

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 4: Image Filtering (continued)

Menu for Today

Topics:

-Linear Filtering recap -Efficient convolution, Fourier aside -Quiz 0

Readings:

- Today's Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

Assignment 1: Image Filtering and Hybrid Images due January 30th

- **Non-linear** Filters: Median, ReLU, Bilateral Filter

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	90	90	90	9
0	0	0	90	90	90	9
0	0	0	90	0	90	9
0	0	0	90	90	90	9
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	90	0	0	0	0
0	0	0	0	0	0	0

image

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\int F(i,j) I(X+i,Y+j)$$

-k filter image (signal)

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	90	90	90	9
0	0	0	90	90	90	9
0	0	0	90	0	90	9
0	0	0	90	90	90	9
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	90	0	0	0	0
0	0	0	0	0	0	0

image

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{i=k} F(i,j) \frac{F(X+i,Y+j)}{image (signal)}$$

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	90	90	90	9
0	0	0	90	90	90	9
0	0	0	90	0	90	9
0	0	0	90	90	90	9
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	90	0	0	0	0
0	0	0	0	0	0	0

image

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

5

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	90	90	90	9
0	0	0	90	90	90	9
0	0	0	90	0	90	9
0	0	0	90	90	90	9
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	90	0	0	0	0
0	0	0	0	0	0	0

image

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	90	90	90	9(
0	0	0	90	90	90	9(
0	0	0	90	0	90	9(
0	0	0	90	90	90	9(
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	90	0	0	0	0
0	0	0	0	0	0	0

image

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

7

image

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$I'(X,Y) =$$

output

kk____ j = -k i = -

$$\sum_{k} F(i,j) \frac{F(i,j)}{I(X+i,Y+j)}$$
filter image (signal)

F(X, Y)filter $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

F(X, Y)filter $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
integration of the second state of t

image

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

I'(X,Y)

output

kkj = -k i = -

I'(X,Y)

_									
	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	10	10	10	0	0	0	0	

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

output

Lecture 4: Re-cap Linear Filters Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

Scaling: Let F be digital filter and let k be a scalar $(kF) \otimes I(X,Y) = F \otimes (kI(X,Y)) = k(F \otimes I(X,Y))$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

 $(F_1 + F_2) \otimes I(X, Y) = F_1 \otimes I(X, Y) + F_2 \otimes I(X, Y)$

Lecture 4: Re-cap Smoothing Filters

Smoothing with a box doesn't model lens defocus well Smoothing with a box filter depends on direction Image in which the center point is 1 and every other point is 0

The Gaussian is a good general smoothing model — for phenomena (that are the sum of other small effects) — whenever the Central Limit Theorem applies

- Smoothing with a (circular) **pillbox** is a better model for defocus (in geometric optics)

Lets talk about efficiency

A 2D function of x and y is **separable** if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The **2D** Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

Naive implementation of 2D Filtering:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Filtering:

There are

Total:

Separable 2D Filter:

At each pixel, (X, Y), there are $m \times m$ multiplications $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D **Filtering**:

There are

Total:

Separable 2D **Filter**:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

At each pixel, (X, Y), there are 2m multiplications $n \times n$ pixels in (X, Y)

 $2m \times n^2$ multiplications

Speeding Up **Convolution** (The Convolution Theorem)

Convolution **Theorem**:

 $i'(x,y) = f(x,y) \otimes i(x,y)$ Let

then $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \mathcal{I}(w_x, w_y)$

f(x,y) and i(x,y)

convolution can be reduced to (complex) multiplication

- where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y),

At the expense of two **Fourier** transforms and one inverse Fourier transform,

Speeding Up **Convolution** (The Convolution Theorem)

General implementation of **convolution**:

There are

Total:

Convolution if FFT space:

Cost of FFT/IFFT for image: $\mathcal{O}(n^2 \log n)$ Cost of FFT/IFFT for filter: $\mathcal{O}(m^2 \log m)$ Cost of convolution: $\mathcal{O}(n^2)$

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Note: not a function of filter size !!!

Lets take a detour ...

Fourier Transform (you will NOT be tested on this) Low-Frequency Content: Flat regions, no sharp changes in brightness High-Frequency Content: Sharp changes in brightness (edges)

Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

contrast

frequency

Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

contrast

frequency

Fourier Transform (you will **NOT** be tested on this)

Distance to the screen will change the field of view of your eye and, as a result, frequency spectra of the image being observed

As you come **closer**, higher frequencies come into mid-range As you move **away**, low frequencies come into mid-range

... back from detour

Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

Salvador Dali, 1976

Low-pass filtered version

High-pass filtered version

Assignment 1: Low/High Pass Filtering

Original

I(x, y)

I(x, y) * g(x, y)

Low-Pass Filter

High-Pass Filter

I(x, y) - I(x, y) * g(x, y)

Low-pass / High-pass Filtering

complex element-wise multiplication

image

FFT (Mag)

High pass

filtered image

filtered image

Perfect Low-pass / High-pass Filtering

complex element-wise multiplication

image

FFT (Mag)

High pass

filtered image

filtered image

Perfect Low-pass / High-pass Filtering

complex element-wise multiplication

image

FFT (Mag)

filtered image

filtered image

Low-pass Filtering = "Smoothing"?

Are all of these **low-pass** filters?

Gaussian Filter

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 $\frac{1}{256}$

Low-pass Filtering = "Smoothing"

Are all of these **low-pass** filters?

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

1

256

Gaussian Filter

Low-pass Filtering = "Smoothing"

Are all of these **low-pass** filters?

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

1

256

Gaussian Filter

Image
Low-pass Filtering = "Smoothing"

Low-pass Filtering = "Smoothing"

Linear Filters: Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

Scaling: Let F be digital filter and let k be a scalar $(kF) \otimes I(X,Y) = F \otimes (kI(X,Y)) = k(F \otimes I(X,Y))$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is **linear** if it satisfies both **superposition** and **scaling**

 $(F_1 + F_2) \otimes I(X, Y) = F_1 \otimes I(X, Y) + F_2 \otimes I(X, Y)$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image. Let F and G be digital filters

— Convolution is **associative**. That is,

- Convolution is **symmetric**. That is,

Convolving I(X, Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X, Y) with filter $G \otimes F = F \otimes G$

Note: Correlation, in general, is **not associative**.

$G \otimes (F \otimes I(X, Y)) = (G \otimes F) \otimes I(X, Y)$

$(G \otimes F) \otimes I(X, Y) = (F \otimes G) \otimes I(X, Y)$

Associativity Example

```
B=
                                   B conv A=
                    A conv B=
A=
                    [[ 40 84 105] [[ 40 84 105]
[[1 1 6] [[6 6 4]
                    [ 97 137 130] [ 97 137 130]
[4 1 7] [1 9 5]
                                  [ 96 107 83]]
 [9 0 6]] [3 3 8]]
                     [ 96 107 83]]
                    A corr B=
                                   B corr A=
                                  [[102 97 109]
                     [[ 34 111 79]
                     [ 78 159 124] [124 159 78]
                                   [ 79 111 34]]
                     [109 97 102]]
```

conv(A, B) = conv(B, A)

 $corr(A, B) \neq corr(B, A)$

filter = boxfilter(3)
signal.correlate2d(filter, filter, ' full')

3x3 Box

3x3 **Box**

1	1
1	1
1	1

=

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Treat one filter as padded "image"

3x3 **Box**

Note, in this case you have to pad maximally until two filters no longer overlap

Output

Treat one filter as padded "image"

3x3 **Box**

Output

$$=\frac{1}{81}$$

Treat one filter as padded "image"

3x3 **Box**

Output

Treat one filter as padded "image"

3x3 **Box**

Output

$$=\frac{1}{81}$$

1	2	3	2	1	
2	4	6			

Treat one filter as padded "image"

3x3 **Box**

Output

1	1	1	
1	1	1	
1	1	1	

$$\frac{1}{81} \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix}$$

Treat one filter as padded "image"

3x3 **Box**

Output

3x3 **Box**

1

1

1

1

1

$=\frac{1}{81}$

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter, ' full')
signal.correlate2d(filter, temp, ' full')

3x3 **Box**

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 $\left(\right)$

 $\left(\right)$

 $\frac{1}{16}$

 \bigotimes

 $\overline{256}$

 \mathbf{O} () \mathbf{O} 0 0 0 0 0 $\left(\right)$ 0 0 0 $\left(\right)$ \mathbf{O} 1 1 1 6 4 4 16 0 0 0 0 $\left(\right)$ 0 0 \mathbf{O} 0 $\mathbf{0}$ $\left(\right)$ 0 \mathbf{O} \mathbf{O}

 $\frac{1}{16}$

 \bigotimes

 $=\frac{1}{256}$

1	4	6	4	1
4	16			

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

$$\left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right) \times \left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right)$$

More broadly for a set of K filters of sizes $m_k \times m_k$ the resulting filter will have size:

$$\left(m_1 + 2\sum_{k=2}^{K} \left\lfloor \frac{m_k}{2} \right\rfloor\right) \times \left(m_1 + 2\sum_{k=2}^{K} \left\lfloor \frac{m_k}{2} \right\rfloor\right)$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_1}(x)$ and $G_{\sigma_2}(x)$ be be two 1D Gaussians

 $G_{\sigma_1}(x) \otimes G_{\sigma_2}(x)$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2}\sigma}(x)$

$$x) = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}(x)$$

Non-linear Filters

- shifting
- smoothing
- sharpening

filters.

For example, the median filter (which is a very effective de-noising / smoothing filter) selects the **median** value from each pixel's neighborhood.

We've seen that **linear filters** can perform a variety of image transformations

In some applications, better performance can be obtained by using **non-linear**

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

Image

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image

7	13	16	24	34	54
---	----	----	----	----	----

Output

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image

13	

Output

pepper' noise or 'shot' noise)

Image credit: <u>https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png</u>

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and

The median filter forces points with distinct values to be more like their neighbors

An edge-preserving non-linear filter

Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- **Unlike** a Gaussian filter:

- The filter weights also depend on range distance from the center pixel - Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

- Pixels nearby (in space) should have greater influence than pixels far away

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

$$\exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{y^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

image I(X,Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

 Range Kernel

 $\sigma_r = 0.45$

 0.98
 0.98

 1
 1

 1
 0.1

0.98

(this is different for each locations in the image)

0.1

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image	I(X,	,Y)
image	I(X,	, Y)

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

 Range Kernel
 Range * Domain Kernel

 $\sigma_r = 0.45$ $0.98 \ 0.98 \ 0.2$

 1
 1
 0.1

 0.98
 1
 0.1

(this is different for each locations in the image)

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

image	I(X,	,Y)
image	I(X,	, Y)

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

 Range Kernel
 Range * Domain Kernel

 $\sigma_r = 0.45$ $0.98 \ 0.98 \ 0.2$

 1
 1
 0.1

 0.98
 1
 0.1

(this is different for each locations in the image)

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

0.11	0.16	0.03
0.16	0.26	0.01
0.11	0.16	0.01

image	I(X,	,Y)
image	I(X,	, Y)

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

 Range Kernel
 Range * Domain Kernel

 $\sigma_r = 0.45$ $0.98 \ 0.98 \ 0.2$

 1
 1
 0.1

 0.98
 1
 0.1

(this is different for each locations in the image)

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Bilateral Filter

image	I(X,	Y)
Image	I(X,	(Y)

25	0	25	255	255	255	
0	0	0	230	255	255	
0	25	25	255	230	255	
0	0	25	255	255	255	

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

 Range Kernel
 Range * Domain Kernel

 $\sigma_r = 0.45$ $0.98 \ 0.98 \ 0.2$

 1
 1
 0.1

 0.98
 1
 0.1

(this is different for each locations in the image)

Bilateral Filter

Domain Kernel

Input

Range Kernel Influence

Bilateral Filter

(domain * range)

Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

Noisy Image

Gaussian Filter

Bilateral Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Cartooning

Original Image

After 5 iterations of **Bilateral** Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Flash Photography

noise and blur

But there are problems with **flash images**: — colour is often unnatural

- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Non-flash images taken under low light conditions often suffer from excessive

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:

Flash

'Joint' or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

No-Flash

Detail Transfer with Denoising

Figure Credit: Petschnigg et al., 2004

Aside: Linear Filter with ReLU

Feature Extraction from Image

Linear Image Filtering

Result of:

Classification

After Non-linear ReLU

Summary

We covered two three **non-linear filters**: Median, Bilateral, ReLU

1D filters)

Convolution is **associative** and **symmetric**

Convolution of a Gaussian with a Gaussian is another Gaussian

The **median filter** is a non-linear filter that selects the median in the neighbourhood

and range (intensity) distance, and has edge-preserving properties

Separability (of a 2D filter) allows for more efficient implementation (as two

The **bilateral filter** is a non-linear filter that considers both spatial distance

iClicker test

Please sign up for the iClicker course via Canvas ("iClicker Sync" in menu) See also the <u>UBC iClicker Student Guide</u>

up LIDC and provingial

nt-guide/	E 🏠	ABP	≡
H COLUMBIA	Q~		
ort 🗸 Initiatives 🗸 Governance 🕻	✓ News		
	Contact Us 🐣		
udent response system that	What will I use it for?		
lually to in-class polls and low- /n computer or mobile device.	Your instructor may have you use iClicker for a variety of activities:		
ct answers in the tool during	 Test your knowledge or opinions at different points in the class for marks 		
BC <u>Privacy Impact</u>	 Support peer instruction, wherein you answer a question, discuss in small 		