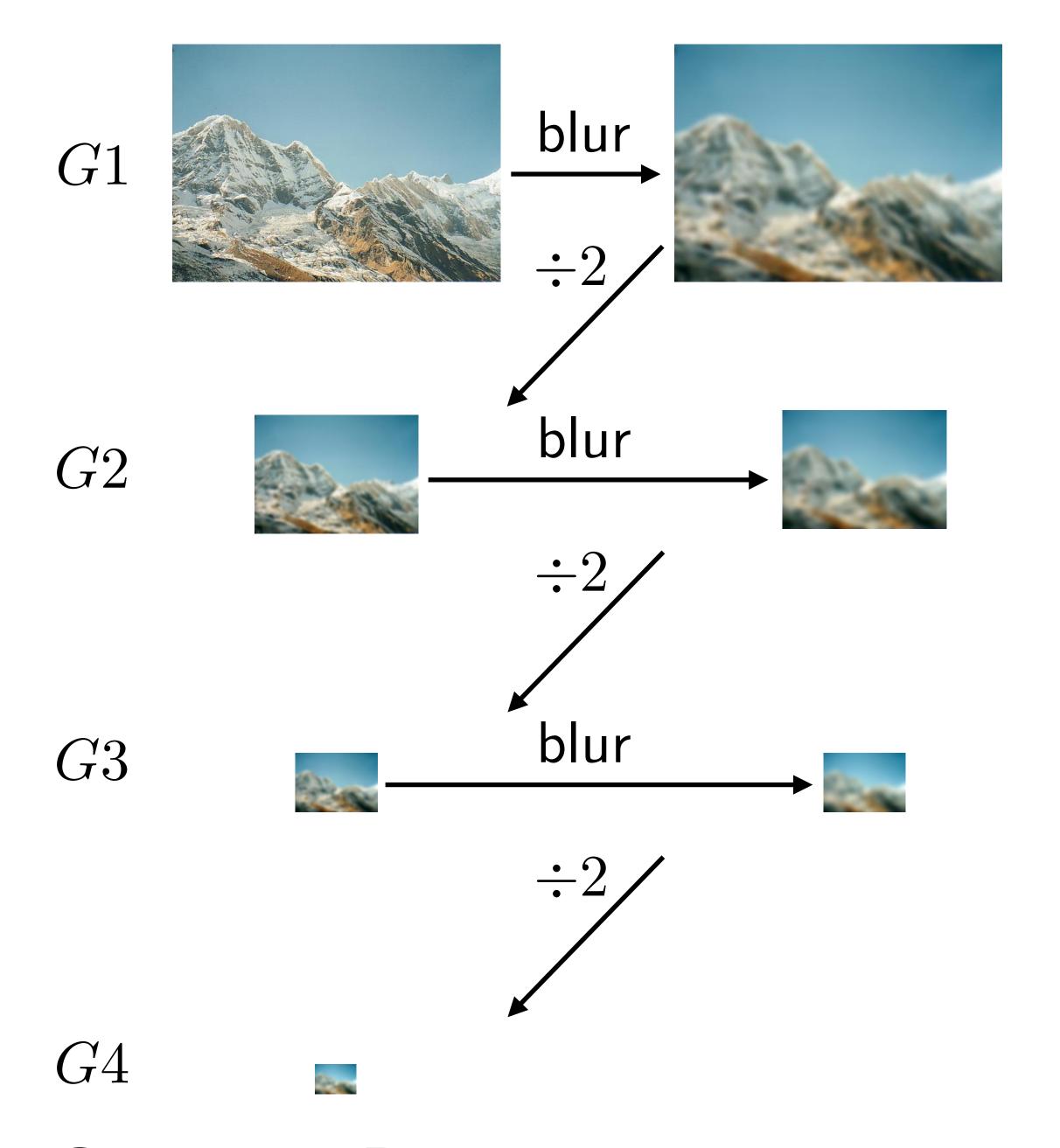




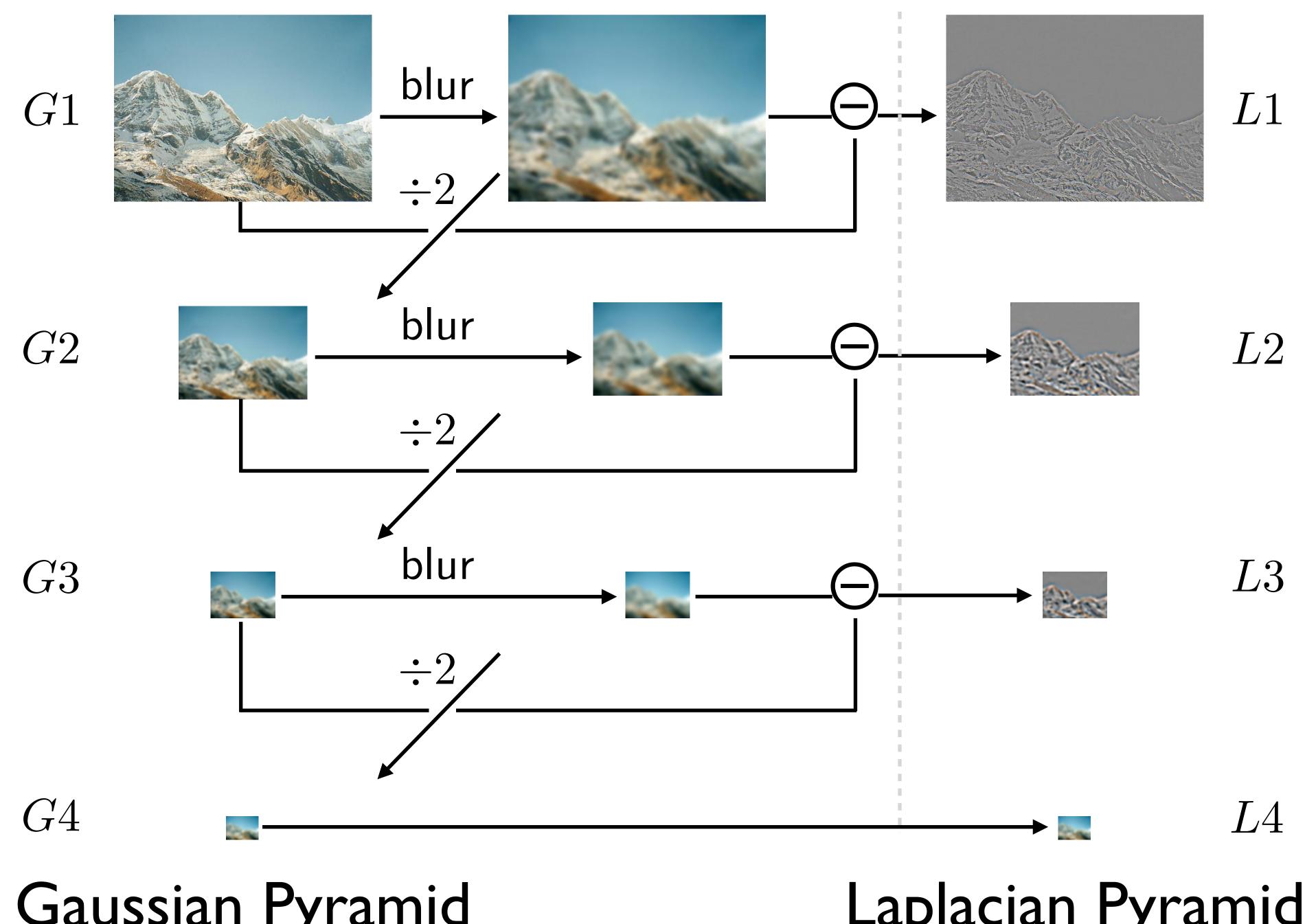


G4

Gaussian Pyramid

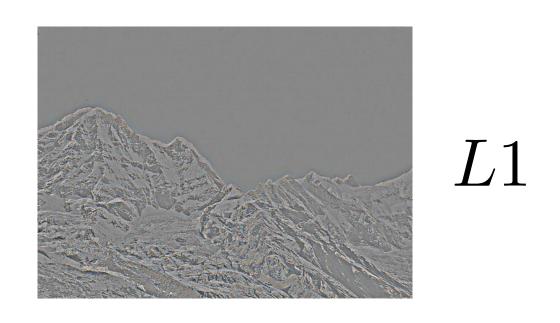


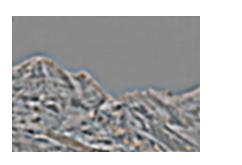
Gaussian Pyramid



Gaussian Pyramid

Laplacian Pyramid





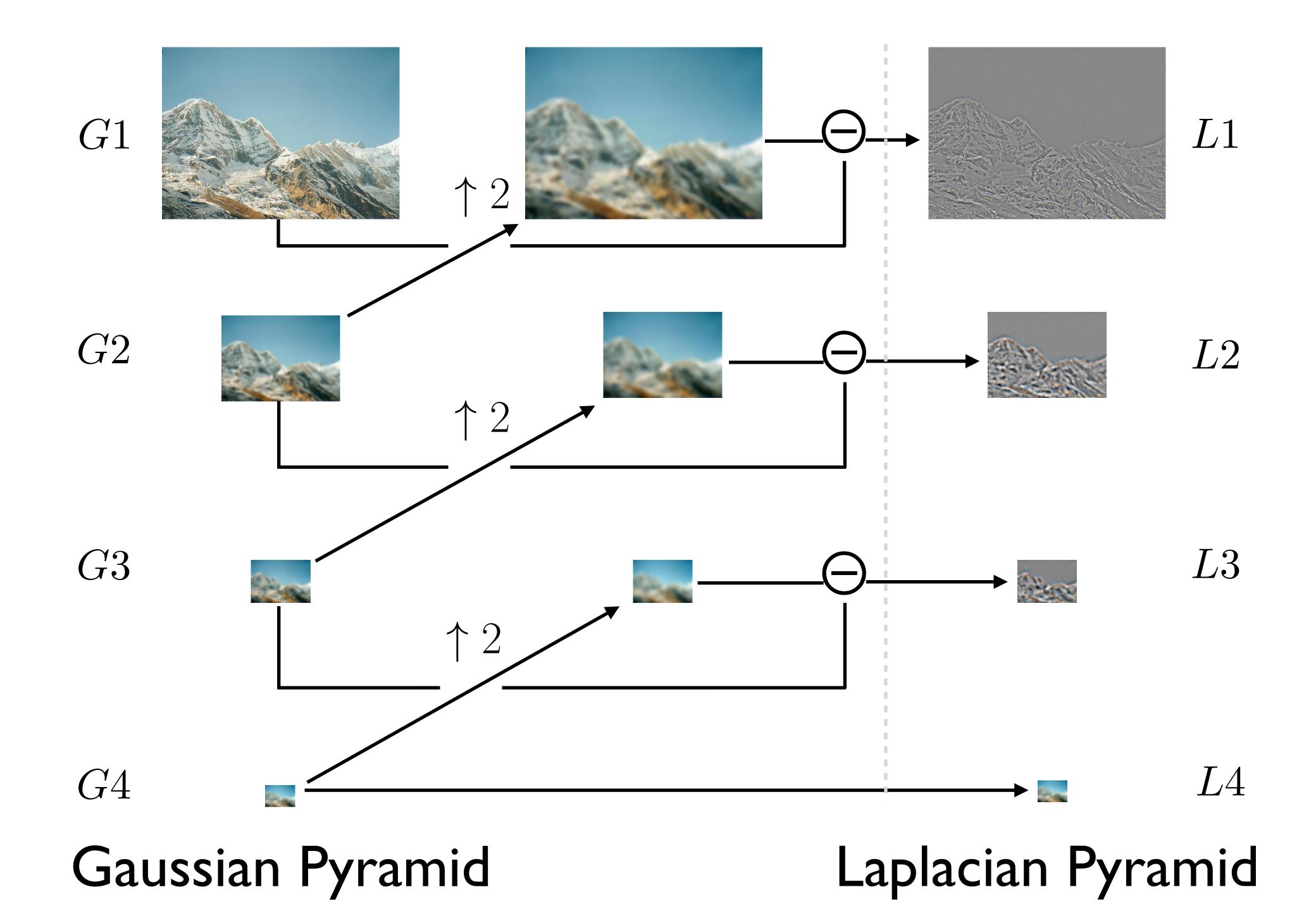
L2

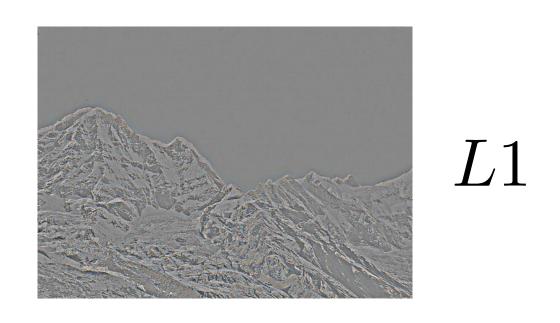
L3

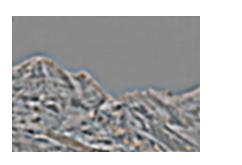
9

L4

Laplacian Pyramid







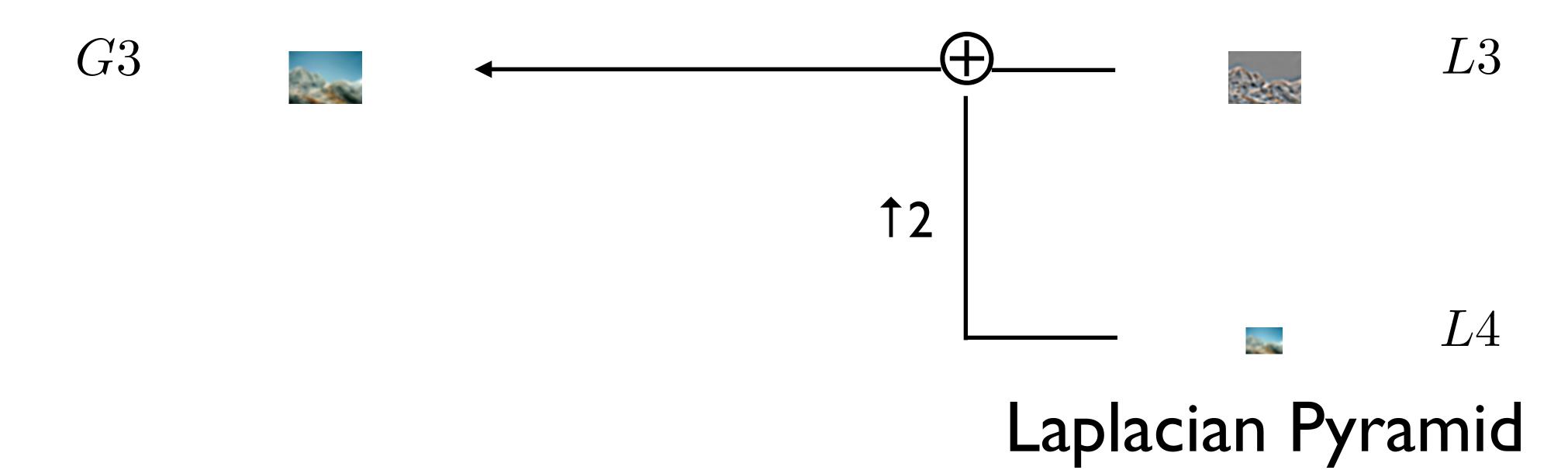
L2

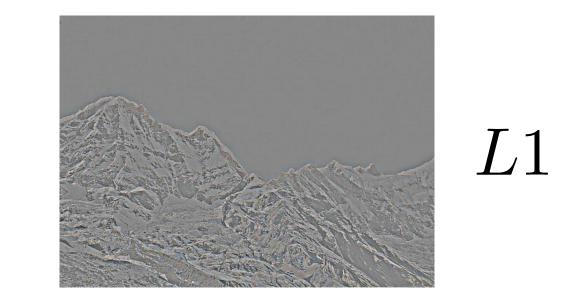
L3

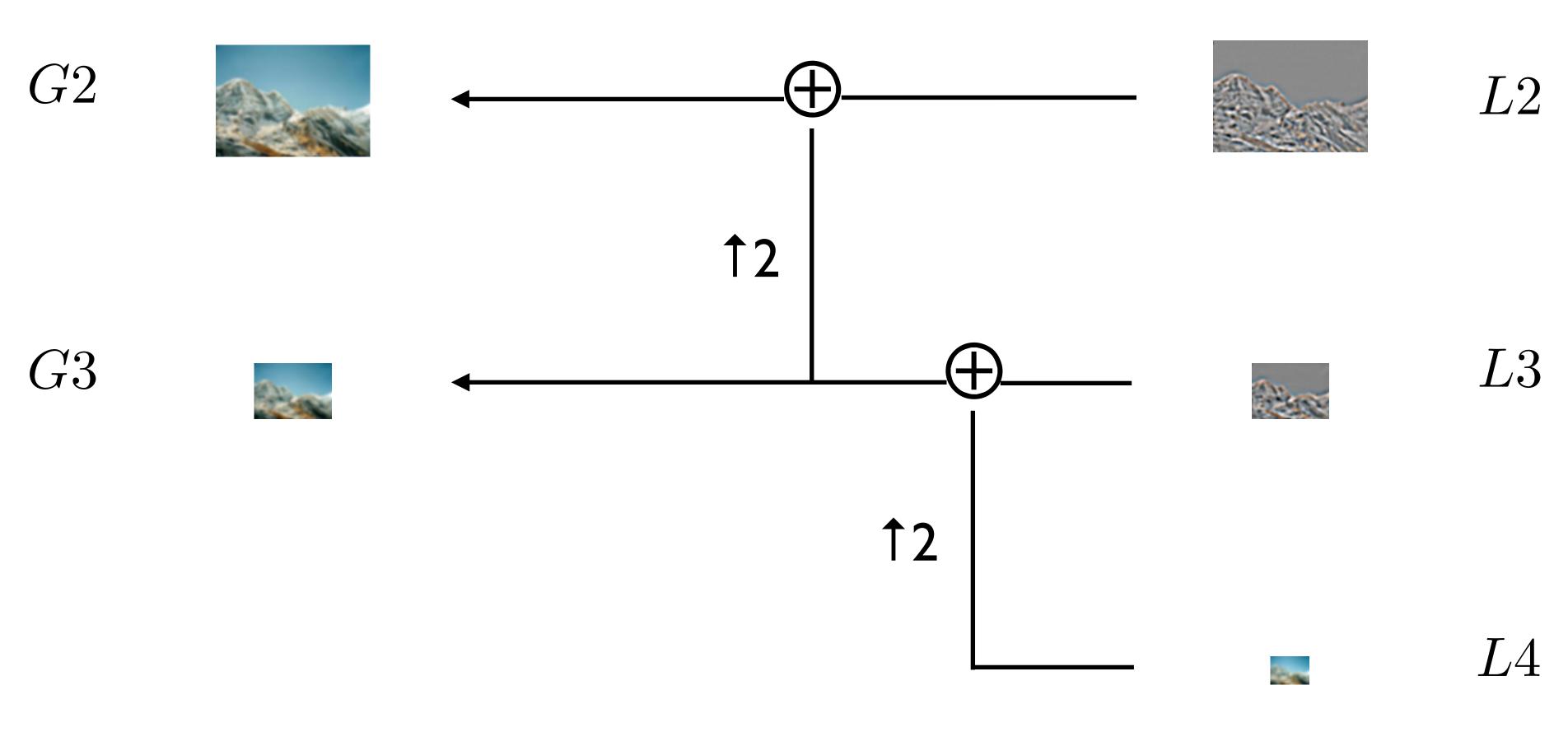
9

L4

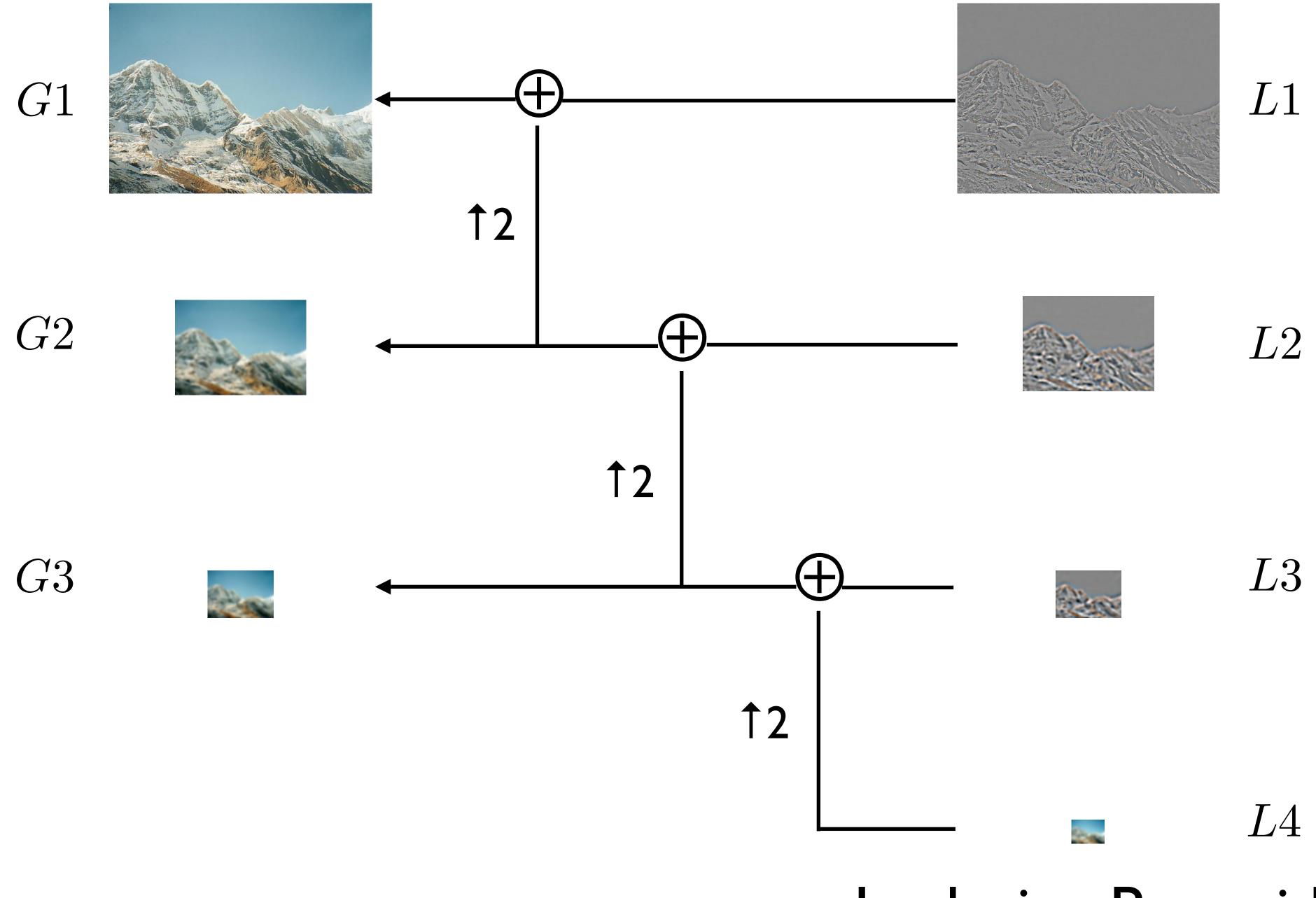
Laplacian Pyramid



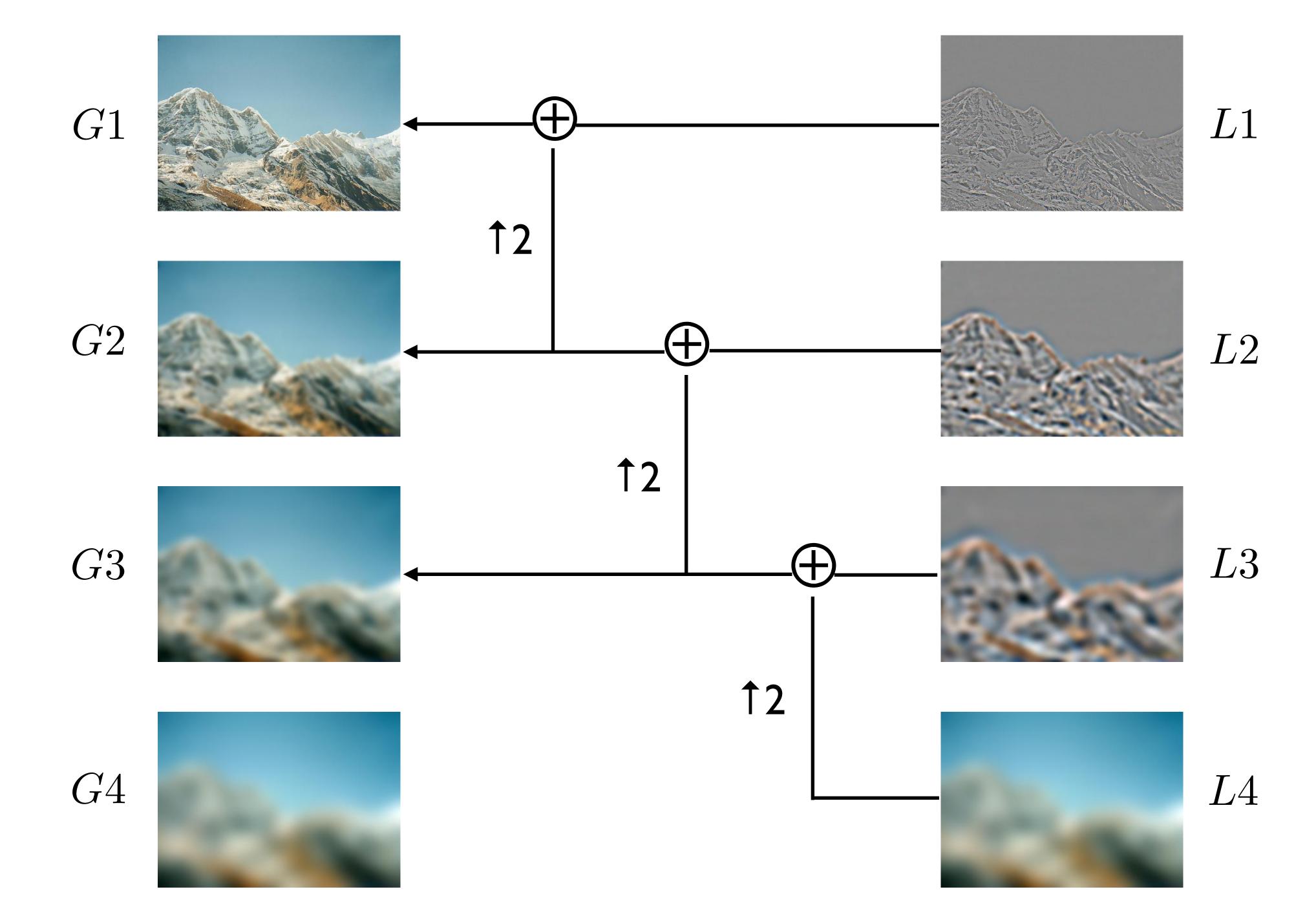


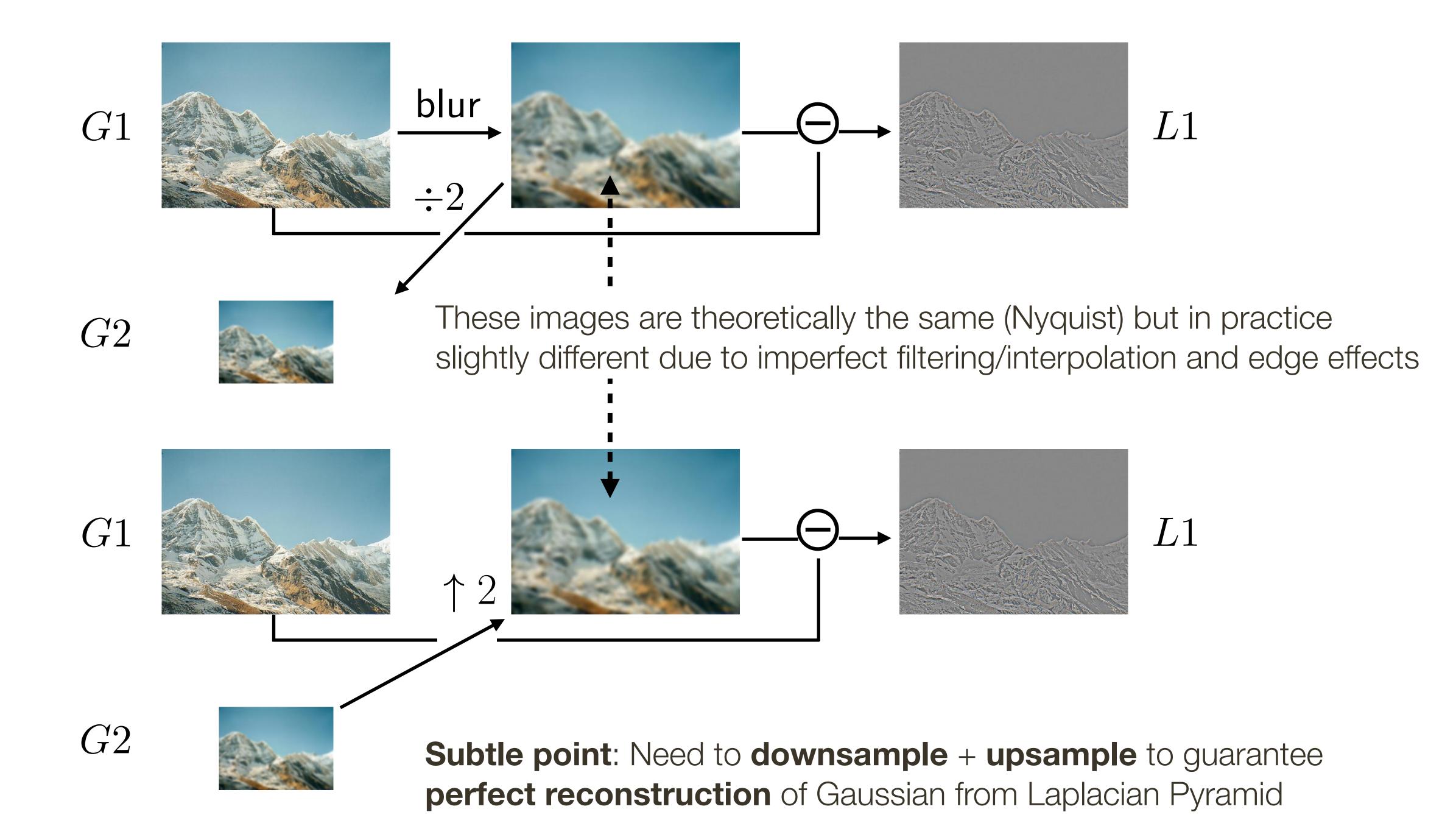


Laplacian Pyramid

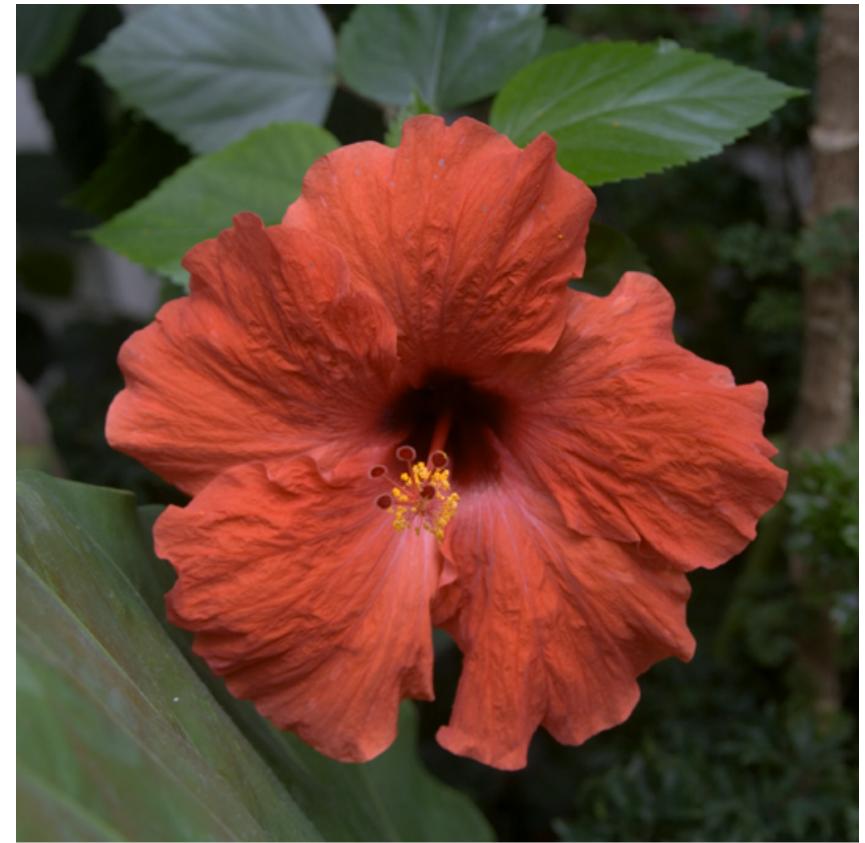


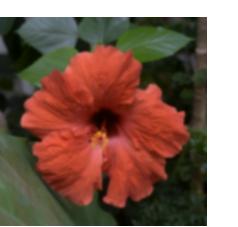
Laplacian Pyramid



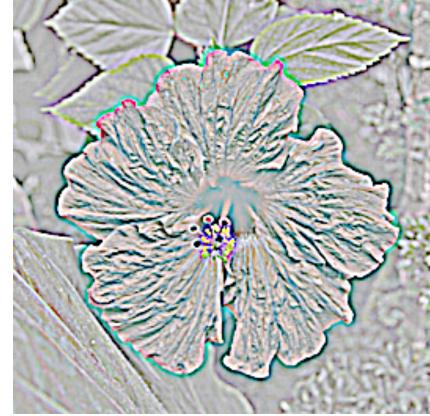


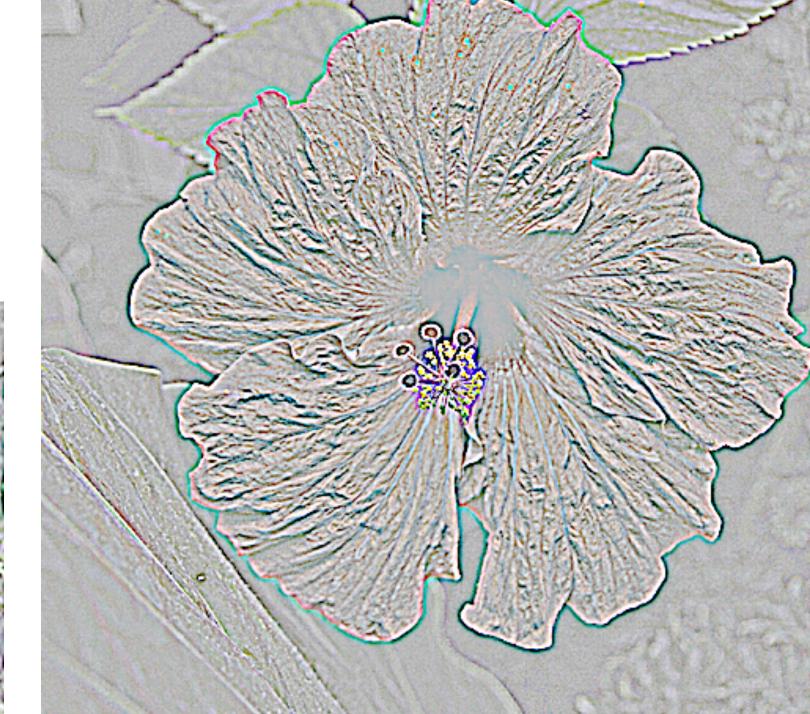
Gaussian vs Laplacian Pyramid





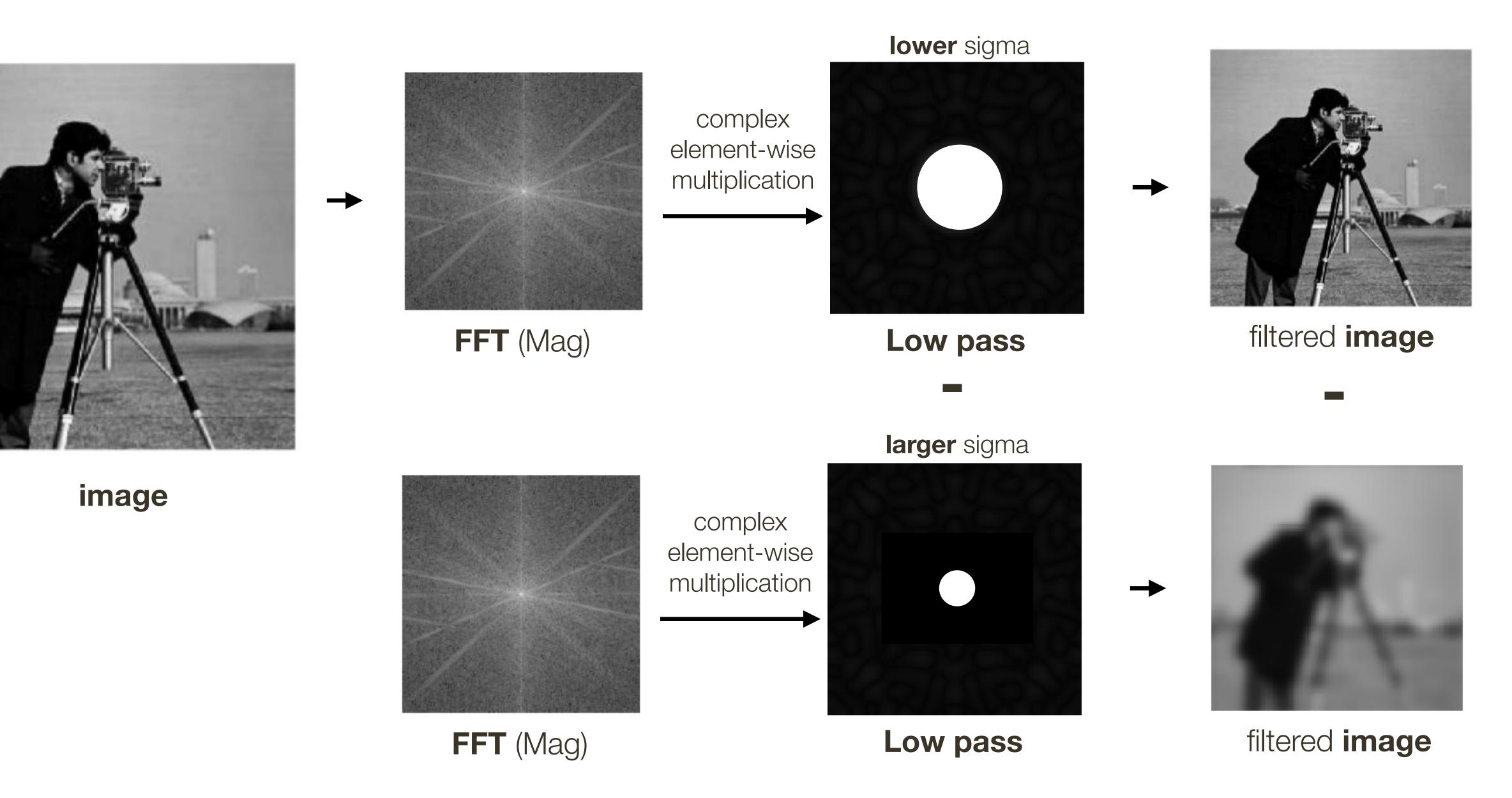
Shown in opposite order for space



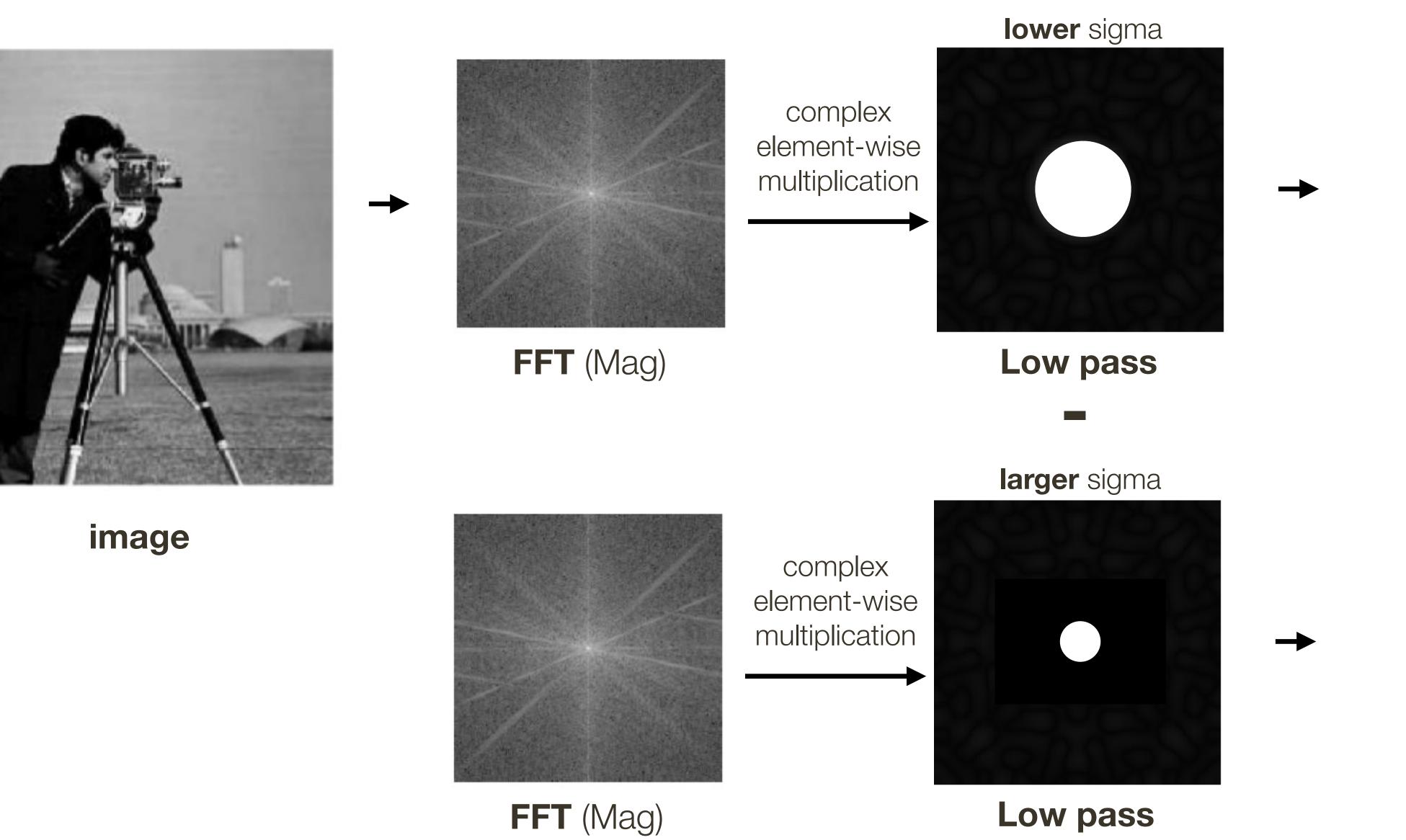


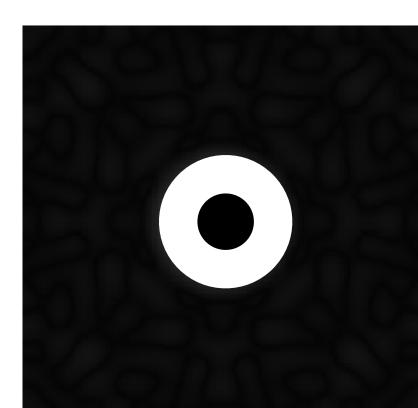
Which one takes more space to store?

Laplacian is a Bandpass Filter

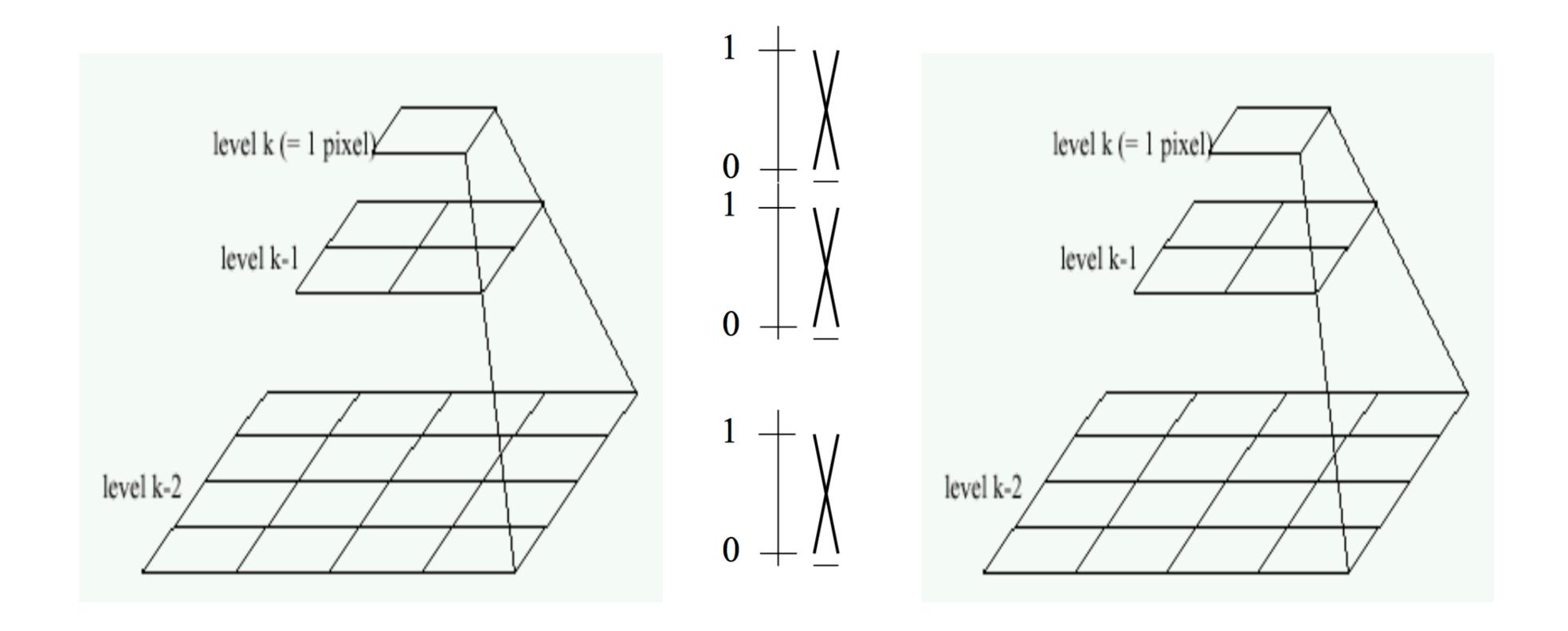


Laplacian is a Bandpass Filter





Application: Image Blending



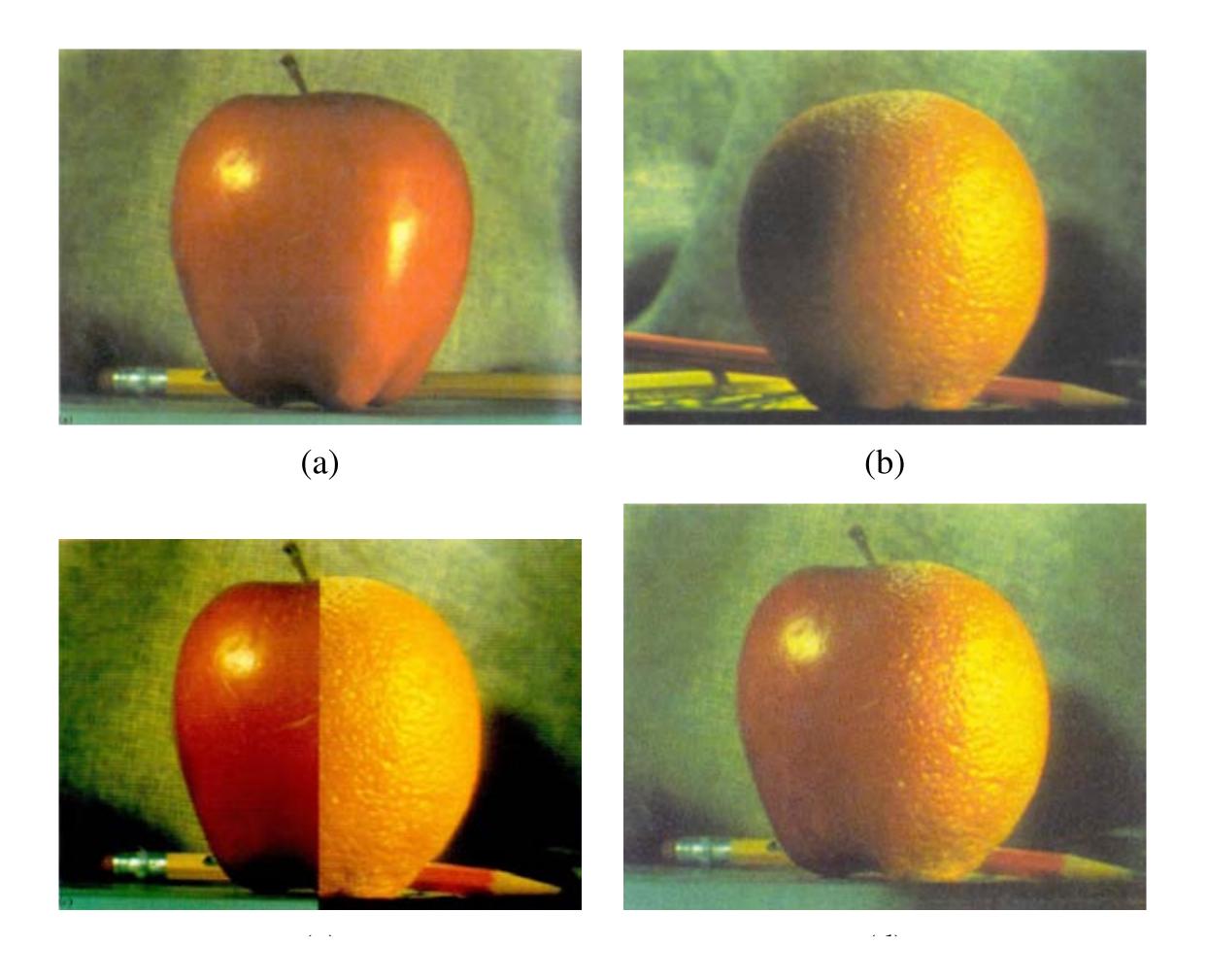
Left pyramid

blend

Right pyramid

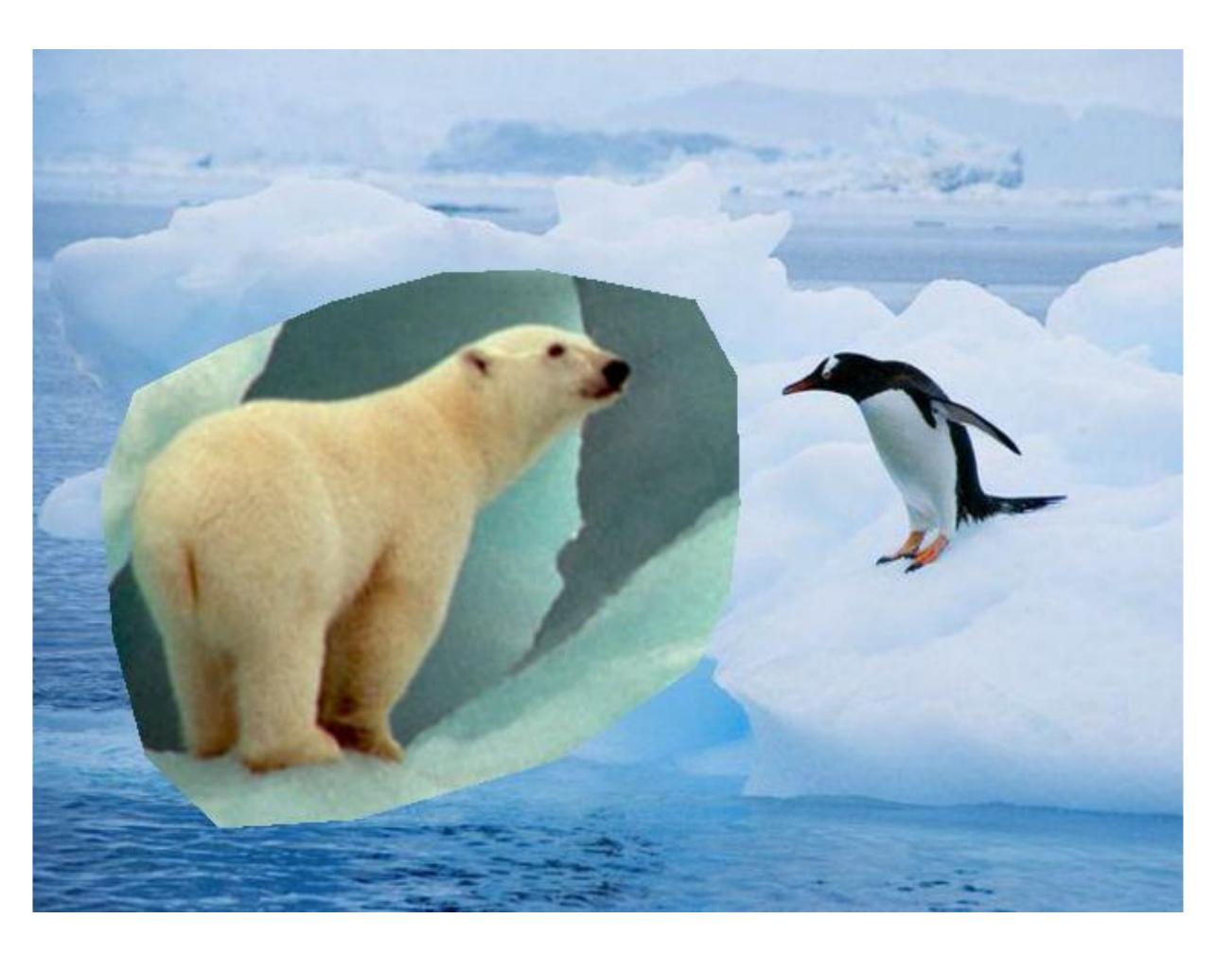
Burt and Adelson, "A multiresolution spline with application to image mosaics," ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

Application: Image Pyramid Blending

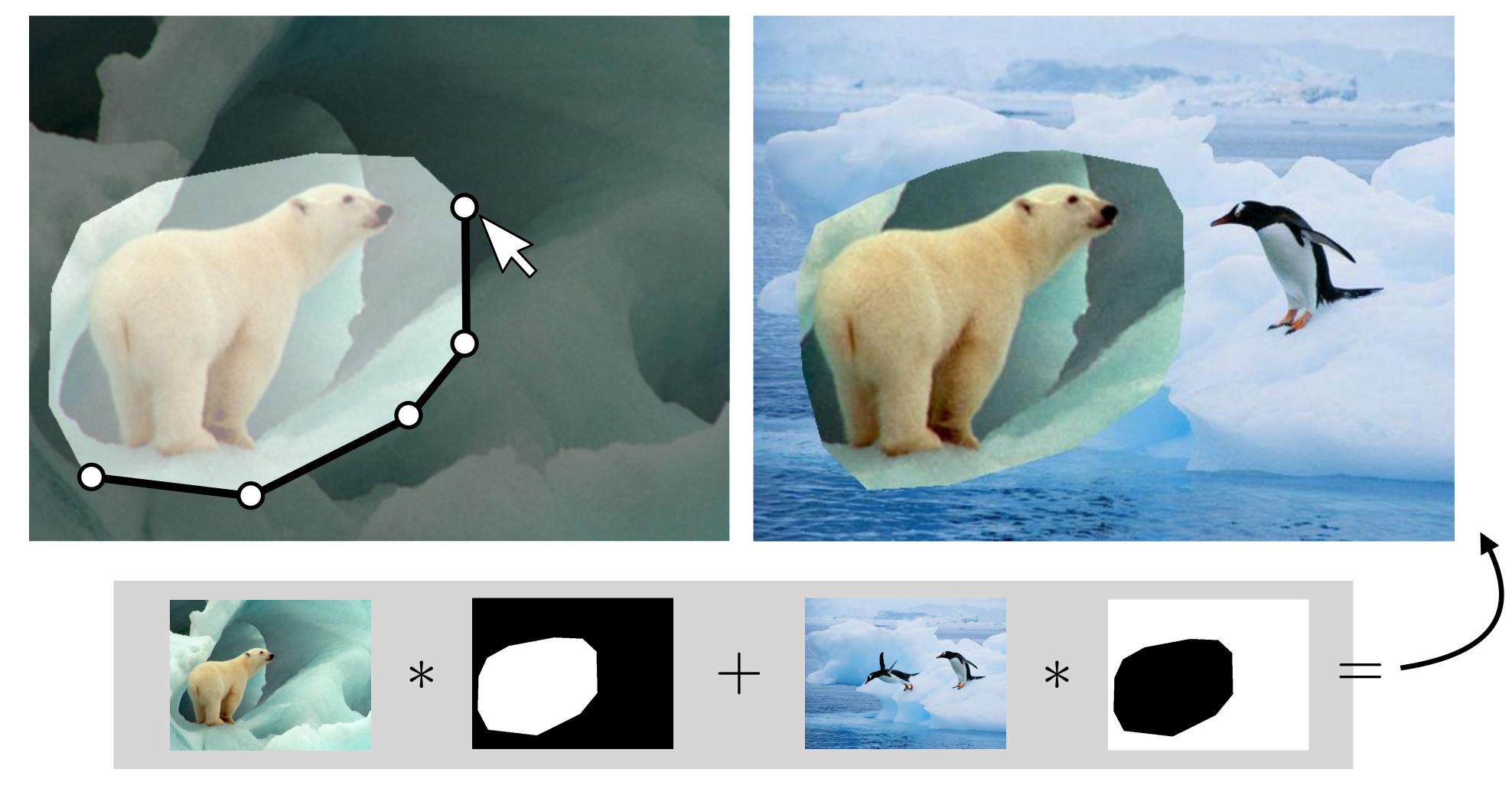


Burt and Adelson, "A multiresolution spline with application to image mosaics," ACM Transactions on Graphics, 1983, Vol.2, pp.217-236.

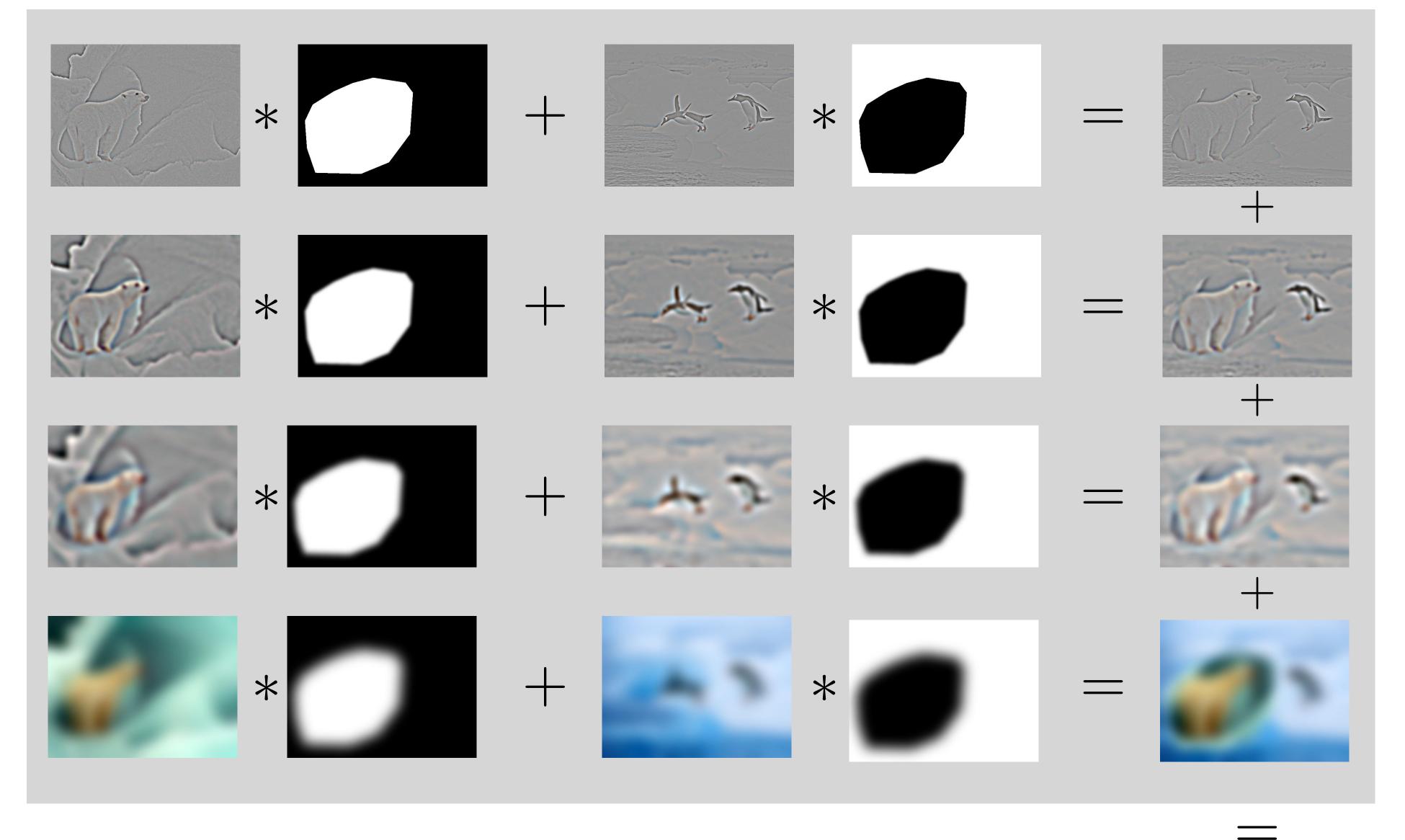
Application: Image Pyramid Blending



Application: Image Pyramid Blending



Step I: Specify an Image Mask

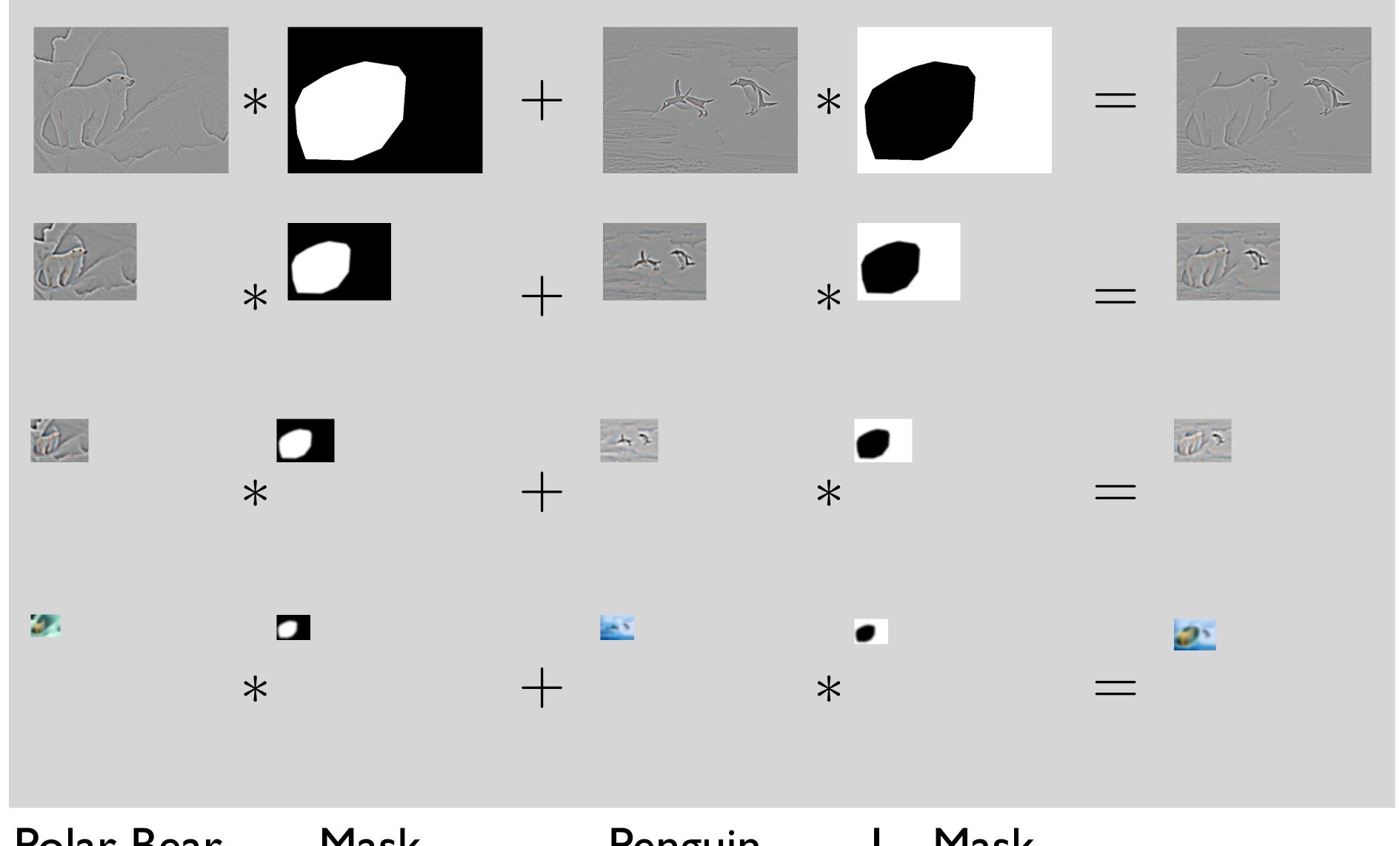


Step 2: blend lower frequency bands over larger spatial ranges, high frequency bands over small spatial ranges

Application: Image Blending

Algorithm:

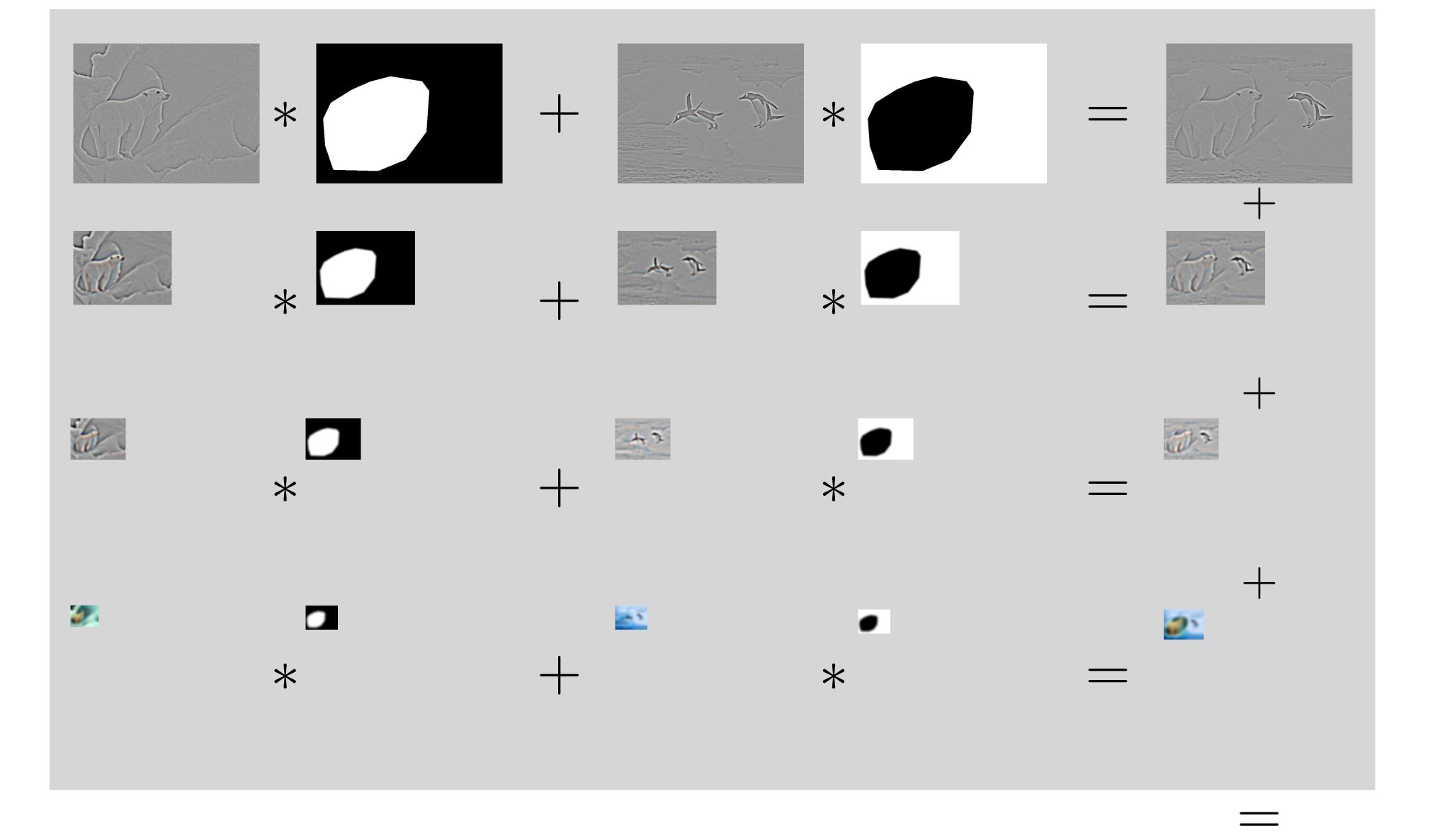
- 1. Build Laplacian pyramid LA and LB from images A and B
- 2. Build a Gaussian pyramid GR from mask image R (the mask defines which image pixels should be coming from A or B)
- 3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j)
- 4. Reconstruct the final blended image from LS



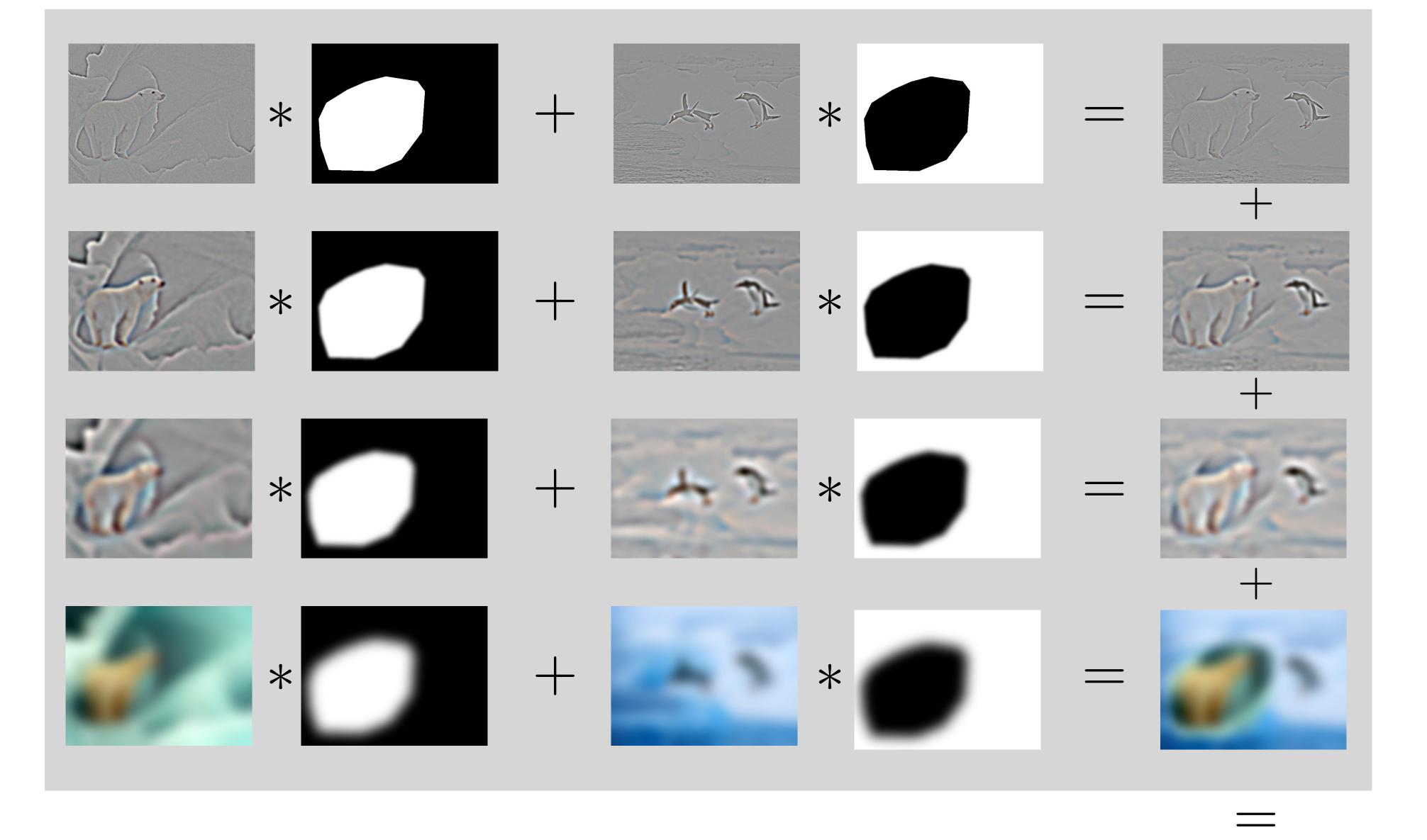
Polar Bear Laplacian Pyramid Mask Gaussian Pyramid Penguin Laplacian Pyramid

I - MaskGaussianPyramid

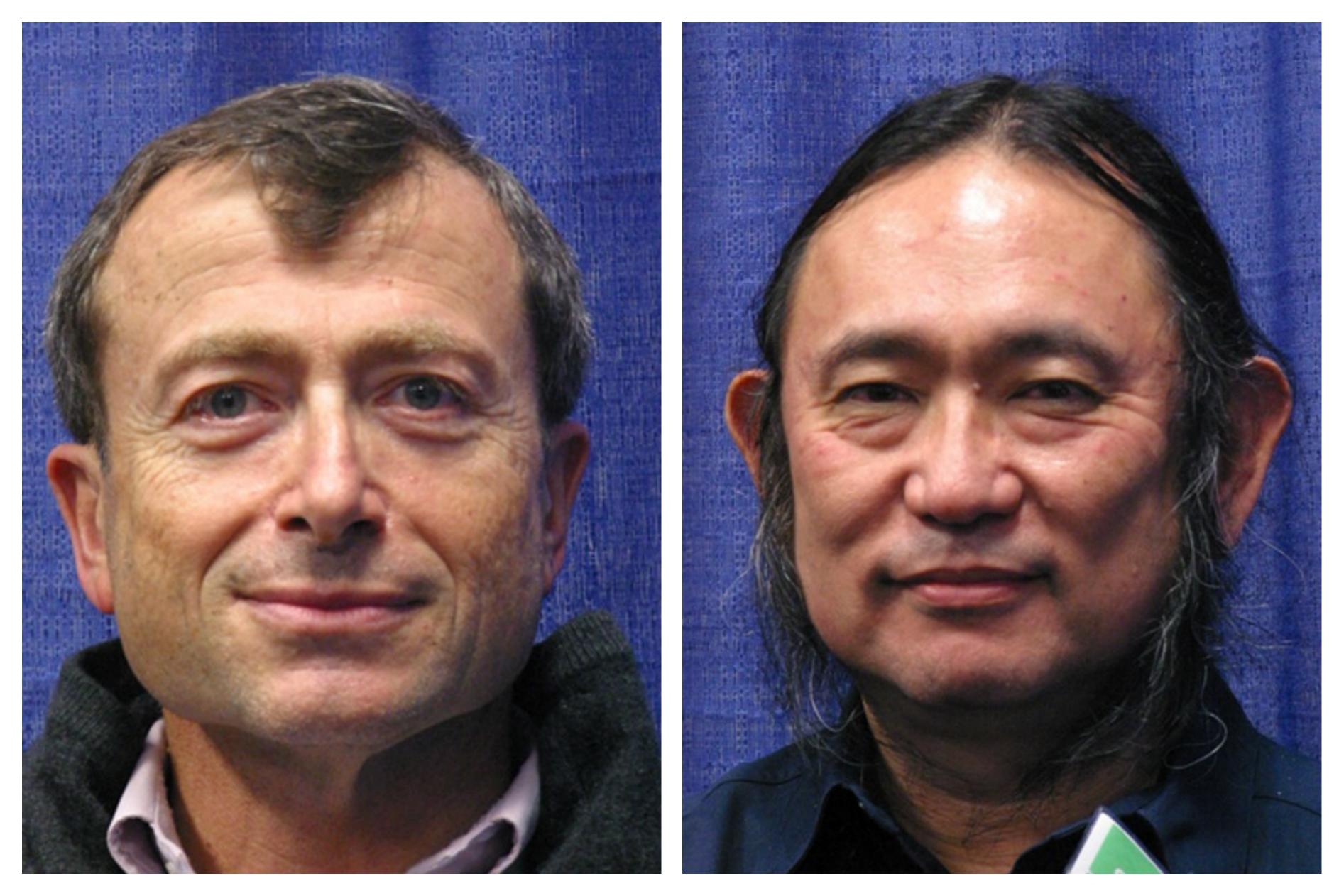
Result Pyramid



Reconstruct Result

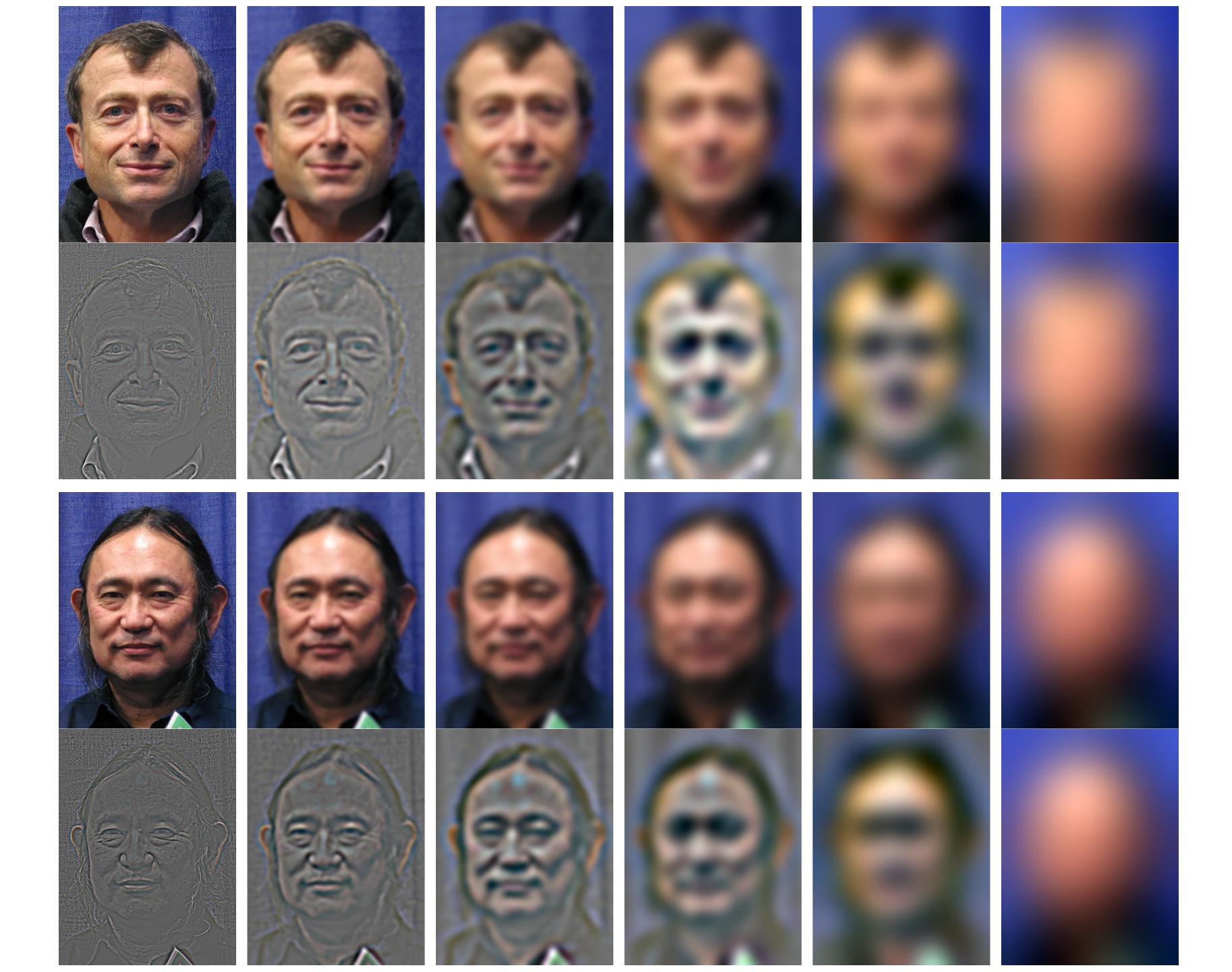


Reconstruct Result



[Jim Kajiya, Andries van Dam]

[Jim Kajiya, Andries van Dam]

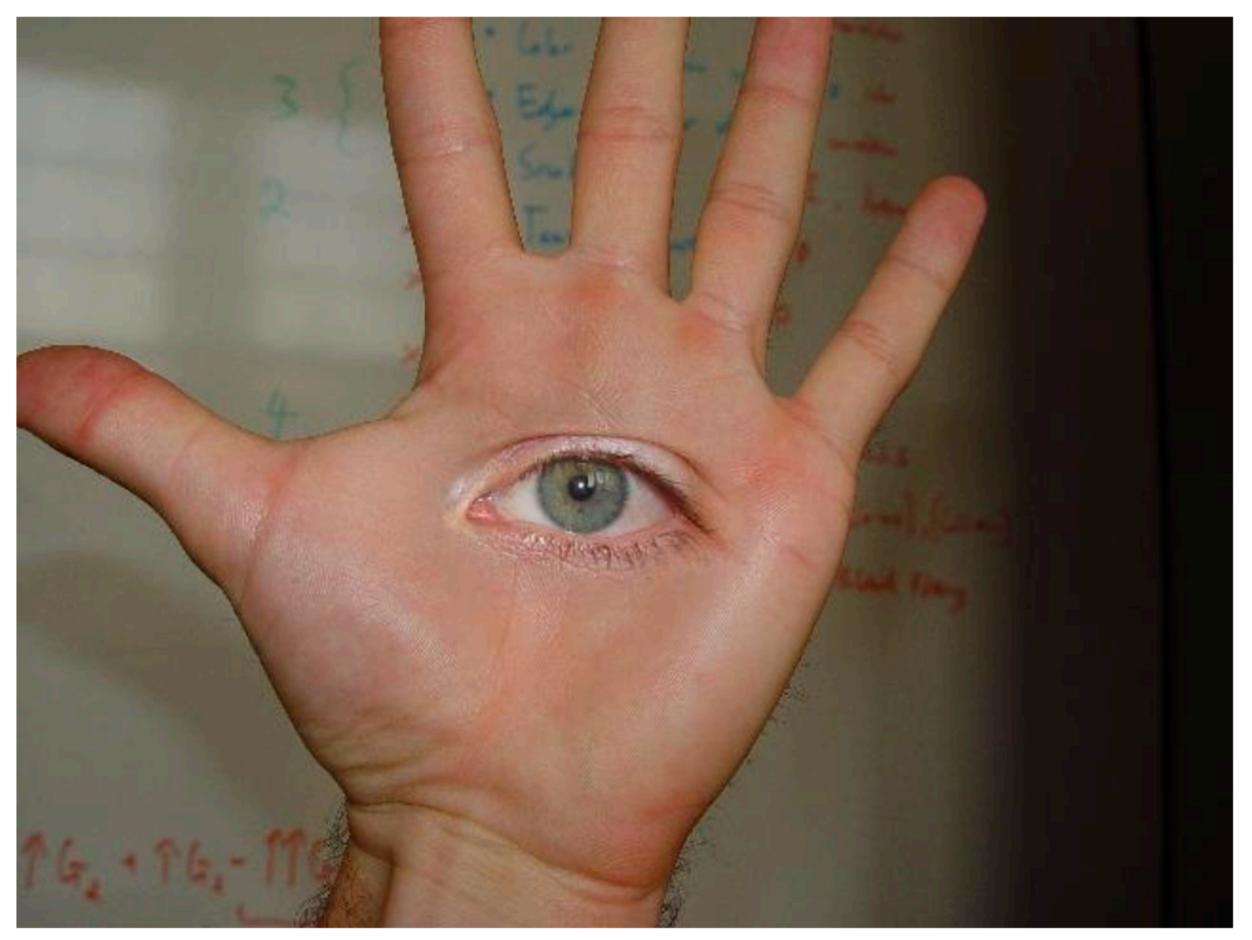


Alpha blend with sharp fall-off

Alpha blend with gradual fall-off

Pyramid Blend

More examples ...



© david dmartin (Boston College)

More examples ...

© Chris Cameron

Summary: Scaled Representations

Gaussian Pyramid

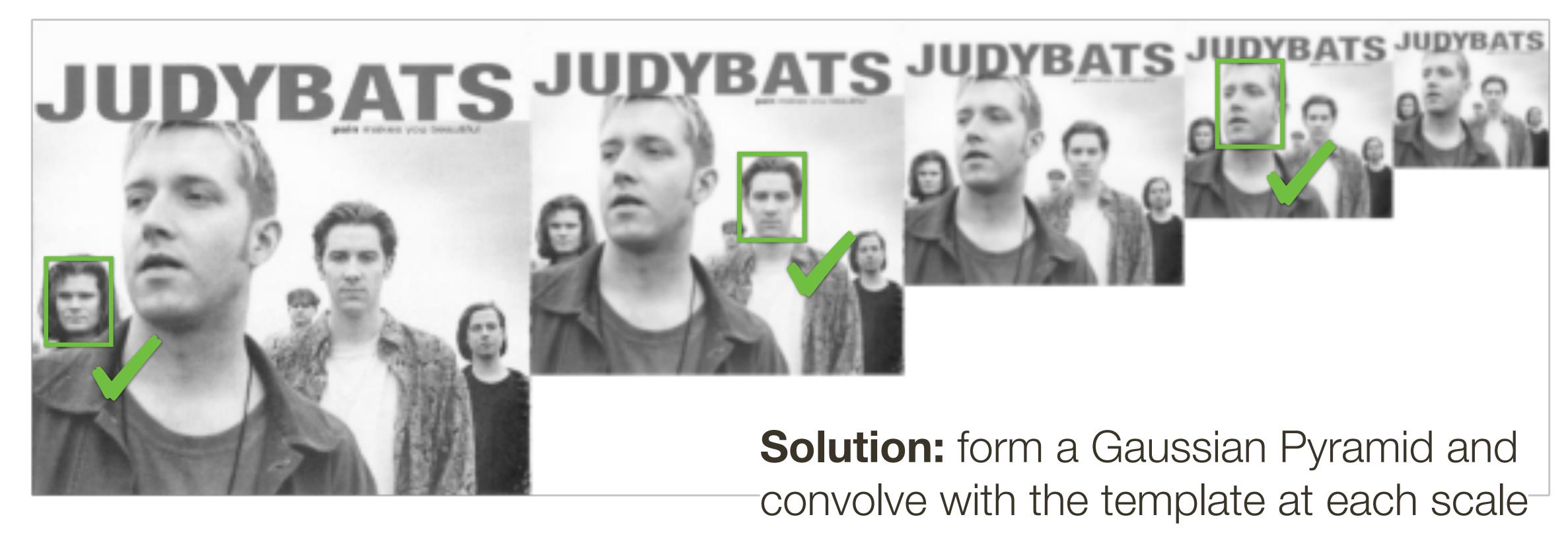
- -Each level represents a low-pass filtered image at a different scale
- —Generated by successive Gaussian blurring and downsampling
- -Useful for image resizing, sampling

Laplacian Pyramid

- -Each level is a **band-pass** image at a different scale
- —Generated by differences between successive levels of a Gaussian Pyramid
- -Used for pyramid blending, feature extraction etc.

Recap: Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales



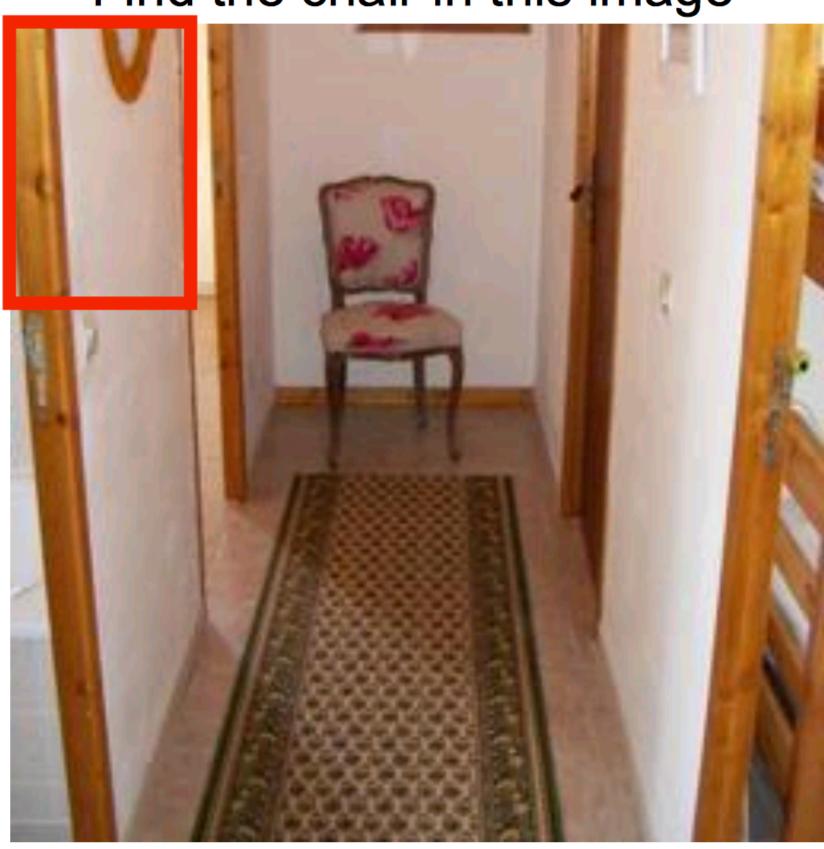
Q. Why scale the image and not the template?

= Template

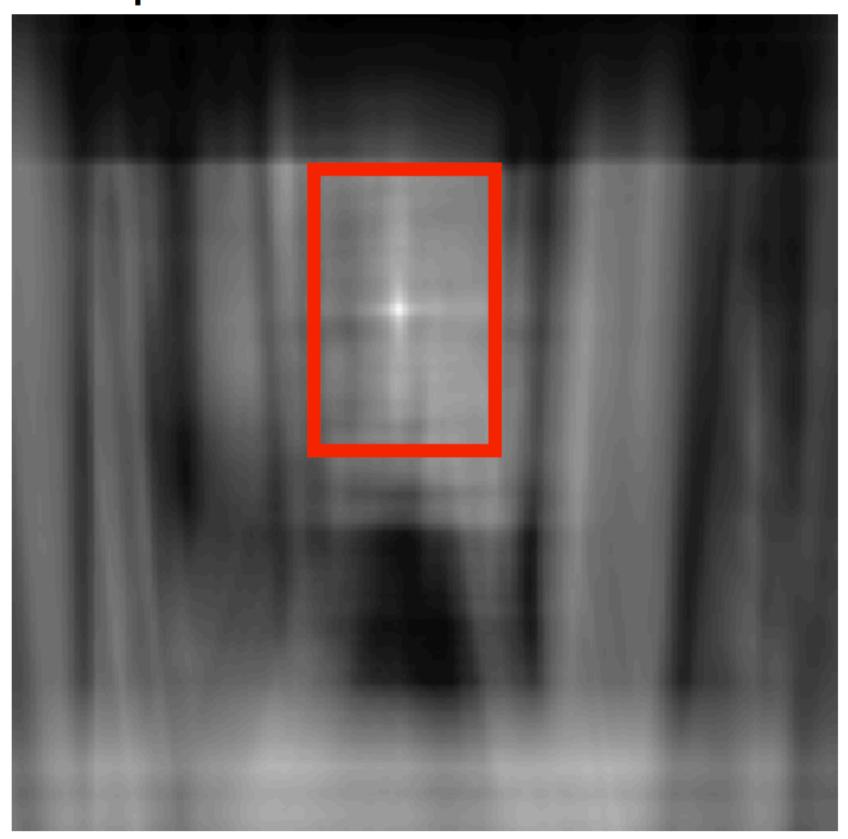
Improving Template Matching

This is a chair

Find the chair in this image

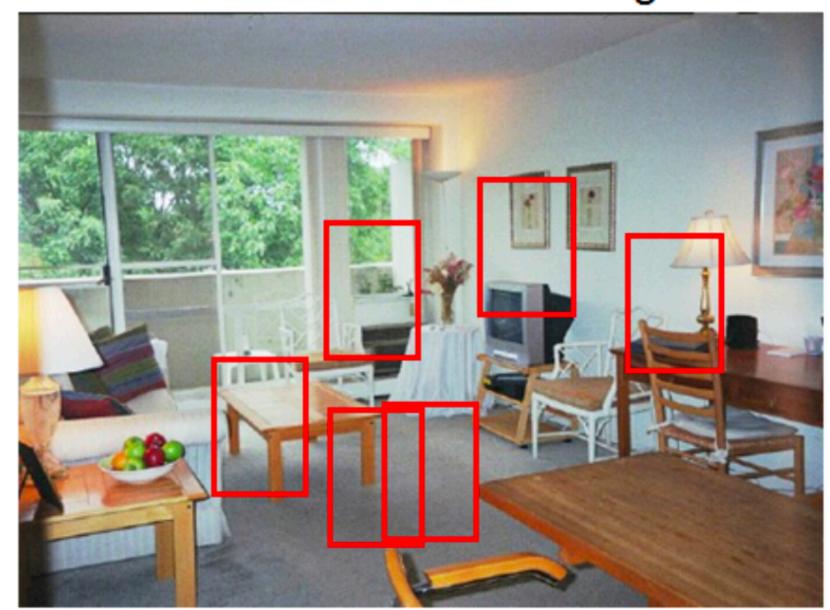


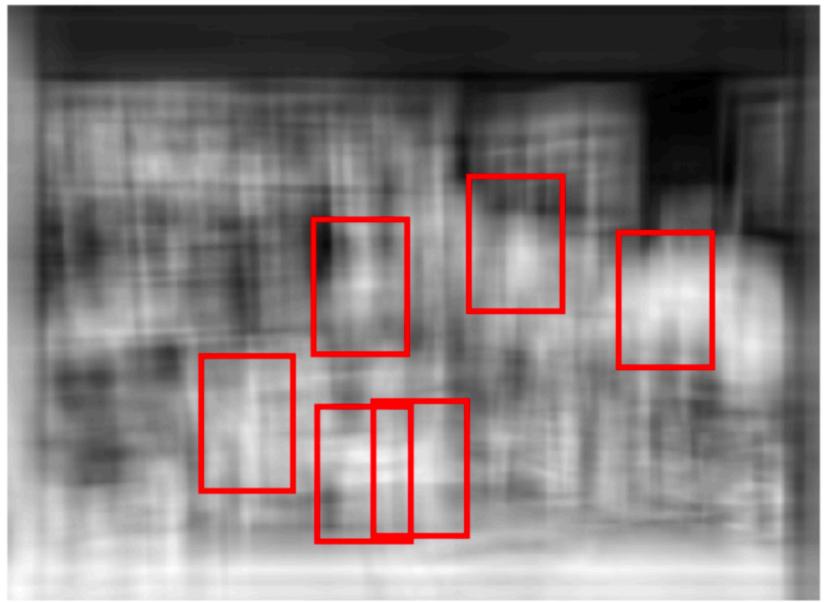
Output of normalized correlation



Improving Template Matching

Find the chair in this image





Pretty much garbage
Simple template matching is not going to make it

Improving Template Matching

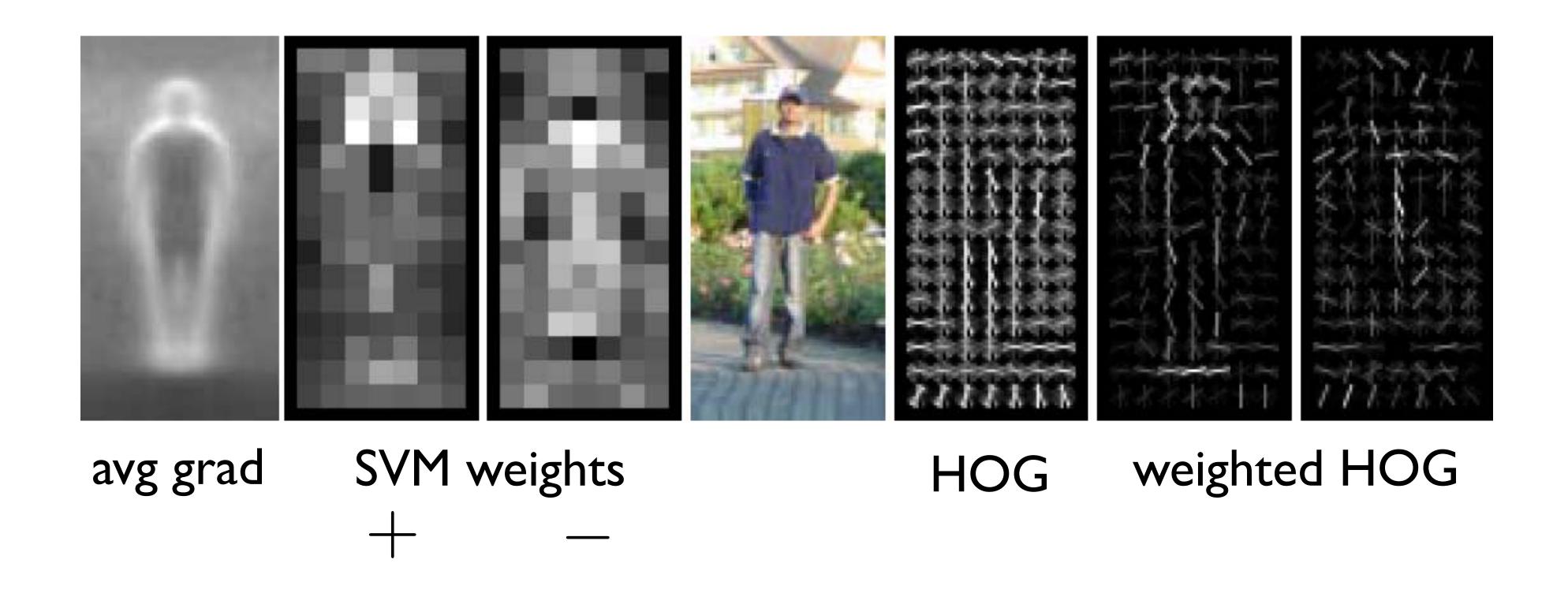
Improved detection algorithms make use of image features

These can be hand coded or learned

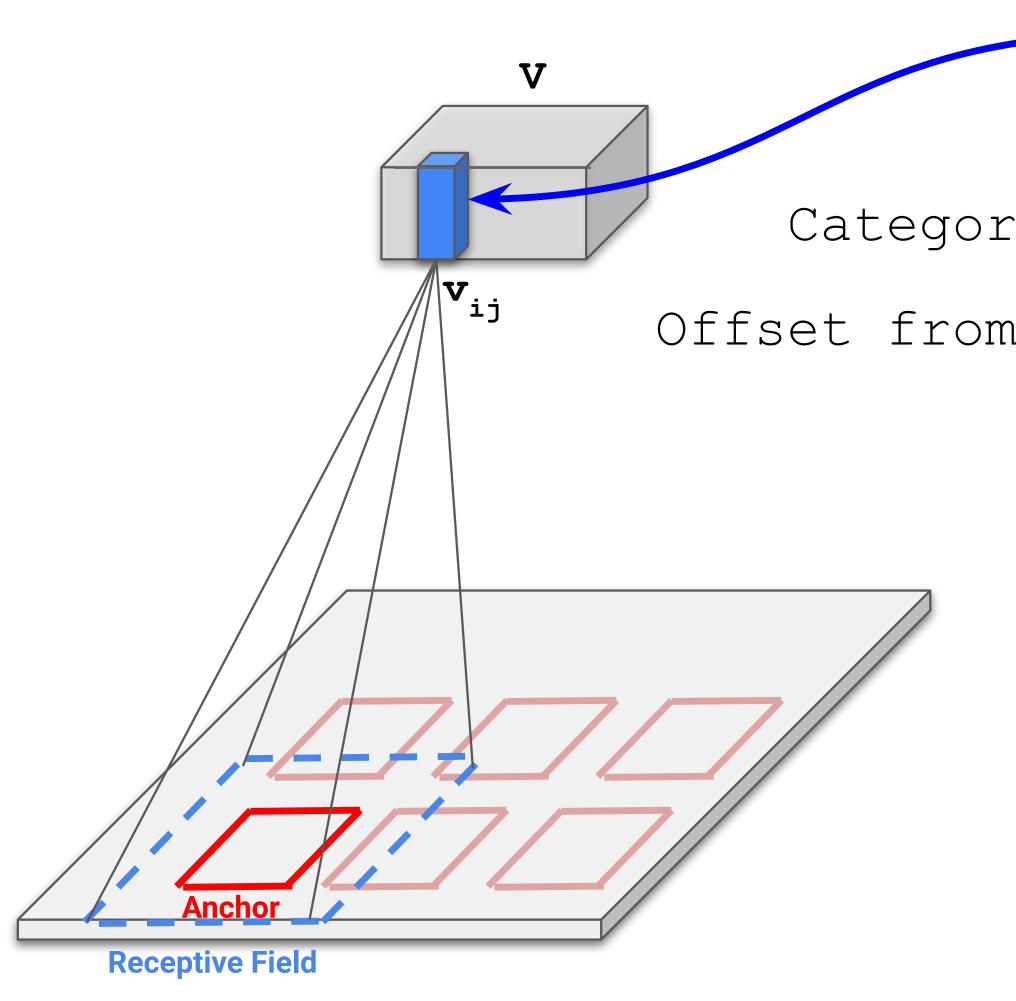
Template Matching with HoG

Template matching can be improved by using better features, e.g., Histograms of Gradients (HOG) [Dalal Triggs 2005]

The authors use a Learning-based approach (Support Vector Machine) to find an optimally weighted template



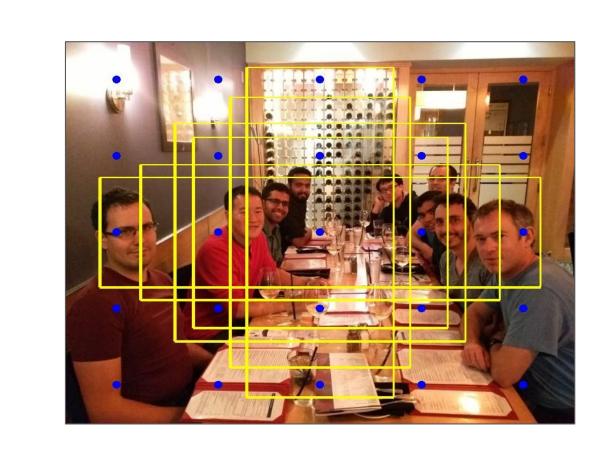
Convnet Object Detection



Think of each feature vector \mathbf{v}_{ij} as corresponding to a sliding window (anchor).

Category score = SoftMax($W^{cls} \cdot \mathbf{v_{ij}}$)

Offset from anchor = $W^{loc} \cdot \mathbf{v}_{ij}$



- Convnet based object detectors resemble sliding window template matching in feature space
- Architectures typically involve multiple scales and aspect ratios, and regress to a 2D offset in addition to category scores

Summary

Template matching as (normalized) correlation. Template matching is not robust to changes in:

- 2D spatial scale and 2D orientation
- 3D pose and viewing direction
- illumination

Scaled representations facilitate

- template matching at multiple scales
- efficient search for image-to-image correspondences
- image analysis at multiple levels of detail

A **Gaussian pyramid** reduces artifacts introduced when sub-sampling to coarser scales

From Template Matching to Local Feature Detection

We'll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

From Template Matching to Local Feature Detection

We'll now shift from global template matching to local feature detection

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

- from above (as in an aerial photograph or satellite image)
- head on
- sideways (i.e., in profile)
- rear on

What happens if parts of an elephant are obscured from view by trees, rocks, other elephants?

From Template Matching to Local Feature Detection

- Move from global template matching to local template matching
- Local template matching also called local feature detection
- Obvious local features to detect are edges and corners