CPSC 425: Computer Vision

Lecture 4: Image Filtering (continued)
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today

Topics:

- Box, Gaussian, Pillbox filters
- Separability
- The Convolution Theorem
- Fourier Space Representations

Readings:

- Today's Lecture: none
- Next Lecture: \quad Forsyth \& Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images due January 30th

Today’s "fun" Example: Rolling Shutter

Today’s "fun" Example: Rolling Shutter

Today's "fun" Example: Rolling Shutter

Rolling shutter effect

Today's "fun" Example: Rolling Shutter

Rolling shutter effect

Lecture 3: Re-cap Correlation

- The correlation of $F(X, Y)$ and $I(X, Y)$ is:

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { output }}}{F(i, j) I(X+i, Y+j)} \underset{\substack{\text { filter } \\ \text { image (signal) }}}{ }
$$

- Visual interpretation: Superimpose the filter F on the image I at (X, Y), perform an element-wise multiply, and sum up the values
- Convolution is like correlation except filter rotated 180°
if $F(X, Y)=F(-X,-Y)$ then correlation $=$ convolution.

Lecture 3: Re-cap Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
\begin{aligned}
I^{\prime}(X, Y) & =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j) \\
& =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i,-j) I(X+i, Y+j)
\end{aligned}
$$

Note: if $F(X, Y)=F(-X,-Y)$ then correlation $=$ convolution.

Lecture 3: Re-cap

Ways to handle boundaries

- Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
- Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
- Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to rightmost column.

Simple examples of filtering:

- copy, shift, smoothing, sharpening

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?
What about Deep Learning?

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?
What about Deep Learning?

Basic operations in CNNs are convolutions (with learned linear filters) followed by non-linear functions.

Note: This results in non-linear filters.

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Linear Filters: Shift Invariance

Output does not depend on absolute position

Linear Filters: Shift Invariance

$$
I^{\prime}(X, Y)=f\left(F, I\left(X-\left\lfloor\frac{k}{2}\right\rfloor: X+\left\lfloor\frac{k}{2}\right\rfloor, Y-\left\lfloor\frac{k}{2}\right\rfloor: Y+\left\lfloor\frac{k}{2}\right\rfloor\right)\right)
$$

Linear Filters: Shift Variant

$$
I^{\prime}(X, Y)=f\left(F, I\left(X-\left\lfloor\frac{k}{2}\right\rfloor: X+\left\lfloor\frac{k}{2}\right\rfloor, Y-\left\lfloor\frac{k}{2}\right\rfloor: Y+\left\lfloor\frac{k}{2}\right\rfloor\right), X, Y\right)
$$

Linear Filters: Shift Variant

$$
I^{\prime}(X, Y)=f\left(F_{X, Y}, I\left(X-\left\lfloor\frac{k}{2}\right\rfloor: X+\left\lfloor\frac{k}{2}\right\rfloor, Y-\left\lfloor\frac{k}{2}\right\rfloor: Y+\left\lfloor\frac{k}{2}\right\rfloor\right)\right)
$$

Linear Filters: Properties

Let \otimes denote convolution. Let $I(X, Y)$ be a digital image
Superposition: Let F_{1} and F_{2} be digital filters

$$
\left(F_{1}+F_{2}\right) \otimes I(X, Y)=F_{1} \otimes I(X, Y)+F_{2} \otimes I(X, Y)
$$

Scaling: Let F be digital filter and let k be a scalar

$$
(k F) \otimes I(X, Y)=F \otimes(k I(X, Y))=k(F \otimes I(X, Y))
$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)
An operation is linear if it satisfies both superposition and scaling

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

Smoothing

Smoothing (or blurring) is an important operation in a lot of computer vision

- Captured images are naturally noisy, smoothing allows removal of noise
- It is important for re-scaling of images, to avoid sampling artifacts
- Fake image defocus (e.g., depth of field) for artistic effects
(many other uses as well)

Smoothing with a Box Filter

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighborhood

- Box filter is also referred to as average filter or mean filter

Smoothing with a Box Filter

Forsyth \& Ponce (2nd ed.) Figure 4.1 (left and middle)

Smoothing with a Box Filter

What happens if we increase the width (size) of the box filter?

Smoothing with a Box Filter

Gonzales \& Woods (3rd ed.) Figure 3.3

Smoothing with a Box Filter

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a Box Filter

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Filter

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Image

Smoothing with a Box Filter

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Filter

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Image

0	0	0	0	0
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	0
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	0
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	0
0	0	0	0	0

Result

Smoothing: Circular Kernel

* image credit: $\underline{\text { https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png }}$

Smoothing

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

Pillbox Filter

Let the radius (i.e., half diameter) of the filter be r
In a contentious domain, a 2D (circular) pillbox filter, $f(x, y)$, is defined as:

$$
f(x, y)=\frac{1}{\pi r^{2}} \begin{cases}1 & \text { if } x^{2}+y^{2} \leq r^{2} \\ 0 & \text { otherwise }\end{cases}
$$

The scaling constant, $\frac{1}{\pi r^{2}}$, ensures that the area of the filter is one

Pillbox Filter

Original

11×11 Pillbox

Pillbox Filter

Hubble Deep View

With Circular Blur

Smoothing

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model

- for phenomena (that are the sum of other small effects)
- whenever the Central Limit Theorem applies

Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Forsyth \& Ponce (2nd ed.) Figure 4.2

Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$
\begin{gathered}
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
\text { Standard Deviation }
\end{gathered}
$$

Forsyth \& Ponce (2nd ed.)
Figure 4.2

Smoothing with a Gaussian

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

1. Define a continuous 2D function
2. Discretize it by evaluating this function on the discrete pixel positions to obtain a filter

Forsyth \& Ponce (2nd ed.) Figure 4.2

Smoothing with a Gaussian

Quantized an truncated $\mathbf{3 \times 3}$ Gaussian filter:

$G_{\sigma}(-1,1)$	$G_{\sigma}(0,1)$	$G_{\sigma}(1,1)$
$G_{\sigma}(-1,0)$	$G_{\sigma}(0,0)$	$G_{\sigma}(1,0)$
$G_{\sigma}(-1,-1)$	$G_{\sigma}(0,-1)$	$G_{\sigma}(1,-1)$

Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

Smoothing with a Gaussian

Quantized an truncated $\mathbf{3 \times 3}$ Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?

Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

\uparrow	\uparrow	\uparrow
\uparrow	\downarrow	\uparrow
\uparrow	\uparrow	\uparrow

What happens if σ is larger?

- More blur

Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?
What happens if σ is smaller?

Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

What happens if σ is larger?
What happens if σ is smaller?

- Less blur

Smoothing with a Gaussian

Forsyth \& Ponce (2nd ed.) Figure 4.1 (left and right)

Box vs. Gaussian Filter

original

7×7 Gaussian

7×7 box

Fun: How to get shadow effect?

University of British Columbia

Fun: How to get shadow effect?

University of British Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original (with some offset)

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

Example 6: Smoothing with a Gaussian

Quantized an truncated 3×3 Gaussian filter:

$G_{\sigma}(-1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$
$G_{\sigma}(-1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(0,0)=\frac{1}{2 \pi \sigma^{2}}$	$G_{\sigma}(1,0)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$
$G_{\sigma}(-1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$	$G_{\sigma}(0,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{1}{2 \sigma^{2}}}$	$G_{\sigma}(1,-1)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{2}{2 \sigma^{2}}}$

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

Gaussian: Area Under the Curve

Smoothing with a Gaussian

With $\sigma=1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Better version of the Gaussian filter:

- sums to 1 (normalized)
- captures $\pm 2 \sigma$

$\frac{1}{2}+$| 1 | 4 | 7 | 4 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 26 | 16 | 4 |
| 7 | 26 | 41 | 26 | 7 |
| 4 | 16 | 26 | 16 | 4 |
| 1 | 4 | 7 | 4 | 1 |

In general, you want the Gaussian filter to capture $\pm 3 \sigma$, for $\sigma=1=>7 \times 7$ filter

Exercise

With $\sigma=5$ what filter size would be appropriate?

Exercise

With $\sigma=5$ what filter size would be appropriate?

$$
\sigma * 6=5 * 6=30=>31 \times 31
$$

Lets talk about efficiency

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

Separability: Box Filter Example

$\begin{aligned} & \text { O} \\ & \times \end{aligned}$	0	0	0	0	0	0		0	0	0		0
	0	0	0	0	0	0		0	0	0		0
	0	0	0	90	90	90	0	90	90	0		0
	0	0	0	90	90	90		90	90	0		0
	0	0	0	90	0	90		90	90	0		0
T	0	0	0	90	90	90		90	90	0		0
	0	0	0	0	0	0		0	0	0		0
¢	0	0	0	0	0		0	0	0	0		0
\boldsymbol{O}	0	0	90	0	0	0	0	0	0	0		0
	0	0	0	0	0	0		0	0	0		0

$$
F(X, Y)=F(X) F(Y)
$$

filter

1	1	1
1	1	1
1	1	1

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
10	30	10	10	0	0	0	0		

Separability: Box Filter Example

$\begin{aligned} & \text { o } \\ & \times \\ & \end{aligned}$	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	90	90	90	90	90	0		
	0	0	0	90	90	90	90	90	0		
	0	0	0	90	0	90	90	90	0		
	0	0	0	90	90	90	90	90	0		
	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0		
	0	0	90	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0		

$$
F(X, Y)=F(X) F(Y)
$$

filter
$\begin{array}{\|l\|l\|l\|} \hline 1 & 1 \\ \hline 1 & 1 \\ \hline \end{array}$
1

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

$$
I(X, Y)
$$

image

	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	30	60	90	90	90	60	30	
	0	30	60	90	90	90	60	30	
	0	30	30	60	60	90	60	30	
	0	30	60	90	90	90	60	30	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	30	30	30	30	0	0	0	0	
	0	0	0	0	0	0	0	0	

Separability: Box Filter Example

$\begin{aligned} & \text { o } \\ & \times \\ & \end{aligned}$	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	90	90	90	90	90	0		
	0	0	0	90	90	90	90	90	0		
	0	0	0	90	0	90	90	90	0		
	0	0	0	90	90	90	90	90	0		
	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0		
	0	0	90	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0		

$$
I(X, Y)
$$

image

	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	30	60	90	90	90	60	30	
	0	30	60	90	90	90	60	30	
	0	30	30	60	60	90	60	30	
	0	30	60	90	90	90	60	30	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	30	30	30	30	0	0	0	0	
	0	0	0	0	0	0	0	0	

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

$I^{\prime}(X, Y)$
output

$$
F(Y)
$$

filter

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

Separability: How do you know if filter is separable?

If a 2D filter can be expressed as an outer product of two 1D filters

Efficient Implementation: Separability

For example, recall the 2D Gaussian:

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

Efficient Implementation: Separability

For example, recall the 2D Gaussian:

$$
\begin{aligned}
G_{\sigma}(x, y)= & \frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
= & \left(\begin{array}{cc}
\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}\right) & \left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right) \\
& \text { function of } \mathrm{x} \\
\text { function of } \mathrm{y}
\end{array}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

Efficient Implementation: Separability

For example, recall the 2D Gaussian:

$$
\begin{aligned}
G_{\sigma}(x, y)= & \frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\begin{array}{cc}
\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right) \\
& \text { function of } \mathrm{x} \\
\text { function of } \mathrm{y}
\end{array}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:
At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $\quad m^{2} \times n^{2}$ multiplications

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $m^{2} \times n^{2}$ multiplications

Separable 2D Gaussian:

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications
There are $\quad n \times n$ pixels in (X, Y)
Total: $\quad m^{2} \times n^{2}$ multiplications

Separable 2D Gaussian:

$$
\begin{aligned}
& \text { At each pixel, }(X, Y) \text {, there are } \\
& \text { There are } \\
& \hline \text { Total: } \\
& n \times n
\end{aligned} \begin{aligned}
& \text { multiplications } \\
& \text { pixels in }(X, Y)
\end{aligned}
$$

Separable Filtering

Several useful filters can be applied as independent row and column operations

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

(a) box, $K=5$
(b) bilinear
(c) "Gaussian"

$\frac{1}{K}$	1	1	\cdots

$\frac{1}{4}$| 1 | -2 | 1 |
| :---: | :---: | :---: |
| -2 | 4 | -2 |
| 1 | -2 | 1 |

(d) Sobel
(e) corner

Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be r
In a contentious domain, a 2D (circular) pillbox filter, $f(x, y)$, is defined as:

$$
f(x, y)=\frac{1}{\pi r^{2}} \begin{cases}1 & \text { if } x^{2}+y^{2} \leq r^{2} \\ 0 & \text { otherwise }\end{cases}
$$

The scaling constant, $\frac{1}{\pi r^{2}}$, ensures that the area of the filter is one

Smoothing with a Pillbox

> Recall that the 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

A 2D pillbox is rotationally invariant but not separable.

There are occasions when we want to convolve an image with a 2D pillbox. Thus, it worth exploring possibilities for efficient implementation.

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

$$
z=x y
$$

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

$$
z=x y
$$

Taking logarithms of both sides, one obtains

$$
\ln z=\ln x+\ln y
$$

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

$$
z=x y
$$

Taking logarithms of both sides, one obtains

$$
\ln z=\ln x+\ln y
$$

Therefore

$$
z=\exp ^{\ln z}=\exp ^{(\ln x+\ln y)}
$$

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

$$
z=x y
$$

Taking logarithms of both sides, one obtains

$$
\ln z=\ln x+\ln y
$$

Therefore.

$$
z=\exp ^{\ln z}=\exp ^{(\ln x+\ln y)}
$$

Interpretation: At the expense of two $\ln ()$ and one $\exp ()$ computations, multiplication is reduced to admission

Speeding Up Rotation

Another analogy: 2D rotation of a point by angle α about the origin

The standard approach, in Euclidean coordinates, involves a matrix multiplication

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Suppose we transform to polar coordinates

$$
(x, y) \rightarrow(\rho, \theta) \rightarrow(\rho, \theta+\alpha) \rightarrow\left(x^{\prime}, y^{\prime}\right)
$$

Rotation becomes addition, at expense of one polar coordinate transform and one inverse polar coordinate transform

Speeding Up Convolution (The Convolution Theorem)

Similarly, some image processing operations become cheaper in a transform domain

Gonzales \& Woods (3rd ed.) Figure 2.39

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

$$
\begin{aligned}
\text { Let } \quad i^{\prime}(x, y) & =f(x, y) \otimes i(x, y) \\
\text { then } \quad \mathcal{I}^{\prime}\left(w_{x}, w_{y}\right) & =\mathcal{F}\left(w_{x}, w_{y}\right) \mathcal{I}\left(w_{x}, w_{y}\right)
\end{aligned}
$$

where $\mathcal{I}^{\prime}\left(w_{x}, w_{y}\right), \mathcal{F}\left(w_{x}, w_{y}\right)$, and $\mathcal{I}\left(w_{x}, w_{y}\right)$ are Fourier transforms of $i^{\prime}(x, y)$, $f(x, y)$ and $i(x, y)$

At the expense of two Fourier transforms and one inverse Fourier transform, convolution can be reduced to (complex) multiplication

What follows is for fun (you will NOT be tested on this)

Fourier Transform (you will NOT be tested on this)

Basic building block:

$A \sin (\omega x+\phi)$

Fourier's claim: Add enough of these to get any periodic signal you want!

Fourier Transform (you will NOT be tested on this)

Basic building block:

Fourier's claim: Add enough of these to get any periodic signal you want!

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

square wave

How would you express this mathematically?

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Fourier Transform (you will NOT be tested on this)

Basic building block:

$A \sin (\omega x+\phi)$

Fourier's claim: Add enough of these to get any periodic signal you want!

Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

$f=4$

$f=5$

$f=6$

$f=7$

$f=8$

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

$f=4$

$f=6$

$f=7$

$f=8$

$f=9$

$$
f=10
$$

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Fourier Transform (you will NOT be tested on this)
What are "frequencies" in an image?
Spatial frequency

$\Theta=30^{\circ}$

$\Theta=150^{\circ}$

Fourier Transform (you will NOT be tested on this)

What are "frequencies" in an image?
Spatial frequency

Fourier Transform (you will NOT be tested on this)

Image

Fourier Transform (you will NOT be tested on this)

First (lowest) frequency, a.k.a. average

Fourier Transform (you will NOT be tested on this)

+ Second frequency

Fourier Transform (you will NOT be tested on this)

+ Third frequency

Fourier Transform (you will NOT be tested on this)

$+\mathbf{5 0 \%}$ of frequencies

Fourier Transform (you will NOT be tested on this)

Fourier Transform (you will NOT be tested on this)

(A)

(B)

(C)

(D)

Fourier Transform (you will NOT be tested on this)

amplitude

Forsyth \& Ponce (2nd ed.) Figure 4.6

Fourier Transform (you will NOT be tested on this)

cheetah phase with zebra amplitude
zebra phase with cheetah amplitude

phase

Forsyth \& Ponce (2nd ed.) Figure 4.6

Fourier Transform (you will NOT be tested on this)

Experiment: Where of you see the stripes?

frequency

Fourier Transform (you will NOT be tested on this)

Campbell-Robson contrast sensitivity curve

frequency

What preceded was for fun
(you will NOT be tested on it)

Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

Salvador Dali, 1976

Low-pass filtered version

High-pass filtered version

Assignment 1: Low/High Pass Filtering

Original
$I(x, y)$

Low-Pass Filter

High-Pass Filter

$$
I(x, y)-I(x, y) * g(x, y)
$$

