THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 4:

mage Filtering (continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today
Topics:
—Linear Filtering recap — Non-linear Filters:
— Efficient convolution, Fourier aside Median, RelLU, Bilateral Filter
—Quiz 0

— Today’s Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 30th




Lecture 4. Re-cap Linear Filter
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Lecture 4. Re-cap Linear Filter
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Lecture 4. Re-cap Linear Filter
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Lecture 4. Re-cap Linear Filter
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Lecture 4: Re-cap Linear Filters Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F5 be digital filters
(Fil+ )X, Y)=FRIX,Y)+ b I(X,Y)
Scaling: Let F be digital filter and let £ be a scalar
(kF)QI[(X,Y)=F® (kI(X,Y)) = k(F® I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)



Lecture 4. Re-cap Smoothing Filters

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies



| ets talk about efficiency



Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of X and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter

— Then, convolve each column with a 1D filter

— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.



Efficient Implementation: Separability

Naive implementation of 2D Filtering:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications
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Efficient Implementation: Separability

Naive implementation of 2D Filtering:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m® x n® multiplications

Separable 2D Filter:

At each pixel, (X,Y), thereare 2m  multiplications

There are n Xmn pixelsin (X ,‘Y)

2

Total. 2m x n“ multiplications



Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

| et ' (z,y) = f(z,y) ®i(z,y)

then Z'(wg,wy,) = F(wz, wy) L(wg, w,)

where ' (w,, wy,), F(wg,w,), and Z(w,,w,) are Fourier transforms of i'(z,y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication



Speeding Up Convolution (The Convolution Theorem)

General implementation of convolution:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X 7‘Y)

Total: m® x n® multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n?logn)
Cost of FFT/IFFT for filter: O(m? log m)

Cost of convolution: @(nQ) Note: not a function of filter size !!!



| ets take a detour ...



Fourier Transform (you will NOT be tested on this

ow-Frequency Content: Flat regions, no sharp changes in brightness

igh-Frequency Content: Sharp changes in brightness (edges




Fourier Transform (you will NOT be tested on this)

Experiment: \Where of you see the stripes”

LTS

frequenc

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Fourier Transform (you will NOT be tested on this)

Distance to the screen will change the field of view of your eye and, as a result,
frequency spectra of the image being observed

"

" s

As you come closer, higher frequencies come into mid-range

As you move away, low frequencies come into mid-range



... back from detour



Gala Contemplating the Mediterranean
Sea Which at Twenty Meters Becomes
the Portrait of Abraham Lincoln
(Homage to Rothko)

Salvador Dali, 1976

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Low-pass filtered version

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



High-pass filtered version

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Assignment 1: Low/High Pass Filtering

Original Low-Pass Filter High-Pass Filter

[(z,y) [(z,y)* g(z,y) [(z,y) — I(z,y) x g(x,y)



Low-pass / High-pass Filtering
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Perfect Low-pass / High-pass Filtering
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Perfect Low-pass / High-pass Filtering
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Low-pass Filtering = “Smoothing™”?

Box Filter Pillbox Filter Gaussian Filter
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Are all of these low-pass filters?



Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
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Are all of these low-pass filters?

Low-pass filter: Low pass filter filters out all of the high
frequency content of the image, only low frequencies remain



Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
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Low-pass Filtering = “Smoothing”




Low-pass Filtering = “Smoothing”




Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F5 be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ Ko I(X,Y)

Scaling: Let F be digital filter and let £ be a scalar
(kF) @ I[(X,)Y)=F® (kI(X,Y)) = k(F Q I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling



Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y') be a digital image. Let /and G be
digital filters

— Convolution i1s associative. That Is,
GRIFRIINX,Y)=(GECRF)RI(X,Y)

— Convolution is symmetric. That is,
(GRIF)RIX,Y)=FGRKIX,Y)

Convolving I(X,Y) with filter / and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfiter GQ F = F ® G

Note: Correlation, in general, is not associative.



Associativity Example

A= B= A conv B=
[[1 1 6] [[6 6 4] [[ 40 84 105]
(4 1 7] [1 9 5] [ 97 137 130]
[9 0 6]] [3 3 8]] [ 96 107 83]]

A corr B=

[ 34 111 79]
78 159 124]
109 97 102]]

B conv A=
[[ 40 84 105]
[ 97 137 130]
[ 96 107 83]]

B corr A=
[[102 97 109]
[124 159 78]
[ 79 111 34]]

conv(A, B) = conv(B, A)

corr(A, B) # corr(B, A)



Example: Two Box Filters

filter = boxfilter(3)
signal.correlate2d(filter, filter,” full’)

3x3 Box

3x3 Box
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Example: [wo Box Filters

Note, in this case you have to paa

Treat one filter as padded “image” maximally until two filters no longer overlap
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Two Box Filters

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter,” full’)
signal.correlate2d(filter, temp,” full’)
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Pre-Convolving Filters

Convolving two filters of size m X m and n X n results in filter of size:

(n+2 %) X <n+2 %)

More broadly for a set of K filters of sizes myg X my the resulting filter will
have size:

K K
M. 75
(o) < (2 13)




Gaussian: An Additional Property

L et ® denote convolution. Let G, () and G, (x) be be two 1D Gaussians

Go, (%) @ Gy (1) = Gz ()

2

Convolution of two Gaussians is another Gaussian

Special case: Convolving with G, (x) twice is equivalent to G5, ()



Non-linear rilters

We’'ve seen that linear filters can perform a variety of image transtormations
— shifting

— smoothing

— sharpening

INn some applications, better performance can be obtained by using non-linear
filters.

For example, the median filter (which is a very effective de-noising / smoothing
filter) selects the median value from each pixel’s neighborhood.



Median Filter

Take the median value of the pixels under the filter:
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Median Filter

Take the median value of the pixels under the filter:
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Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and

DeppPer’ Noise or 'shot’ noise)
The median filter forces points with distinct values to be more like their neighbors

Median Filter

Image credit: https://en.wikipedia.org/wiki/Median filter#/media/File:Medianfilterp.png


https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

Bilateral Filter

An edge-preserving non-linear filter

Like a Gaussian filter:

— The filter weights depend on spatial distance from the center pixel
— Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

— The filter weights also depend on range distance from the center pixel
— Pixels with similar brightness value should have greater influence than pixels
with dissimilar brightness value



Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZI?, y) — ) 52 exXp 207

(with appropriate normalization)



Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZI?, y) — ) 52 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

r2 g2 (I(X+:U,Y-|—y)2—I(XvY))2
°d  exp o7

(with appropriate normalization)



Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZC, y) — ) 52 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

domain x? 4 y? (I(X+z,Y+y)—I(X,Y))2 range
o 252
kernel CXP CXP " kernel

(with appropriate normalization)



Bilateral Filter
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Bilateral Filter
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Bilateral Filter
mage J(X,Y)
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Bilateral Filter

Domain Kernel

image ( )
I(X,Y oq = 0.45
25 [ 0 | 25 1255255255 1
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Range Kernel
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(this is different for each
locations in the image)




Bilateral Filter

Domain Kernel

image ( )
ge [(X,Y oq = 0.45
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locations in the image)



Bilateral Filter

Domain Kernel

image ( )
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(this is different for each
locations in the image)




Bilateral Filter

Domain Kernel

0.1
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Bilateral Filter

locations in the image)
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Bilateral Filter

Domain Kernel

image ( )
ge [(X,Y oq = 0.45
25 | 0 | 25 [255|255(255 1 00sl0.12|0.08 0 |0.9
’ 253 0.12]0.20|0.12 0.1
0 255
0.08(0.12|0.08 0.1
0 255 1
Gaussian Filter (only)
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o, = 0.45
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1 1 0.1 _) 0.12| 0.20{ 0.01 g 0.16| 0.26| 0.01 0.1 ] 1 — O 1
0.98[ 1 | 0.1 0.08| 0.12] 0.01 0.11] 0.16] 0.01 0.1 1
this Is different for each : .
( . . . Bilateral Filter
locations in the image)




Bilateral Filter

Domain Kernel

Input Bilateral Filter Output

domain * range

Range Kernel Influence
Images from: Durand and Dorsey, 2002



Bilateral Filter Application: Denoising

Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong



Bilateral Filter Application: Cartooning

Original Image After 5 iterations of Bilateral Filter

Slide Credit: Alexander Wong



Bilateral Filter Application: Flash Photography

Non-flash images taken under low lignht conditions often suffer from excessive
noise and blur

But there are problems with flash images:
— colour Is often unnatural
— there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and
colour balance, and to reduce noise



Bilateral Filter Application: Flash Photography

System using ‘joint” or ‘cross’ bilateral filtering:

Flash No-Flash Detail Transfer with Denoising

'Joint’ or 'Cross’ bilateral: Range kernel is computed using a separate

guidance image instead of the input image
Figure Credit: Petschnigg et al., 2004



Aside: Linear Filter with RelLU

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelLU Connected Connected

k J | )
| |

Feature Extraction from Image Classification

9
0
_> 1
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1
1
1

o W N W
g & O O

Result of: Linear Image Filtering After Non-linear RelLU



Summary

We covered two three non-linear filters: Median, Bilateral, RelLU

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)

Convolution is associative and symmetric
Convolution of a Gaussian with a Gaussian Is another (Gaussian

The median filter is a non-linear filter that selects the median in the
neighbournooad

The bilateral filter is a non-linear filter that considers both spatial distance
and range (intensity) distance, and has edge-preserving properties



IClicker test

Please sign up for the iClicker course via Canvas (“iClicker Sync”
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See also the UBC iClicker Student Guide

m UBC iClicker Cloud Student Gu ' X +

O 8 2 https:/fithub.ubc.ca/guides/iclicker-cloud-student-guide/
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iClicker Cloud Student Guide

iClicker Cloud is an online student response system that
allows you to respond individually to in-class polls and low-
stakes quizzes, using your own computer or mobile device.
Your instructor receives the responses instantly and may
share these results and correct answers in the tool during

the live lecture or afterward.

iClicker Cloud has passed a UBC Privacy Impact
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What will | use it for?

Your instructor may have you use iClicker
for a variety of activities:

= Test your knowledge or opinions at
different points in the class for marks

» Support peer instruction, wherein you
answer a question, discuss in small
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https://lthub.ubc.ca/guides/iclicker-cloud-student-guide/

