
Lecture 4: Image Filtering (continued)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today
Topics:

— Box, Gaussian, Pillbox filters
— Separability

Readings:

— Today’s Lecture: none
— Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

Reminders:
— Assignment 1: Image Filtering and Hybrid Images due January 30th

— The Convolution Theorem
— Fourier Space Representations

Today’s “fun” Example: Rolling Shutter

Today’s “fun” Example: Rolling Shutter

Today’s “fun” Example: Rolling Shutter

Today’s “fun” Example: Rolling Shutter

— Visual interpretation: Superimpose the filter on the image at ,
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter rotated 180°

— The correlation of and is:

Lecture 3: Re-cap Correlation

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

 if then correlation = convolution.F (X,Y) = F (�X,�Y)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

Note: if then correlation = convolution.

Definition: Correlation

Definition: Convolution

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)

F (X,Y) = F (�X,�Y)

Lecture 3: Re-cap Correlation vs. Convolution

Ways to handle boundaries
– Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
– Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
– Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to

rightmost column.

Simple examples of filtering:
— copy, shift, smoothing, sharpening

Lecture 3: Re-cap

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?
What about Deep Learning?

Preview: Why convolutions are important?

Basic operations in CNNs are convolutions (with learned linear filters) followed
by non-linear functions.

Note: This results in non-linear filters.

Who has heard of Convolutional Neural Networks (CNNs)?
What about Deep Learning?

Linear Filters: Properties
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Linear Filters: Properties
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

00
0
0 0 0

0
0 1 1 1

1 1 1
1 1 1

1
92

Linear Filters: Properties

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Linear Filters: Properties

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

1 1 1
1 1 1
1 1 1

1
9

Linear Filters: Properties

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Linear Filters: Shift Invariance

Y

X X

Y

Output does not depend on absolute position

Linear Filters: Shift Invariance

Y

X X

Y

<latexit sha1_base64="PKR5NK19XZ5lTciY4uE4FK2T7Bw=">AAACiXicfVFdixoxFM1Mu9a6tWvrY19CpVRZKzNLuxWhIAhtfbOwriOOSCYmGsxMhuROQQb/S39T3/rWP1Jo/Ci0bt37ksM593Bvzo1SKQx43g/HffDwrPCo+Lh0/qT89KLy7PmtUZmmbEiVVDqIiGFSJGwIAiQLUs1IHEk2ila9rT76yrQRKrmBdcqmMVkkggtKwFKzyrf+63rQHDfwB8xDyTjUPzZxf4+CN6HkUikdck1ovtrkV5tQ7xjcwcHlSbWJx/dax6etGIdaLJbQ+PPOKjWv5e0K3wX+AdS6n35Wf5UL68Gs8j2cK5rFLAEqiTET30thmhMNgkq2KYWZYSmhK7JgEwsTEjMzzXdJbvAry8wxt3twlQDesX87chIbs44j2xkTWJpjbUv+T5tkwNvTXCRpBiyh+0E8kxgU3p4Fz4VmFOTaAkK1sLtiuiQ2HbDHK9kQ/OMv3wW3Vy3/uvX2i02jj/ZVRC/QS1RHPnqPuugzGqAhok7BaTrvnGv33PXdttvZt7rOwVNF/5Tb+w2Ouscx</latexit>

I 0(X,Y) = f

✓
F, I

✓
X � bk

2
c : X + bk

2
c, Y � bk

2
c : Y + bk

2
c
◆◆

Linear Filters: Shift Variant

Y

X X

Y

<latexit sha1_base64="AGAYDpFTkt7hGACR7rkg9gEd9A4=">AAACj3icfVFdSxtBFJ3dtn6kWmN99OVSKY00DbtBVNoqgULbvFlodEM2hNnJTDJkdmeZuVsIS/6OP8g33/wjgpPEQqu19+nMOffM3Dk3yZW0GATXnv/s+YuV1bX1ysuNzVdb1e3X51YXhvEO00qbKKGWK5nxDkpUPMoNp2mi+EUy+TLXL35xY6XOfuI05/2UjjIpJKPoqEH1sv2uFtW7+3ACIlZcYO1rHdpLFH2IlVBam1gYysrJrGzOYrNg4CNE759U69D9r7X7tBUgNnI0xv06RO6a36dBdS9oBIuCxyC8B3utbzc7t5sr07NB9SoealakPEOmqLW9MMixX1KDkik+q8SF5TllEzriPQczmnLbLxd5zuCtY4Yg3DRCZwgL9k9HSVNrp2niOlOKY/tQm5P/0noFiuN+KbO8QJ6x5UOiUIAa5suBoTScoZo6QJmRblZgY+oyQrfCigshfPjlx+C82QgPGwc/XBptsqw1skvekBoJyRFpke/kjHQI8za8pvfJ++xv+0f+qd9atvrevWeH/FV++w7A5Mi2</latexit>

I 0(X,Y) = f

✓
F, I

✓
X � bk

2
c : X + bk

2
c, Y � bk

2
c : Y + bk

2
c
◆
, X, Y

◆

Linear Filters: Shift Variant

Y

X X

Y

<latexit sha1_base64="WXkwpZ5KiKvrNdJztRcH4o23bGU=">AAACj3icfVFdSyMxFM2Mu35UXas+7ktYka1st8wUUXF3pSCofVOwOqVTSiZN2tDMZEjuCGWYv7M/aN98848Ipq2Cn3tfcnLOPeTm3CiVwoDn3Tru3KfP8wuLS6XlldUva+X1jSujMk1ZiyqpdBARw6RIWAsESBakmpE4kuw6Gh1P9Osbpo1QySWMU9aNySARXFACluqV/za/V4Jqewf/wTyUjEPlpJdboqji5uwe/Awll0rpkGtC81GR14tQTxl8iIMfH6pV3P6vtf2xFeNQi8EQdp7OXnnLq3nTwm+B/wi2Gqd3m/er8+PzXvlf2Fc0i1kCVBJjOr6XQjcnGgSVrCiFmWEpoSMyYB0LExIz082neRZ42zJ9zO0cXCWAp+xzR05iY8ZxZDtjAkPzWpuQ72mdDPhBNxdJmgFL6OwhnkkMCk+Wg/tCMwpybAGhWthZMR0Smw7YFZZsCP7rL78FV/Wav1fbvbBpNNGsFtFX9A1VkI/2UQOdoXPUQtRZcerOL+e3u+7uu0duY9bqOo+eTfSi3OYDJ6TJoQ==</latexit>

I 0(X,Y) = f

✓
FX,Y , I

✓
X � bk

2
c : X + bk

2
c, Y � bk

2
c : Y + bk

2
c
◆◆

Linear Filters: Properties

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

Smoothing (or blurring) is an important operation in a lot of computer vision

— Captured images are naturally noisy, smoothing allows removal of noise

— It is important for re-scaling of images, to avoid sampling artifacts

— Fake image defocus (e.g., depth of field) for artistic effects

(many other uses as well)

Smoothing

1 1 1
1 1 1
1 1 1

1
9

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighborhood

— Box filter is also referred to as average filter or mean filter

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

Smoothing with a Box Filter

What happens if we increase the width (size) of the box filter?

Smoothing with a Box Filter

Original 3x3

9x9

35x35

5x5

15x15

Gonzales & Woods (3rd ed.) Figure 3.3

Smoothing with a Box Filter

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Smoothing with a Box Filter

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Image
Filter

Smoothing with a Box Filter

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
91 1 1

1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

1 1 1
1 1 1
1 1 1

1
9

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Image
Filter

Result

Smoothing with a Box Filter

Smoothing: Circular Kernel

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model
— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies

Smoothing

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model
— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies

Smoothing

The scaling constant, , ensures that the area of the filter is one

Pillbox Filter

Let the radius (i.e., half diameter) of the filter be

In a contentious domain, a 2D (circular) pillbox filter, , is defined as:

f(x, y) =
1

⇡r2

⇢
1 if x2 + y2  r2

0 otherwise

f(x, y) =
1

⇡r2

⇢
1 if x2 + y2  r2

0 otherwise

1

⇡r2

r

= +

Original 11 x 11 Pillbox

Pillbox Filter

Images: yehar.com

Hubble Deep View With Circular Blur

Pillbox Filter

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model
— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies

Smoothing

Smoothing with a Gaussian
Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

Standard Deviation

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

1. Define a continuous 2D function

2. Discretize it by evaluating this function on the
discrete pixel positions to obtain a filter

Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

What happens if is larger?� = 1

— More blur

Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

What happens if is smaller?� = 1

Smoothing with a Gaussian

With :

Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

What happens if is larger?� = 1

What happens if is smaller?� = 1

— Less blur

Smoothing with a Gaussian

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

Smoothing with a Gaussian

Box vs. Gaussian Filter

7x7 Gaussian

7x7 box

original

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

University of
British

Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

University of
British

Columbia

With :

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

With :

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp�

1
2�2G�(�1, 0) =

1

2⇡�2
exp�

1
2�2

G�(0, 1) =
1

2⇡�2
exp�

1
2�2

G�(0,�1) =
1

2⇡�2
exp�

1
2�2

G�(1, 1) =
1

2⇡�2
exp�

2
2�2

G�(1,�1) =
1

2⇡�2
exp�

2
2�2G�(�1,�1) =

1

2⇡�2
exp�

2
2�2

G�(�1, 1) =
1

2⇡�2
exp�

2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

truncated too much

does not sum to 1

σ σσσ σσσσ

68%

99.99%

99.7%

95%

Gaussian: Area Under the Curve

With :� = 1 0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

Better version of the Gaussian filter:

In general, you want the Gaussian filter to capture , for => 7x7 filter

— sums to 1 (normalized)
— captures ±2�

±3� � = 1

Smoothing with a Gaussian

Exercise

With what filter size would be appropriate?<latexit sha1_base64="Ce5hqCcPi3MpYnU36XQcmqf9/KU=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVq17Eghe9VbAf2C4lm2bb0CS7JFmhLP0XXjwo4tU/I978N6bbHrT1wcDjvRlm5gUxZ9q47reTW1peWV3Lrxc2Nre2d4q7ew0dJYrQOol4pFoB1pQzSeuGGU5bsaJYBJw2g+H1xG8+UqVZJO/NKKa+wH3JQkawsdJDR7O+wOgSVbrFklt2M6BF4s1I6eoTMtS6xa9OLyKJoNIQjrVue25s/BQrwwin40In0TTGZIj7tG2pxIJqP80uHqMjq/RQGClb0qBM/T2RYqH1SAS2U2Az0PPeRPzPaycmvPBTJuPEUEmmi8KEIxOhyfuoxxQlho8swUQxeysiA6wwMTakgg3Bm395kTROyt5Z+fTOLVVvp2lAHg7gEI7Bg3Oowg3UoA4EJDzBC7w62nl23pz3aWvOmc3swx84Hz+8I5EY</latexit>

� = 5

Exercise

With what filter size would be appropriate?<latexit sha1_base64="Ce5hqCcPi3MpYnU36XQcmqf9/KU=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVq17Eghe9VbAf2C4lm2bb0CS7JFmhLP0XXjwo4tU/I978N6bbHrT1wcDjvRlm5gUxZ9q47reTW1peWV3Lrxc2Nre2d4q7ew0dJYrQOol4pFoB1pQzSeuGGU5bsaJYBJw2g+H1xG8+UqVZJO/NKKa+wH3JQkawsdJDR7O+wOgSVbrFklt2M6BF4s1I6eoTMtS6xa9OLyKJoNIQjrVue25s/BQrwwin40In0TTGZIj7tG2pxIJqP80uHqMjq/RQGClb0qBM/T2RYqH1SAS2U2Az0PPeRPzPaycmvPBTJuPEUEmmi8KEIxOhyfuoxxQlho8swUQxeysiA6wwMTakgg3Bm395kTROyt5Z+fTOLVVvp2lAHg7gEI7Bg3Oowg3UoA4EJDzBC7w62nl23pz3aWvOmc3swx84Hz+8I5EY</latexit>

� = 5

<latexit sha1_base64="qjQ5Qh946TLUbX7RXHfcRKUVosc=">AAACEHicbVC7SgNBFJ2NrxhfG20Em8EgikXYNRptIgEb7SKYB2SXMDuZTYbMzi4zs0JY8gk2/oKdYGVjoYitZTr/xsmj0OiBYQ7n3Mu993gRo1JZ1peRmptfWFxKL2dWVtfWN8zsZk2GscCkikMWioaHJGGUk6qiipFGJAgKPEbqXu9i5NdviZA05DeqHxE3QB1OfYqR0lLL3Hck7QQIHsIiLMGT6V+wYOkcFmzoKBoQqVnLzFl5awz4l9hTkitnHx+etoetSsscOu0QxwHhCjMkZdO2IuUmSCiKGRlknFiSCOEe6pCmphzpOW4yPmgA97TShn4o9OMKjtWfHQkKpOwHnq4MkOrKWW8k/uc1Y+WfuQnlUawIx5NBfsygCuEoHdimgmDF+pogLKjeFeIuEggrnWFGh2DPnvyX1I7ydjF/fK3TuAITpMEO2AUHwAanoAwuQQVUAQZ34Bm8gjfj3ngx3o2PSWnKmPZsgV8wPr8BGu+bUQ==</latexit>

� ⇤ 6 = 5 ⇤ 6 = 30 => 31⇥ 31

Lets talk about efficiency

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter
— Then, convolve each column with a 1D filter
— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.

Separability: Box Filter Example

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0St

an
da

rd
 (3

x3
)

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

1
1
1

1

3

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

I 0(X,Y)output

F (X,Y) = F (X)F (Y) F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

If a 2D filter can be expressed as an outer product of two 1D filters

Separability: How do you know if filter is separable?

1 1 1
1 1 1
1 1 1

1

9 1 1 11

3

1
1
1

1

3�=

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

function of x function of y

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

function of x function of y

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Efficient Implementation: Separability

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Total: multiplications2m⇥ n2

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

At each pixel, , there are multiplications
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

2m

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Separable Filtering

116 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1
K2

1 1 · · · 1

1 1 · · · 1

...
... 1

...
1 1 · · · 1

1
16

1 2 1

2 4 2

1 2 1

1
256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

1
8

�1 0 1

�2 0 2

�1 0 1

1
4

1 �2 1

�2 4 �2

1 �2 1

1
K

1 1 · · · 1
1
4 1 2 1

1
16 1 4 6 4 1

1
2 �1 0 1

1
2 1 �2 1

(a) box, K = 5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

Figure 3.14 Separable linear filters: For each image (a)–(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2⇥ and 4⇥, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K = vhT (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K =

X

i

�iuiv
T

i
(3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value �0 is
non-zero, the kernel is separable and

p
�0u0 and

p
�0vT

0 provide the vertical and horizontal

Several useful filters can be applied as independent row and column operations

The scaling constant, , ensures that the area of the filter is one

Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be

In a contentious domain, a 2D (circular) pillbox filter, , is defined as:

f(x, y) =
1

⇡r2

⇢
1 if x2 + y2  r2

0 otherwise

f(x, y) =
1

⇡r2

⇢
1 if x2 + y2  r2

0 otherwise

1

⇡r2

r

= +

Recall that the 2D Gaussian is the only (non trivial) 2D function that is both
separable and rotationally invariant.

A 2D pillbox is rotationally invariant but not separable.

There are occasions when we want to convolve an image with a 2D pillbox. Thus,
it worth exploring possibilities for efficient implementation.

Smoothing with a Pillbox

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

70

z = xy

ln z = lnx+ ln y

z = expln z = exp(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

71

z = xy

ln z = lnx+ ln y

z = expln z = exp(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

72

z = xy

ln z = lnx+ ln y

z = expln z = exp(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

z = xy

ln z = lnx+ ln y

z = expln z = exp(ln x+ln y)

Speeding Up Rotation

Another analogy: 2D rotation of a point by an angle about the origin

The standard approach, in Euclidean coordinates, involves a matrix
multiplication

Suppose we transform to polar coordinates

Rotation becomes addition, at expense of one polar coordinate transform and
one inverse polar coordinate transform


x0

y0

�
=


cos↵ � sin↵
sin↵ cos↵

� 
x
y

�

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0, y0)

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0, y0)

Speeding Up Convolution (The Convolution Theorem)

Gonzales & Woods (3rd ed.) Figure 2.39

Similarly, some image processing operations become cheaper in a
transform domain

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)
i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

Lets take a detour …

What follows is for fun
(you will NOT be tested on this)

Fourier Transform (you will NOT be tested on this)

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

Fourier’s claim: Add enough of these to get any periodic signal you want!

amplitude

angular
frequency

variable
phase

sinusoid

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

??

How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

?

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you
express this

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

What are “frequencies” in an image?

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Observation: low frequencies close
to the center

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Image
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)

First (lowest) frequency, a.k.a. average
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)

+ Second frequency
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)

+ Third frequency
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)

+ 50% of frequencies
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Fourier Transform (you will NOT be tested on this)

Fourier Transform (you will NOT be tested on this)

amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

cheetah phase
with zebra
amplitude

zebra phase
with cheetah

amplitude

Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

What preceded was for fun
(you will NOT be tested on it)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Assignment 1: Low/High Pass Filtering

Original Low-Pass Filter High-Pass Filter

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

