CPSC 425: Computer Vision

Lecture 3: Image Filtering
(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Lecture 3: Goal

Start to develop tools for (simple) processing of images

(the "tools" we going to learn over the next few lectures will be broadly useful, including in CNNs)

Image as a 2D Function

A (grayscale) image is a 2D function

$$
I(X, Y)
$$

grayscale image

Image as a 2D Function

A (grayscale) image is a 2D function

$$
I(X, Y)
$$

grayscale image

domain: $(X, Y) \in([1$, width $],[1$, hight $])$

Image as a 2D Function

A (grayscale) image is a 2D function

$$
I(X, Y)
$$

grayscale image

What is the range of the image function?

domain: $(X, Y) \in([1$, width $],[1$, hight $])$

Image as a 2D Function

A (grayscale) image is a 2D function

$$
I(X, Y)
$$

grayscale image
What is the range of the image function?

$$
I(X, Y) \in[0,255] \in \mathbb{Z}
$$

domain: $(X, Y) \in([1$, width $],[1$, hight $])$

Adding two Images

Since images are functions, we can perform operations on them, e.g., average

$I(X, Y)$

$G(X, Y)$

$$
\frac{I(X, Y)}{2}+\frac{G(X, Y)}{2}
$$

Adding two Images

$$
a=\frac{I(X, Y)}{2}+\frac{G(X, Y)}{2}
$$

$$
b=\frac{I(X, Y)+G(X, Y)}{2}
$$

Adding two Images

$$
a=\frac{I(X, Y)}{2}+\frac{G(X, Y)}{2}
$$

Question:

$$
\begin{aligned}
& a=b \\
& a>b \\
& a<b
\end{aligned}
$$

$$
b=\frac{I(X, Y)+G(X, Y)}{2}
$$

Adding two Images

Red pixel in camera man image $=98$
Red pixel in moon image $=200$

Question:

$$
\frac{98}{2}+\frac{200}{2}=49+100=149
$$

$$
\begin{gathered}
a=b \\
a>b \\
a<b
\end{gathered}
$$

$$
\frac{98+200}{2}=\frac{\lfloor 298\rfloor}{2}=\frac{255}{2}=127
$$

Adding two Images

It is often convenient to convert images to doubles when doing processing

In Python

from PIL import Image
img $=$ Image.open('cameraman.png') \leftarrow
import numpy as np
imgArr $=$ np.asfarray (img)
\# Or do this
import matplotlib. pyplot as plt
camera $=$ plt.imread ('cameraman.png');

Adding two Images

This will save you a LOT of headache in homeworks:

1. Convert to doubles
2. (optionally) Normalize image to $[0,1]$ range (by dividing by 255)
3. Perform any computations needed
4. (optionally) Undo normalization (by multiplying by 255)
5. Clamp values between [0, 255]
6. Convert to uint8

What types of transformations can we do?

What types of filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

Examples of Point Processing

original

darken

lower contrast

non-linear lower contrast

$I(X, Y)$

invert

lighten

raise contrast

non-linear raise contrast

Examples of Point Processing

original

$I(X, Y)$
invert

darken

lower contrast

non-linear lower contrast

$I(X, Y)-128$
lighten

raise contrast

non-linear raise contrast

Examples of Point Processing

original

$I(X, Y)$
invert

darken

$I(X, Y)-128$
lighten

lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

non-linear lower contrast

non-linear raise contrast

Darkening v.s. Contrast

Brightness: all pixels get lighter/darker, relative difference between pixel values stays the same

Contrast: relative difference between pixel values becomes higher / lower

Examples of Point Processing

original

$I(X, Y)$
invert

darken

$I(X, Y)-128$
lighten

lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

non-linear lower contrast

non-linear raise contrast

Examples of Point Processing

original

$I(X, Y)$
invert

darken

$I(X, Y)-128$
lighten

lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

non-linear lower contrast

non-linear raise contrast

Examples of Point Processing

original

$I(X, Y)$
invert

darken

$I(X, Y)-128$
lighten

$$
255-I(X, Y)
$$

lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

non-linear lower contrast

non-linear raise contrast

Examples of Point Processing

original

$I(X, Y)$
invert

$255-I(X, Y)$
darken

$I(X, Y)-128$
lighten

$I(X, Y)+128$
lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

non-linear lower contrast

non-linear raise contrast

Examples of Point Processing

original

$I(X, Y)$
invert

$255-I(X, Y)$
darken

$I(X, Y)-128$
lighten

$I(X, Y)+128$
lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

$I(X, Y) \times 2$
non-linear lower contrast

non-linear raise contrast

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Examples of Point Processing

original

$I(X, Y)$
invert

$255-I(X, Y)$
darken

$I(X, Y)-128$
lighten

$I(X, Y)+128$
lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

$I(X, Y) \times 2$
non-linear lower contrast

non-linear raise contrast

$$
\left(\frac{I(X, Y)}{255}\right)^{2} \times 255
$$

Examples of Point Processing

original

$I(X, Y)$
invert

$255-I(X, Y)$
darken

$I(X, Y)-128$
lighten

$I(X, Y)+128$
lower contrast

$\frac{I(X, Y)}{2}$
raise contrast

$I(X, Y) \times 2$
non-linear lower contrast

non-linear raise contrast

$$
\left(\frac{I(X, Y)}{255}\right)^{2} \times 255
$$

What types of transformations can we do?

changes range of image function

What types of filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

Linear Neighborhood Operators (Filtering)

Non-Linear Neighborhood Operators (Filtering)

Original Image

edge preserving
smoothing

cenny edges

Linear Filters

Let $I(X, Y)$ be an $n \times n$ digital image (for convenience we let width $=$ height)
Let $F(X, Y)$ be another $m \times m$ digital image (our "filter" or "kernel")

Filter

For convenience we will assume m is odd. (Here, $m=5$)

Linear Filters

Let $k=\left\lfloor\frac{m}{2}\right\rfloor$

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { output }}}{F(i, j)} I \underset{\substack{\text { filter }}}{\text { image (signal) }}
$$

Intuition: each pixel in the output image is a linear combination of the same index pixel and its neighboring pixels in the original image

Linear Filters

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Linear Filters

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, $I^{\prime}(X, Y)$, as the sum of $m \times m$ values, where each value is the product of the original pixel value in $I(X, Y)$ and the corresponding values in the filter

Linear Filters

The computation is repeated for each (X, Y)

Linear Filter Example

Linear Filters

$$
\underset{j=-k}{I^{\prime}(X, Y)}=\sum_{i=-k}^{k} \sum_{\substack{\text { output }}}^{F(i, j)} I(X+i, Y+j)
$$

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, $I^{\prime}(X, Y)$, as the sum of $m \times m$ values, where each value is the product of the original pixel value in $I(X, Y)$ and the corresponding values in the filter

Linear Filters

Let's do some accounting ...

$$
I_{\substack{\prime \\ \text { output }}}^{k} \sum_{j=-k}^{k} \sum_{i=-k}^{k(i, j)} \underset{\substack{\text { filter }}}{F(X+i, Y+j)}
$$

Linear Filters

Let's do some accounting ...

$$
I_{\substack{\prime \\ \text { output }}}^{k} \sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { filter }}}{F(i, j) I(X+i, Y+j)}
$$

At each pixel, (X, Y), there are $m \times m$ multiplications

Linear Filters

Let's do some accounting ...

$$
I_{\substack{\prime \\ \text { output }}}^{k} \sum_{j=-k}^{k} \underset{\substack{\text { image (signal) }}}{F(i, j)} \mid
$$

At each pixel, (X, Y), there are $m \times m$ multiplications
There are

$$
n \times n \text { pixels in }(X, Y)
$$

Linear Filters

Let's do some accounting ...

$$
I_{\substack{\prime \\ \text { output }}}^{k} \sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { filter }}}{F(i, j)} I(X+i, Y+j)
$$

At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total:

$$
m^{2} \times n^{2} \text { multiplications }
$$

Linear Filters

Let's do some accounting ...

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} \underset{\substack{\text { output }}}{F(i, j) I(X+i, Y+j)}
$$

At each pixel, (X, Y), there are $m \times m$ multiplications
There are $n \times n$ pixels in (X, Y)

Total: $\quad m^{2} \times n^{2}$ multiplications

When m is fixed, small constant, this is $\mathcal{O}\left(n^{2}\right)$. But when $m \approx n$ this is $\mathcal{O}\left(m^{4}\right)$.

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y

Linear Filters: Boundary Effects

00														
00														
0														
00														
00														
0														
0														
00														
00														
00														
00														
00														
00														
00														
00														
00														
00														
00														

Linear Filters: Boundary Effects

Notice decrease in brightness at edges

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Linear Filters: Boundary Effects

Linear Filters: Boundary Effects

Four standard ways to deal with boundaries:

1. Ignore these locations: Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
2. Pad the image with zeros: Return zero whenever a value of I is required at some position outside the defined limits of X and Y
3. Assume periodicity: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

A short exercise ...

Example 1: Warm up

0	0	0
0	1	0
0	0	0

Original
Filter

Result

Example 1: Warm up

Original

0	0	0
0	1	0
0	0	0

Filter

Result
(no change)

Example 2:

0	0	0
0	0	1
0	0	0

Filter

Result

Example 2:

Original

0	0	0
0	0	1
0	0	0

Filter

Result
(sift left by 1 pixel)

Example 3:

Filter
Result
(filter sums to 1)

Example 3:

Original

Filter
(filter sums to 1)

Result
(blur with a box filter)

Example 4:

Original

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Filter
(filter sums to 1)

Example 4:

Original

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Filter
(filter sums to 1)

Result
(sharpening)

Example 4:

Original
(Scaled)
Image Itself

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Filter
(filter sums to 1)

Result

(sharpening)

Example 4:

Why have filters sum up to 1 ?

Original

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Filter
(filter sums to 1)

Result
(sharpening)

Example 4: Sharpening

Before

After

Example 4: Sharpening

Before

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3	
4	5	6	
7	8	9	
Image			

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3	
4	5	6	
7	8	9	
Image			

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3
4	5	6
7	8	9

Image

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3
4	5	6
7	8	9

Image

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

Filter
(rotated by 180)

$!$	4	6
f	$ə$	p
0	q	e

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j)
$$

a	b	c
d	e	f
g	h	i

Filter

1	2	3	
4	5	6	
7	8	9	
Image			

Linear Filters: Correlation vs. Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
\begin{aligned}
I^{\prime}(X, Y) & =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j) \\
& =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i,-j) I(X+i, Y+j)
\end{aligned}
$$

Note: if $F(X, Y)=F(-X,-Y)$ then correlation $=$ convolution.

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

