CPSC 425: Computer Vision

Lecture 4: Image Filtering (continued)
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today

Topics:

-Linear Filtering recap
-Efficient convolution, Fourier aside

- Non-linear Filters:

Median, ReLU, Bilateral Filter
-Quiz 0

Readings:

- Today's Lecture: Szeliski 3.3-3.4, Forsyth \& Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images due January 30th

Lecture 4: Re-cap Linear Filter

Lecture 4: Re-cap Linear Filters Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Lecture 4: Re-cap Smoothing Filters

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model

- for phenomena (that are the sum of other small effects)
- whenever the Central Limit Theorem applies

Lets talk about efficiency

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

Efficient Implementation: Separability

Naive implementation of 2D Filtering:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $\quad m^{2} \times n^{2}$ multiplications

Efficient Implementation: Separability

Naive implementation of 2D Filtering:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $\quad m^{2} \times n^{2}$ multiplications

Separable 2D Filter:

Efficient Implementation: Separability

Naive implementation of 2D Filtering:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $\quad n \times n$ pixels in (X, Y)
Total: $\quad m^{2} \times n^{2}$ multiplications

Separable 2D Filter:

At each pixel, (X, Y), there are
$2 m$
There are $n \times n$
Total:

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

$$
\begin{aligned}
\text { Let } \quad i^{\prime}(x, y) & =f(x, y) \otimes i(x, y) \\
\text { then } \quad \mathcal{I}^{\prime}\left(w_{x}, w_{y}\right) & =\mathcal{F}\left(w_{x}, w_{y}\right) \mathcal{I}\left(w_{x}, w_{y}\right)
\end{aligned}
$$

where $\mathcal{I}^{\prime}\left(w_{x}, w_{y}\right), \mathcal{F}\left(w_{x}, w_{y}\right)$, and $\mathcal{I}\left(w_{x}, w_{y}\right)$ are Fourier transforms of $i^{\prime}(x, y)$, $f(x, y)$ and $i(x, y)$

At the expense of two Fourier transforms and one inverse Fourier transform, convolution can be reduced to (complex) multiplication

Speeding Up Convolution (The Convolution Theorem)

General implementation of convolution:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $\quad n \times n$ pixels in (X, Y)
Total: $\quad m^{2} \times n^{2}$ multiplications

Convolution if FFT space:
Cost of FFT/IFFT for image: $\mathcal{O}\left(n^{2} \log n\right)$
Cost of FFT/IFFT for filter: $\mathcal{O}\left(m^{2} \log m\right)$
Cost of convolution: $\mathcal{O}\left(n^{2}\right) \quad$ Note: not a function of filter size II.

Fourier Transform (you will NOT be tested on this)

Low-Frequency Content: Flat regions, no sharp changes in brightness
High-Frequency Content: Sharp changes in brightness (edges)

Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

frequency

Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

frequency

Fourier Transform (you will NOT be tested on this)

Distance to the screen will change the field of view of your eye and, as a result, frequency spectra of the image being observed

As you come closer, higher frequencies come into mid-range
As you move away, low frequencies come into mid-range
... back from detour

Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

Salvador Dali, 1976

Low-pass filtered version

High-pass filtered version

Assignment 1: Low/High Pass Filtering

Original
$I(x, y)$

Low-Pass Filter

High-Pass Filter

$$
I(x, y)-I(x, y) * g(x, y)
$$

Low-pass / High-pass Filtering

Perfect Low-pass / High-pass Filtering

Perfect Low-pass / High-pass Filtering

Low-pass Filtering = "Smoothing"?

Box Filter

$\frac{1}{9}$
1
:---
1
1

Pillbox Filter

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Are all of these low-pass filters?

Low-pass Filtering = "Smoothing"

Box Filter

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Pillbox Filter

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

Low-pass Filtering = "Smoothing"

Box Filter

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Pillbox Filter

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Image

Low-pass Filtering = "Smoothing"

Low-pass Filtering = "Smoothing"

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)
An operation is linear if it satisfies both superposition and scaling

Linear Filters: Additional Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image. Let F and G be digital filters

- Convolution is associative. That is,

$$
G \otimes(F \otimes I(X, Y))=(G \otimes F) \otimes I(X, Y)
$$

- Convolution is symmetric. That is,

$$
(G \otimes F) \otimes I(X, Y)=(F \otimes G) \otimes I(X, Y)
$$

Convolving $I(X, Y)$ with filter F and then convolving the result with filter G can be achieved in single step, namely convolving $I(X, Y)$ with filter $G \otimes F=F \otimes G$

Note: Correlation, in general, is not associative.

Associativity Example

$\mathrm{A}=$	$\mathrm{B}=$	A conv $\mathrm{B}=$	B conv $\mathrm{A}=$	
[$\left.\begin{array}{lll}1 & 1 & 6\end{array}\right]$	[$\left.\begin{array}{llll}6 & 6 & 4\end{array}\right]$	[[$\left.\begin{array}{llll}40 & 84 & 105\end{array}\right]$	[[408084105$]$	$\operatorname{conv}(A, B)=\operatorname{conv}(B, A)$
$\left[\begin{array}{lll}4 & 1 & 7\end{array}\right]$	[1095]	$\left[\begin{array}{lllll}97 & 137 & 130\end{array}\right]$	[97137130$]$	$\operatorname{conv}(A, B)=\operatorname{conv}(B, A)$
[906]]	$\left[\begin{array}{lll}3 & 3 & 8\end{array}\right]$	$\left[\begin{array}{llll}96 & 107 & 83\end{array}\right]$	[96107883$]$]	
		$\begin{aligned} & \text { A corr } \mathrm{B}= \\ & {\left[\begin{array}{lll} {\left[\begin{array}{lll} 1 & 34 & 111 \\ \hline & 79 \end{array}\right]} \\ {\left[\begin{array}{lll} 18 & 159 & 124 \end{array}\right]} \\ {\left[\begin{array}{lll} 109 & 97 & 102 \end{array}\right]} \end{array}\right]} \end{aligned}$	$\left.\left.\begin{array}{c} \mathrm{B} \text { corr } \mathrm{A}= \\ {\left[\begin{array}{lll} {[102} & 97 & 109] \end{array}\right]} \\ {\left[\begin{array}{lll} 124 & 159 & 78 \end{array}\right]} \\ {\left[\begin{array}{ll} 79 & 111 \end{array}\right.} \\ 34 \end{array}\right]\right] .$	$\operatorname{corr}(A, B) \neq \operatorname{corr}(B, A)$

Example: Two Box Filters

filter = boxfilter(3)

```
signal.correlate2d(filter, filter,' full')
```


3×3 Box
3x3 Box

Example: Two Box Filters

Treat one filter as padded "image"
Note, in this case you have to pad maximally until two filters no longer overlap

Output

Example: Two Box Filters

Treat one filter as padded "image"

Output

Example: Two Box Filters

Treat one filter as padded "image"

Output

Example: Two Box Filters

Treat one filter as padded "image"

	1	2	3	2	1	
	2	4	6			

Output

Example: Two Box Filters

Treat one filter as padded "image"

	1	2	3	2	1	
	2	4	6	4	2	
	3	6	9	6	3	
	2	4	6	4	2	
	1	2	3	2	1	

Output

Example: Two Box Filters

Treat one filter as padded "image"

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Output

Example: Two Box Filters

filter = boxfilter(3)
temp $=$ signal.correlate2d(filter, filter,' full')
signal.correlate2d(filter, temp,' full')

Example: Separable Gaussian Filter

$$
\frac{1}{16} \begin{array}{|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 1 \\
\hline 16 \\
\hline 4 \\
\hline 6 \\
\hline 4 \\
\hline 1 \\
\hline
\end{array}=\frac{1}{256} \begin{array}{|c|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 6 & 24 & 36 & 24 & 6 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array}
$$

Example: Separable Gaussian Filter

Example: Separable Gaussian Filter

$\frac{1}{16}=$| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 6 | 4 | 1 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$\otimes \frac{1}{16}$| $\frac{1}{\|n\|}$ |
| :---: |
| 4
 1$=\frac{1}{256}, ~$ |

1	4	6	4	1
4	16			

Example: Separable Gaussian Filter

	0	0	0	0		0	$\otimes \frac{1}{16}$		$=\frac{1}{256}$							
	0	0	0	0		0										
	0	0	0	0		0			1	4		6	4		1	
	0	0	0	0		0			4	16		24	16		4	
$\frac{1}{16}$	1	4	6	4		1			6	2		36	2		6	
	0	0	0	0		0			4	16		24	16		4	
	0	0	0	0		0			1	4		6	4		1	
	0	0	0	0		0										
	0	0	0	0		0										

Example: Separable Gaussian Filter

$\frac{1}{16}$| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 6 | 4 | 1 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$\otimes \frac{1}{16}$| 1 |
| :---: |
| 4 |
| 1 4 6 4 1
 4 1
 4
 1
 256 16 24 16 4
 6 24 36 24 6
 4 16 24 16 4
 1 4 6 4 1 |

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

$$
\left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right) \times\left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right)
$$

More broadly for a set of K filters of sizes $m_{k} \times m_{k}$ the resulting filter will have size:

$$
\left(m_{1}+2 \sum_{k=2}^{K}\left\lfloor\frac{m_{k}}{2}\right\rfloor\right) \times\left(m_{1}+2 \sum_{k=2}^{K}\left\lfloor\frac{m_{k}}{2}\right\rfloor\right)
$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_{1}}(x)$ and $G_{\sigma_{2}}(x)$ be be two 1D Gaussians

$$
G_{\sigma_{1}}(x) \otimes G_{\sigma_{2}}(x)=G_{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}(x)
$$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2} \sigma}(x)$

Non-linear Filters

We've seen that linear filters can perform a variety of image transformations

- shifting
- smoothing
- sharpening

In some applications, better performance can be obtained by using non-linear filters.

For example, the median filter (which is a very effective de-noising / smoothing filter) selects the median value from each pixel's neighborhood.

Median Filter

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image

Output

Median Filter

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5	7	13	16	24	34	54

Output

Median Filter

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image

Output

Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and pepper' noise or 'shot' noise)

The median filter forces points with distinct values to be more like their neighbors

Image credit: https://en.wikipedia.org/wiki/Median filter\#/media/File:Medianfilterp.png

Bilateral Filter

An edge-preserving non-linear filter
Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

- The filter weights also depend on range distance from the center pixel
- Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

(with appropriate normalization)

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

(with appropriate normalization)
Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by a product:

$$
\exp ^{-\frac{x^{2}+y^{2}}{2 \sigma_{d}^{2}}} \exp ^{-\frac{(I(X+x, Y+y)-I(X, Y))^{2}}{2 \sigma_{r}^{2}}}
$$

(with appropriate normalization)

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

(with appropriate normalization)
Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center pixel $I(X, Y)$ given by a product:
domain kernel

$$
\exp ^{-\frac{x^{2}+y^{2}}{2 \sigma_{d}^{2}}} \exp ^{-\frac{(I(X+x, Y+y)-I(X, Y))^{2}}{2 \sigma_{r}^{2}}}
$$

range kernel
(with appropriate normalization)

Bilateral Filter

image $I(X, Y)$

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Bilateral Filter

image $I(X, Y) \quad$ image $I(X, Y)$

25	0	25	255	255	255							
0	0	0	230	255	255							
0	25	25	255	230	255							
0	0	25	255	255	255	$\quad \rightarrow$	0.1	0	0.1	1	1	1
:---	:---	:---	:---	:---	:---							
0	0	0	0.9	1	1							
0	0.1	0.1	1	0.9	1							
0	0	0.1	1	1	1							

Bilateral Filter

image $I(X, Y) \quad$ image $I(X, Y)$

25	0	25	255	255	255							
0	0	0	230	255	255							
0	25	25	255	230	255							
0	0	25	255	255	255	$\quad \rightarrow$	0.1	0	0.1	1	1	1
:---	:---	:---	:---	:---	:---							
0	0	0	0.9	1	1							
0	0.1	0.1	1	0.9	1							
0	0	0.1	1	1	1							

Domain Kernel
$\sigma_{d}=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Bilateral Filter

$I(X, Y)$						mage $I(X, Y)$					
25	0	25	255	255	255	0.1	0	0.1	1	1	1
0	0	0	230	255	255	0	0	0	0.9	1	1
0	25	25	255	230	255	0	0.1	0.1	1	0.9	1
0	0	25	255	255	255	0	0	0.1	1	1	1

Domain Kernel
$\sigma_{d}=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range Kernel

$$
\sigma_{r}=0.45
$$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

(this is different for each locations in the image)

Bilateral Filter

image $I(X, Y) \quad$25 0 25 255 255 255 0 0 0 230 255 255 0 25 25 255 230 255 0 0 25 255 255 255 0 $\quad \rightarrow$0.1 0 0.1 1 1 1 0 0 0 0.9 1 1 0 0.1 0.1 1 0.9 1$\quad \rightarrow$0 0 0.1 1$\quad 1$

Domain Kernel
$\sigma_{d}=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

(this is different for each locations in the image)

Bilateral Filter

$I(X, Y)$						image $I(X, Y)$					
25	0	25	255	255	255	0.1	0	0.1	1	1	1
0	0	0	230	255	255	0	0	0	0.9	1	1
0	25	25	255	230	255	0	0.1	0.1	1	0.9	1
0	0	25	255	255	255	0	0	0.1	1	1	1

Domain Kernel

$$
\sigma_{d}=0.45
$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

$$
\begin{aligned}
& \text { Range Kernel } \text { Range }^{*} \text { Domain Kernel } \\
& \sigma_{r}=0.45 \\
& \begin{array}{|c|c|c|c|}
\hline 0.98 & 0.98 & 0.2 \\
\hline 1 & 1 & 0.1 \\
\hline 0.98 & 1 & 0.1 \\
\hline
\end{array} \xrightarrow{\text { multiply }} \begin{array}{|c|c|c|c|}
\hline 0.08 & 0.12 & 0.02 \\
\hline 0.12 & 0.20 & 0.01 \\
\hline 0.08 & 0.12 & 0.01 \\
\hline
\end{array} \xrightarrow{\text { sum to } 1} \begin{array}{|c|c|c|c|}
\hline 0.11 & 0.16 & 0.03 \\
\hline 0.16 & 0.26 & 0.01 \\
\hline 0.11 & 0.16 & 0.01 \\
\hline
\end{array}
\end{aligned}
$$

(this is different for each
locations in the image)

Bilateral Filter

$I(X, Y)$						image		$I(X, Y)$			
25	0	25	255	255	255	0.1	0	0.1	1	1	1
0	0	0	230	255	255	0	0	0	0.9	1	1
0	25	25	255	230	255	0	0.1	0.1	1	0.9	1
0	0	25	255	255	255	0	0	0.1	1	1	1

Domain Kernel
$\sigma_{d}=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range * Domain Kernel
Range Kernel

$$
\sigma_{r}=0.45
$$

0.98	0.98	0.2				
1	1	0.1				
0.98	1	0.1	$\xrightarrow{\text { multiply }}$	0.08	0.12	0.02
:---:	:---:	:---:				
0.12	0.20	0.01				
0.08	0.12	0.01				

(this is different for each locations in the image)

Bilateral Filter

Bilateral Filter

$I(X, Y)$						mage $I(X, Y)$					
25	0	25	255	255	255	0.1	0	0.1	1	1	1
0	0	0	230	255	255	0	0	0	0.9	1	1
0	25	25	255	230	255	0	0.1	0.1	1	0.9	1
0	0	25	255	255	255	0	0	0.1	1	1	1

> Domain Kernel

$$
\sigma_{d}=0.45
$$

Gaussian Filter (only)

> Range Kernel

Range * Domain Kernel

$$
\sigma_{r}=0.45
$$

0.98	0.98	0.2				
1	1	0.1				
0.98	1	0.1	$\xrightarrow{\text { multiply }}$	0.08	0.12	0.02
:---:	:---:	:---:				
0.12	0.20	0.01				
0.08	0.12	0.01				

(this is different for each locations in the image)

Bilateral Filter

Range Kernel Influence

Bilateral Filter Application: Denoising

Noisy Image

Gaussian Filter

Bilateral Filter

Bilateral Filter Application: Cartooning

Original Image

After 5 iterations of Bilateral Filter

Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive noise and blur

But there are problems with flash images:

- colour is often unnatural
- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:

'Joint' or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

Aside: Linear Filter with ReLU

Feature Extraction from Image
Classification

$$
\begin{array}{|l|l|l|l|}
\hline 9 & 3 & 5 & 0 \\
\hline 0 & 2 & 0 & 1 \\
\hline 1 & 3 & 4 & 1 \\
\hline 3 & 0 & 5 & 1 \\
\hline
\end{array}
$$

Result of: Linear Image Filtering

After Non-linear ReLU

Summary

We covered two three non-linear filters: Median, Bilateral, ReLU
Separability (of a 2D filter) allows for more efficient implementation (as two 1D filters)

Convolution is associative and symmetric
Convolution of a Gaussian with a Gaussian is another Gaussian
The median filter is a non-linear filter that selects the median in the neighbourhood

The bilateral filter is a non-linear filter that considers both spatial distance and range (intensity) distance, and has edge-preserving properties

iClicker test

Please sign up for the iClicker course via Canvas ("iClicker Sync" in menu)
 See also the UBC iClicker Student Guide

